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Abstract. Streams of sensor measurements arise from twitter, mobile
phone networks, internet traffic, road traffic, home automation systems,
seismic motion and sea level - to mention just a few. The interactive
exploration and modelling of such measurements from multiple sensors
induces the need for algorithms that are capable of processing the data
as it becomes available and that can quickly provide partial results based
on the data seen so far. Beside these requirements, the algorithm should
capture the inherent spatio-temporal dependency structure within sen-
sor data and allow a predictive analysis on arbitrary subsets of sensors.
Spatio-Temporal Markov Random Fields (ST-MRF) are known to meet
the requirements of modelling the dynamics of sensor networks. ST-MRF
tracks the empirical distribution of each sensor and concurrently updates
a Maximum Likelihood estimate of the underlying distribution. In the
first part of this paper, we show how to train such models in an online
fashion in order to perform near-instant updates to the model and pro-
vide them to the user. In the second part, we present iST-MRF, a free
open source software for interactive modelling and analyzing data from
sensor networks, which implements and visualizes ST-MRF. It guaran-
tees high performance computations for offline models and concurrent
learning and prediction for online models. We present two exemplary
applications of iST-MRF to sensor network data, namely modelling a
network of temperature sensors and a location prediction task.

1 Introduction

Data collected from multiple sources at consecutive points in time are commonly
called multivariate time series or spatio-temporal data. In a sensor network, each
series is measured by one sensor. Such networks are deployed to sense traffic
densities on multiple streets and lanes, temperatures in multiple buildings and
rooms, seismic motion on various areas on earth or the sea level at several buoys.
The visualization of a corresponding data set may already become difficult. When
it comes to a predictive analysis in large networks, even the specification of a
prediction task may become unnecessary complex. The model should offer the
opportunity to state queries like



– ”Given states at some locations and time points, what are the most likely

states at some other locations and time points?”

and mine probabilistic answers for them. Our goal is to provide an interactive
tool that enables the user to explore and visualize a probabilistic model of a
sensor network, while it is concurrently trained further from incoming sensor
data. Methods that deal with such data sets have to be capable of processing
the data as it becomes available and to quickly provide partial results based
on the data seen so far. In general, we distinguish two cases of mining spatio-
temporal data from sensor networks:

Offline In the offline setting, historical sensor readings are analyzed and used
to build a model of the corresponding sensor network that generated the
data set.

Online In case of online learning, each sensor is assumed to have compute
capabilities which allow to implement the learning algorithm directly into
each sensor in order to build a distributed model.

Based on Spatio-Temporal Markov Random Fields [1], we present iST-MRF
which is designed to solve the following tasks:

– Learn ST-MRF model parameters in online and offline settings. In both
settings, the user should be able to influence the training process by changing
optimization parameters or the structure of the network.

– Visualize the computed probability densities of user selected sets of sensors.
– Detect if individual sensors show abnormal behavior, e.g. if a sensor generates

a lot of measurements with low probability.
– Allow an interactive specification of prediction task, e.g. the user may set

the values of certain sensors at certain points in time and the model predicts
all the other values.

These task appear frequently in analysis of real world sensor networks. Note
that the last task includes answering probabilistic queries, like the one stated
above, as a special case. The required degree of user interaction is achieved
by allowing the user to change nearly any parameter of the training process.
This includes the manual setting of the stepsize, line-search parameters and
insertion or deletion of nodes and edges to the underlying dependency graph.
Additionally, the user gets statistics about the current training progress and
visualizations (in terms of plots) of the empirical, estimated and conditional
probability distributions for each sensor. The user interface of iST-MRF is shown
in Figure 1. There, the graph in the middle corresponds to a sensor network.
Because of the crowded areas which can be observed in the figure, it is possible
to zoom in and out. Details about the current structure are shown in the panel
on the right hand side, i.e. the current network contains 186 sensors with 237
dependencies between sensors. The spatio-temporal model contains 26k nodes
which is simply the number of sensors multiplied with the length of the time
series. Each sensor is capable of measuring four different values, e.g. the sensed



Fig. 1. Screenshot of iST-MRF. The graph in the middle corresponds to a sensor
network. Details about the current structure are shown in the panel on the right hand
side.

value is in {0, 1, 2, 3}. In contrast to all the grey vertices, the green colored vertex
is selected and represents the sensor whose name is shown in the status bar at
the bottom. The box at center is the context menu of the selected vertex. The
user may set (observe) the vertex with a specified value at a specified point in
time, reset (hide) any observation made on this vertex so far and show plots of its
current empirical and estimated probability densities. That is, the probabilities
of the four states over time.

