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Abstract
The partition function is fundamental for proba-
bilistic graphical models—it is required for infer-
ence, parameter estimation, and model selection.
Evaluating this function corresponds to discrete
integration, namely a weighted sum over an ex-
ponentially large set. This task quickly becomes
intractable as the dimensionality of the prob-
lem increases. We propose an approximation
scheme that, for any discrete graphical model
whose parameter vector has bounded norm, esti-
mates the partition function with arbitrarily small
error. Our algorithm relies on a near minimax
optimal polynomial approximation to the poten-
tial function and a Clenshaw-Curtis style quadra-
ture. Furthermore, we show that this algorithm
can be randomized to split the computation into a
high-complexity part and a low-complexity part,
where the latter may be carried out on small com-
putational devices. Experiments confirm that the
new randomized algorithm is highly accurate if
the parameter norm is small, and is otherwise
comparable to methods with unbounded error.

1. Introduction
Graphical models serve as the underlying framework of
various machine learning techniques and facilitate impor-
tant real world applications from computer vision, com-
putational biology, signal processing and natural language
processing, to mention just a few (Pearl, 1988; Lauritzen,
1996; Koller & Friedman, 2009). When using these mod-
els, a central problem is that of computing the parti-
tion function, since it is required for computing probabil-
ities from the model and it plays a fundamental role in
marginal inference (Jaakkola & Jordan, 1996), maximum-
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likelihood and maximum-a-posteriori parameter estima-
tion (Wainwright & Jordan, 2008), and model selection
(Cover & Thomas, 2006; Grünwald, 2007). Unfortu-
nately, exact computation of the partition function is an in-
tractable (#P-complete) problem for many graphical mod-
els of interest, such as those involving a non-tree condi-
tional independence structure (short: structure) or high-
order cliques/factors. Moreover, chances to find polyno-
mial time algorithms for these tasks are rather low, unless P
= NP. For some special cases, polynomial-time algorithms
are known (Schraudolph & Kamenetsky, 2008; Goldberg &
Jerrum, 2013). However, significant research efforts have
been conducted in order to derive approximations for more
general cases.

There are two well established general approaches to ap-
proximate large discrete sums: variational methods and
sampling. Methods which provide reasonable tight error
bounds that hold for any structure are either not available
or require to solve a series of hard combinatorial optimiza-
tion problems (Ermon et al., 2013).

Based on work from statistical physics, variational meth-
ods (Wainwright & Jordan, 2008) are often very fast but
do not provide quality guarantees. Loopy belief propaga-
tion (LBP) (Pearl, 1988; Kschischang et al., 2001) is well
known for computing locally consistent solutions. Never-
theless, this procedure might not converge and if it does, the
result is a local minimum of a surrogate objective (Bethe
free energy). Tree-reweighted approaches (Wainwright &
Jordan, 2008) deliver the tightest upper bound, but the ex-
act error can not be quantified. In addition, the approxi-
mation error depends on the structure of the corresponding
probability density. In contrast, the worst-case error of our
method is bounded and independent of the structure.

Sampling based techniques are popular, but they suffer
from similar issues because the number of samples re-
quired to obtain a statistically reliable estimate for multi-
dimensional random variables grows exponentially fast.
Markov Chain Monte Carlo (MCMC) methods are asymp-
totically accurate, but guarantees exist only for certain spe-
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cial cases. Their performance depend crucially on the
choice of the proposal distribution, which often must be
domain-specific and expert-designed (Girolami & Calder-
head, 2011). Importance sampling methods (Liu et al.,
2015) try to correct for biased proposal distributions, but
their error is hard to quantify as well.

In contrast to existing approaches, our method is based
on a numerical approximation technique, which is called
quadrature. It allows us to derive a scalable approximation
procedure for partition functions, that is applicable to any
structure, and delivers guarantees on the approximation er-
ror. Surprisingly, quadrature based approximations do not
appear in the machine learning literature. The technically
most related article is a recent method to compute the log-
determinant of large matrices (Han et al., 2015), based on
Chebyshev polynomials. Our main contributions can be
summarized as follows:

• We present a new deterministic algorithm called Dis-
crete Clenshaw-Curtis Quadrature (DCCQ). It gets a
structure G, a parameter vector θ ∈ Rd and a polyno-
mial degree k as inputs, and outputs Ẑk(θ) such that
|Z(θ)−Ẑk(θ)| ≤ ε

2Z(θ) in timeO(k2n2k) whenever
k ∈ ω(‖θ‖2 − ln ε).