In this paper, we show how the ST-MRF framework can be used for interac-
tive exploration and modelling of measurements from multiple sensors. The base
model is illustrated in Section 2. A description of the algorithms can be found
in Section 3. The usage of iST-MRF is explained in Section 4. Exemplary appli-
cations that are illustrating what kinds of analysis can be done with iST-MRF
on spatio-temporal data are shown in Section 5. In Section 6, we conclude and
indicate opportunities for further work.

1.1 Related Work

A view of data mining towards distributed sensor measurements is presented in
the book on ubiquitous knowledge discovery [2]. There are several approaches
to distributed stream mining based on work like, e.g., [3] or [4]. The goal in
these approaches is a general model (or function) which is built on the basis of
local models while restricting communication costs. Most often, the global model
allows to answer threshold queries, but also clustering of nodes is sometimes
handled. Although the function is more complex, the model is global and not



tailored for the prediction of measurements at a particular location. In contrast,
our model can predict some sensor’s state at some point in time given relevant
previous and current measurements of itself and other sensors.

Since his influential book, David Luckham has promoted complex event pro-

cessing successfully [5]. According to the slogan Monitor, Mine, Manage [6],
series of data from heterogeneous sources are to be put to good use in diverse
applications. Detecting events in streams of data has been modeled, e.g. in the
context of monitoring hygiene in a hospital [7]. However, in our case, the mon-
itoring does not imply certain events. We do not aim at finding patterns that
define an event, although they may show up as a side effect. We rather want to
predict a certain state at a particular sensor or set of sensors taking into account
the context of other locations and points in time. Although related, the tasks
differ.

Spatial relations are naturally expressed by graphical models. For instance, in
the course of analyzing video or image data, graphical models such as Markov
Random Fields (MRF) have been used [8], [9]. The standard algorithm for infer-
ence in MRF is Belief Propagation (BP). It converts local parameters into local
probabilities which fit nicely together, that is, making them globally consistent
with respect to the topology. BP is also used for the distributed computation of
the gradient when learning the model directly from sensor streams.

Although ST-MRF is highly related to Dynamic Bayesian Networks (DBN),
DBNs use directed acyclic graphs (DAG) to represent conditional dependencies.
In contrast, MRFs are undirected models which allow cyclic probabilistic de-
pendencies among sensor data. In some cases, it might be hard to impose an
ordering of the sensors, which is needed to build the conditional dependency
structure of DBNs, e.g. in wireless sensor networks. An undirected model fits
naturally to the physical deployment of sensors and no explicit ordering of the
sensors has to be chosen.

To the best of our knowledge, there is currently no implementation of ST-
MRF (or even generic MRF) that is capable of performing the tasks listed in
the introduction.

2 Spatio-Temporal Models

In order to model pairwise interactions of nearby sensors with respect to space
and time, we consider Spatio-Temporal Markov Random Fields [1]. This model
do enhance the general framework of MRF by considering a sequence of graphs
G1, G2, . . . , GT where each graph Gt = (Vt, Et) is called layer. Each layer serves
as an undirected spatial dependency structure of all sensors at time t and each
vertex from the set Vt corresponds to a sensor measurement at time t. Each
edge {v, u} ∈ Et ⊂ Vt × V with V :=

⋃T

t=1 Vt encodes conditional indepen-
dence assumptions among sensor measurements, i.e. a sensors value at time t is
fully determined by its spatio-temporal neighborhood, which may contain values
from several different Vt′ . In the basic setting of ST-MRF, the spatial structure
is stationary over time, that is (vt, ut′) ∈ Et ⇔ (vt+1, ut′+1) ∈ Et+1 for all



1 ≤ t ≤ T with vT+t := vt. For this kind of model, the projection from real
time, e.g. 2:00am, to time index t usually depends on the period that should be
modeled and the physical sampling rate of the sensors. As an example, consider
a building with n rooms, each equipped with a temperature sensor that measures
the temperature every minute. This results in 1440 sensor readings per day per
sensor, which means T = 1440. Is it also possible (and common) to build models
with a temporal resolution that is lower than the physical sampling rate of the
sensors. If we choose T = 144 in the above, measurements within consecutive
intervals of 10 minutes have to be aggregated (min, max, mode, average, ..) or
simply ignored. The particular projection is data and task dependent.

The spatial dependency structure is often given by the physical deployment
of sensors but the temporal dependency structure is usually unknown. However,
we show that our online update does allow insertion and deletion of edges and
nodes. The proposed approach starts with an initially pre-specified temporal
structure which can be changed interactively by the user while the model is
continuously adapted to the data stream.