• Moreover, we show how to split the computation of
our approximation into an “expensive” part, that de-
pends on the structure G and the state space X , and
a “cheap” part, which depends on the model param-
eters θ. If the target platform has limited compu-
tational resources (like a mobile phone or a sensor),
the expensive computation may be carried out on a
server. Since the expensive part is independent of the
model parameters θ, it can be re-used for any repet-
itive computation of the partition function—a setting
that is typical in iterative parameter estimation pro-
cedures. To this end, we present a randomized al-
gorithm, called Stochastic Discrete Clenshaw-Curtis
Quadrature (SDCCQ). It getsG, θ, k andm as inputs
and outputs Z̃mk (θ) such that P[|Z(θ) − Z̃mk (θ)| ≤
εZ(θ)] ≥ ζ in time O(k2n2k) +O(k2mmax), when-
ever k ∈ ω(‖θ‖2 − ln ε) and large enoughmi.

• Numerical experiments on grid structures show, that
the new SDCCQ delivers highly accurate approxima-
tions while not suffering from high runtimes, conver-
gence issues or problems with mixed-type potentials,
whenever the norm of the parameter vector is small.

As opposed to existing methods, our new approach (i) al-
lows for a user-specified trade-off in terms of runtime and
approximation quality by a single parameter, (ii) can out-
puts a bound of its own worst-case error, (iii) has no conver-
gence issues, (iv) and allows us to split the computational
complexity and re-use existing results.

2. Notation and background
In this section, the preliminaries of our new approximation
to the partition function are explained. We provide some
background on graphical models, followed by a short recap
of quadrature rules and polynomial approximation.

2.1. Graphical Models

Consider a multi-variate random variable X where each
Xi with 1 ≤ i ≤ n takes values xi from space Xi. The
concatenation of all n variables yields the random variable
X with product state space X = X1 ×X2 × · · · × Xn. We
denote assignments to single vertices v ∈ V by xv = y
with y ∈ Xv . For any subset of variables U ⊆ V ,
XU =

⊗
v∈U Xv is its joint state space. Moreover, for any

{v, u, w} ⊂ V , we define vuw := {v, u, w} to simplify
notation.

The formalism of exponential families provides a unifying
framework for a large variety of probability distributions.
In particular, they cover all types of probabilistic graph-
ical models (Lauritzen, 1996; Koller & Friedman, 2009)
including Bayesian networks (Pearl, 1988), Markov ran-
dom fields (Wainwright & Jordan, 2008), conditional ran-
dom fields (Sutton & McCallum, 2011), logistic regression,
latent Dirichlet allocation (Blei et al., 2003) and recent
deep models (Ranganath et al., 2015). Probability densities
which are member of an exponential family can be written
as

Pθ(x) = exp(〈θ, φ(x)〉 −A(θ)) =
1

Z(θ)
ψ(x). (1)

Beside its parameter vector θ ∈ Rd, Pθ consists of
two major ingredients, namely the potential ψ(x) =
exp(〈θ, φ(x)〉) and the partition function Z(θ) =
exp(A(θ)).

Let us first have a closer look at the potential. It assigns a
positive real number to every possible instance x by map-
ping it fromX into a real vector space via a sufficient statis-
tic (or feature map) φ : X → Rd, where φ encodes the
structure of X . We ease the notation by identifying com-
ponents of X with vertices of a graph G = (V,E). In dis-
crete state space models, the state of variables is encoded
by indicator functions:

φv=y(x) = 1{xv=y} (2)
φvu=yz(x) = 1{xv=y}1{xu=z} (3)

. . .

φU=y(x) =
∏
v∈U

1{xv=yv}, U ⊆ V (4)

To exactly represent the probability mass of a multi-variate
random variableX , φ(x) has to contain at least one indica-
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tor per possible clique assignments for all maximal cliques1

of a structure G (Clifford, 1990). If C(G) is the set of
maximal cliques of G, then φ(x) = (φU=u(x) : ∀U ∈
C(G),∀u ∈ XU )>.

Sufficiency of φ is declared with respect to θ, i.e., knowl-
edge about x is not required to infer θ, once φ(x) is
known. This property is in particular useful when exponen-
tial families have to be applied in resource constrained, au-
tonomous, medical or self quantification devices, because
arbitrary large data sets may be aggregated into a finite di-
mensional representation. In fact, only members of expo-
nential families have this property (Pitman, 1936). We now
identify another property of sufficient statistics which will
become crucial for finding an efficient inference procedure:

Definition 1. The sufficient statistics φ : X → Rd is called
χ-integrable if χφ : [d]k → R with

χφ(j) =

∫
X

(
k∏
i=1

φ(x)ji

)
dν(x),∀k ∈ N,∀j ∈ [d]k

admits a closed-form expression, that is computable in
polynomial time. [d]k is an abbreviation for {1, 2, . . . , d}k.

In fact, if φ is composed out of indicator functions like (2),
(3) or (4), it is χ-integrable. We will prove this statement
in Section 4. Note, however, that our method is not re-
stricted to binary sufficient statistics or discrete state space
models—any χ-integrable φ suffices.