In the remainder of this paper, we use |S| to denote the cardinality of a finite
set S and symbols describing a vector entity are set in bold.

2.1 Learning from spatio-temporal sensor data

Although we want to learn a model from a stream of sensor measurements, lets
assume for now that the data is given in a set T = {x(1),x(2), . . . ,x(N)}, where
each x(i) is the i-th joint reading of all sensors in the network over a period
of length T . We denote the measurement of a single sensor s at time t as xst .
Without loss of generality, we assume that sensor measurements are discretized,
i.e. each sensor measures a discrete state from finite set X . The model parameters
θ ∈ R

d consist of one weight vector θst ∈ R
|X | per spatio-temporal vertex and

one weight matrix θ{st,vt′}
∈ R

|X |×|X| per spatio-temporal edge. This results

in a total of d = |V | · |X | + |E| · |X |2 parameters, with E :=
⋃T

t=1 Et. Instead
of using discretized measurements, we could assume that measurements have a
Gaussian distribution. In this case, θst would store the mean and θ{st,vt′}

the
partial correlation coefficients. In either case, the parameters can be obtained
by Maximum Likelihood Estimation, whereby the Likelihood of a particular θ

given some data set T is defined as

L(θ; T ) :=
N
∏

i=1

pθ(X = x(i)). (1)

Here, pθ(X = x) = exp(〈θ,φ(x)〉 −A(θ)) is the density of an exponential fam-
ily member [10] which obeys the conditional independence structure given by G,
φ(x) is a function (sufficient statistic) that maps x into a d-dimensional binary
vector space and A(θ) normalizes the density. The components of vector φ rep-
resents a joint measurement of all sensors and all edges in the network as binary



values. For sensors v, w ∈ V and states a, b ∈ X the entries are as follows:

φv,a(X) :=

{

1 if Xv = a

0 otherwise,

φvu,ab(X) :=

{

1 if Xv = a and Xu = b

0 otherwise.

(2)

If the model is implemented directly into a sensor network for online process-
ing, we do not want it to store its complete history of measurements. Therefore,
we take the logarithm of the Likelihood (1) and rearrange, such that it only de-
pends on the average value or the empirical expectation Ẽ [φ(x)] of our sufficient
statistic. Note that the extra 1

N
-factor does not change the optimal solution.

ℓ(θ; T ) :=
1

N

N
∑

i=1

log pθ(x
(i)) =

〈

θ, Ẽ [φ(x)]
〉

−A(θ) (3)

This implies that each sensor has to store an aggregate of historical readings
instead of a full history. This fits to a streaming scenario, since we only have to
count how often a certain combination appears in the stream. Taking derivatives
of (3) it follows that

∂ℓ(θ; T )

∂θv,a

= Ẽ
[

φv,a(x)
]

− Ê
[

φv,a(x)
]

,

whereby θv,a denotes the weight of sensor v and state a ∈ X and the estimated

expectation Ê
[

φv,a(x)
]

is computed by Belief Propagation (BP) [11]. The BP
algorithm is a distributed message passing algorithm and it is used for inference
in both online and offline models. It is also known as Sum-Product algorithm in
the context of factor graphs [12]. Note that graphs of ST-MRF models contain
many loops per definition and that BP is an approximate method in this case.
The objective maxθ ℓ(θ; T ) can then be solved by any first-order optimization
method.

The prediction is also executed by the BP algorithm. For this purpose, we
fix the measurements of some sensors, say u at time t′ and w at time t′′, and
run BP until convergence. The computed beliefs for any sensor v at time t will
approximate pθ(Xvt

| xu
t′
,xw

t′′
). Thus, the predicted value of each sensor v at

time t is x∗
vt

= argmaxx∈X pθ(Xvt
= x | xu

t′
,xw

t′′
). In general, we may use

any two disjoint subsets A,B ⊂ V with corresponding assignments xA,xB to
compute pθ(XA = xA | xB) with BP. We use this kind of prediction in the
exemplary predictive analysis of sensor networks in Section 5.

In case of continuous t ∈ R, a prediction can still be made by interpolating
the probability between the two surrounding layers ⌊t⌋ and ⌈t⌉ and choosing its
maximum point. A first-order interpolation is given by

p̄θ(Xvt
) = pθ(Xv⌊t⌋

) + (pθ(Xv⌈t⌉
)− pθ(Xv⌊t⌋

))(t− ⌊t⌋).



2.2 Changing the graphical structure

The general framework of probabilistic graphical models considers a fixed1 graph
G. This results from the fact, that adding vertices or edges to G would also
change θ and thus the associated optimization problem. A simple consequence
is that we cannot continue the optimization if the graph has changed, the only
way is to restart the training. Notice, that the new training can be started from
any initial solution θ that we choose. Consider a model which gets a new edge
{u, v} added during training: We add the new weight matrix θ{u,v} to θ, initialize
its values to 0 and leave all the other parameters untouched. In case of dynamic
or annealing stepsize, we also have to reset the stepsize to its initial value. The
next iteration will behave like after a restart of the optimization procedure. The
training may now continue approaching the Maximum Likelihood estimate.

3 iST-MRF

Now, the basic algorithms for offline and online training of ST-MRF are pre-
sented and discussed. For notational convenience, let T + 1 := 1.

3.1 Offline Training

The offline training of iST-MRF has to execute the following algorithm:

1. Load G and create θ

2. Initialize θ := 0

3. Load T

4. Compute Ẽ [φ(x)] from T

5. While not converged:

(a) Compute Ê [φ(x)] with BP(θ)

(b) Update θnew := θold + η · (Ẽ [φ(x)]− Ê [φ(x)])

(c) Update η

(d) If sensor v or edge {v, u} is added to G:

i. For each 1 ≤ t ≤ T : Create θvt
or θ{vt,ut},θ{vt+1,ut} and θ{vt,ut+1}

ii. Initialize the new parameters with 0

iii. Reset η
iv. Goto 3.

This resembles usual Maximum Likelihood estimation but with the opportu-
nity to change the graphical structure and restart the optimization. In order to
have thread safe parallel computations in the offline version, we use the Graphlab
framework [13] for implementing BP.

1 In case of non-parametric graphical models, the graph may not be fixed. A distribu-
tion over several graphs is used instead.



3.2 Online Training

For online processing, a fully distributed version is needed, since data may arise
asynchronously at several sources. The following algorithm (online) is executed
by each sensor v in the network:

1. Create, for all 1 ≤ t ≤ T : θvt
, θ{vt,ut},θ{vt+1,ut} and θ{vt,ut+1} for all neigh-

bors u and initialize the new parameters with 0

2. Initialize Ẽ [φ(x)] := 0

3. Start BP(θ) concurrently
4. While new data xvt

is available:

(a) Send xvt
to neighbors

(b) Add xvt
to cache C

(c) Receive measurements xut
from neighbors and add them to C

(d) Update Ẽ [φ(x)] with C and clear C

(e) Update θnew := θold + η · (Ẽ [φ(x)]− Ê [φ(x)])
(f) Update η

(g) If adjacent edge {v, u} is added to G:

i. For each 1 ≤ t ≤ T : Create θ{vt,ut},θ{vt+1,ut} and θ{vt,ut+1}

ii. Initialize the new parameters with 0

iii. Reset η
iv. Goto 4.

In Section 2.1, we already mentioned that each sensor has to store an aggre-
gate of historical readings instead of a full history. To be more precise, computing
Ẽ [φ(x)] can be implemented in the turnstile2 model of streaming [14], since we
only have to count the number of occurrences of certain configurations in the
stream. Those counts may also be approximated from the stream by the count-
min sketch [15] or similar methods. We use an exact approach that caches the
recent own and neighboring measurements and allows the computation of joint
counts (and therefore empirical expectations) between a sensor and its neigh-
bors. These are needed to compute the empirical expectation of φvu,ab defined in
(2). Each sensor that executes an instance of the online algorithm may read its
measurements from an actual measurement device (e.g. a temperature sensor),
from a file or database. Thus, the same application may be used to simulate
the sensor network while reading from file or using actually measured values
and implementing the model directly into an existing network. The empirical,
estimated and conditional densities are collected on demand if requested by the
user. It is clear from line 4, that Belief Propagation is running in the background.
The computation and propagation of new BP messages is started, whenever
the difference of the current empirical expectation and the one which was used
to compute the current parameters θ falls below a user specified parameter ρ.
Briefly, the algorithm reacts on changes in Ẽ [φ(x)] with an updated Ê [φ(x)].

2 In the turnstile model, new data may appear in an arbitrary order and undergo any
number of additive updates.



Fig. 2. Spatial structure used in the second example task. Left: Diagram that show
the arrangement of sensors in the lab. Right: Nearest neighbor graph after removing
faulty sensors and edges that were blocked by a wall or similar obstacle.

4 iST-MRF usage

The following describes the usage of iST-MRF. Three basic steps are involved
to create an initial model:

Provide data. Data are loaded from one or multiple .csv-file(s). This gener-
ates as many nodes as columns are available in the data, whereas the first
row is interpreted as sensor names. The initial graph is fully disconnected
and visualized by a simple grid layout without any edges.

Provide a graphical structure. Vertices may either be connected by drawing
lines between them or by loading a graphical structure from a .graphml-file
[16]. The node names in those files have to be the same as the column names
in the data. Nevertheless, it is possible to rename the nodes.

Setup ST-MRF. Basically, only the total number of layers has to be defined.
It is also possible to set an initial stepsize η0, elastic-net control parameter
λ1 and λ2 and an BP termination bound, but all of these variables have
reasonable default values.

Next, the iterative optimization procedure can be started for a user supplied
number of iterations. Nevertheless, the user can always

– pause the learning process,

– adjust the above-mentioned parameters,

– add or remove edges,

– watch how the empirical and estimated densities change with new measure-
ments or running optimization, respectively,

– store/load the model to/from a file,

– compute predictions for user selected sensors and user specified fixed values
for a disjoint set of sensors.

If parameters or the model itself is changed during training, the changes are
applied in the next iteration.
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Fig. 3. Temporal dynamics of empirical (I), estimated (II) and conditional (III)
marginal probability densities for a fixed user (A) and all cells that the user has visited.
Each color represents the probability for one cell over time. The densities in the right
plot are conditioned on the single event that the green cell is observed at 5:40pm.

5 Exemplary Applications

The examples here proposed, should demonstrate that iST-MRF is capable of
performing at least three of the four tasks listed in the introduction. We present
the results of our first experiments that where executed by iST-MRF. For train-
ing, we ran gradient descent optimization with an elastic-net regularization [17]
until convergence to find proper model parameters. Although these experiments
give only a rough impression of which kinds of predictive analysis can be done
with iST-MRF, they serve as simple examples on how spatial-temporal data can
be analyzed.

5.1 Network cell prediction

For the first task, we applied iST-MRF to a network cell prediction task [18].
The data consists of trajectories in terms of mobile network cell identifiers for
several users, whereas the provided trajectories contained many missing values
for some users. In this case, a sensor is identified with a user and a measurement is
identified with the network cell identifier. The task was to model a users behavior
over 24h. Due to missing values, we set the sampling rate to 10 minutes, which
results in T = 24h

10min
= 144. We choose a temporal first order Markov dependency

without any spatial dependency, which results in a non-stationary Markov chain
per user. Figure 3 shows Ẽ [φ(x)], Ê [φ(x)] and Ê

[

φ(xV \{94})|x94 = green
]

for
a certain anonymous user. The plots are generated directly with iST-MRF.

5.2 Temperature Sensor Network

The second task is based on data collected in March 2004 from the sensors de-
ployed in the Intel Berkeley Research lab (available at http://db.csail.mit.
edu/labdata/labdata.html). The measurements consist of humidity, temper-
ature, light, and voltage values captured at every 31 seconds. We used a half of
two million sensor readings for training, and the rest for testing.



A nearest neighbor graph was constructed as basic spatial dependency struc-
ture, whereas an edge is considered disconnected whenever it is blocked by walls.
We also excluded sensors reported faulty in [19]. Figure 2 shows the arrangement
of sensors in the lab and the resulting structure. The final spatial graph con-
tained 48 nodes and 150 edges. We use the temperature measurements at every
10 minutes (which resulted again in T = 144), since it was the finest resolution
without too many missing values, and discretized them into 19 equal sized bins.

In order to evaluate the prediction accuracy, we compute for all days which
are included in the test set, the most probable (discretized) temperature for all
the sensors from 12:00 to 23:50pm, given all values for all sensors from 00:00am to
11:50am. This results in a normalized absolute error of 0.141643. For comparison,
the same experiment was repeated but without any spatial edge between sensors.
The resulting error is 0.187426.

6 Conclusions and Future Work

We presented iST-MRF, an interactive exploration and modelling tool for mea-
surements from multiple sensors. We described the underlying theory and showed
how ST-MRF can be used for online learning from multiple sensors. Our exper-
iments could show, that iST-MRF is capable of computing empirical, estimated
and conditional probability densities and visualize them on demand to the user.
The second example showed that iST-MRF can perform predictions for arbitrary
subsets of sensors at nearly arbitrary points in time. Furthermore, the method
can handle the insertion (or deletion) of sensors and edges, which heavily in-
creases the interactivity of the learning process.

Our future work is focused on completing the development of online iST-
MRF and evaluating its performance compared to the offline version. Also for
the online case, approximate counting methods like count min sketch will be
investigated whether they can preserve the accuracy and qualitative features of
ST-MRF while saving memory in the device.
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