The partition function

Z(θ) =

∫
X
ψ(x)dν(x) (5)

accumulates the potential of every possible instance and en-
sures normalization of Pθ. It is defined w.r.t. a reference
measure ν. For continuous (discrete) state spaces, ν is the
Lebesgue (counting) measure. If the graph G contains no
loops, i.e., is tree-structured, Z(θ) can be evaluated exactly
in polynomial time. The same holds for planar Ising mod-
els (Schraudolph & Kamenetsky, 2008).

If no special property of the underlying structure can be
exploited, evaluating Z(θ) is hard—in fact, #P-complete
(Valiant, 1979; Bulatov & Grohe, 2004). The junction tree
(JT) algorithm (Lauritzen & Spiegelhalter, 1988; Wain-
wright & Jordan, 2008) can be applied to compute the ex-
act value Z(θ) with runtime exponential in the size of the
largest clique of the triangulation of graphG. Nevertheless,
several approximate methods arose in the last decades. The
Bethe approximation (Bethe, 1935; Wainwright & Jordan,
2008), where the main underlying idea is to treat a general
graph like a tree, is maybe the most popular, computed by

1Cliques are fully connected subgraphs. A clique is maximal
if it is not contained in any other clique.

loopy belief propagation (Pearl, 1988; Frey, 2000; Kschis-
chang et al., 2001). Its runtime depends on the number of
message passing iterations until convergence. This number
is in general unknown and the algorithm might not even
converge. If no further assumptions are made, the Bethe ap-
proximation delivers an estimate of unknown quality. It has
been shown quite recently, that in case of log-supermodular
potential functions (Ruozzi, 2012; Weller & Jebara, 2014),
the Bethe approximation is a lower bound on the partition
function. Also the naive mean field (MF) technique (Weiss,
2001; Wainwright & Jordan, 2008) is known to provide
a lower bound on Z(θ) (Weiss, 2001). The best known
general upper bound is based on convex combinations of
exponential family parameters θ(T ) which correspond to
spanning-trees T ∈ T (G) of the original graph G, known
as tree-reweighted belief propagation (TRW) (Wainwright
et al., 2005). An overview is provided in Table 1.

2.2. Quadrature

All of the existing approaches mentioned above are based
on an approximation of the structure. In contrast, we pro-
pose a numerical approximation of the integration, based
on the general quadrature. If integrating a function is not
tractable, one has to resort to numerical methods in order
to approximate the definite integral. The basic idea of a
quadrature rule is to replace the integrand f by an approx-
imation h ≈ f that admits tractable integration. It turns out
that choosing h = hk to be a degree-k Chebyshev poly-
nomial approximation of f has outstanding properties like
rapidly decreasing and individually converging coefficients
(Gautschi, 1985). The general quadrature procedure can be
summarized as∫ u

l

f(x)dx ≈
∫ u

l

hk(x)dx =

k∑
i=0

wif(xi) (6)

where x ∈ R, wi are certain coefficients and xi are
certain abscissae in [l, u] (all to be determined) (Ma-
son & Handscomb, 2002). Depending on the choice of
interpolation points and different kinds of orthogonality
properties, Chebyshev polynomial based quadrature rules
are termed Gauss-Chebyshev quadrature, Fejér quadra-
ture or Clenshaw-Curtis quadrature (Clenshaw & Curtis,
1960). We make use of discrete orthogonality properties
and initialize our approximation at the zeros of second
kind Chebyshev polynomials, which is a Clenshaw-Curtis
quadrature.

Chebyshev Polynomials. In order to construct a quadra-
ture rule that is numerically well behaved, Chebyshev Poly-
nomials Tk(x) are chosen as a basis. The fundamental re-
currence relation is a convenient representation:

T0(x) = 1, T1(x) = x, Tk(x) = 2xTk−1(x)− Tk−2(x).
(7)
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Table 1. State-of-the-art methods to compute/approximate the partition function of an undirected model with graph G = (V,E), n =
|V |, m = |E|. MCMC-based methods are omitted. Here, I is the number of iterations until convergence. L = maxv∈V |Xv| and
∆ = maxv∈V |Nv| are the largest vertex domain and neighborhood size, respectively. w is the tree-width of G and d is the dimension
of the parameter space. kε is the polynomial degree (implied by ε) as specified by Theorem 5. mζ = maximi is the number of samples
(implied by ζ) from the distribution (11) as specified by Theorem 7.

Algorithm Complexity Quality

JT (Lauritzen & Spiegelhalter, 1988) O(Lw) Exact

MF (Weiss, 2001) O(InL∆) Lower bound

LBP (Heskes, 2002; Yedidia et al.,
2003)

O(ImL2∆) Local minimum of Bethe
free energy

TRW (Wainwright et al., 2005) O(ImL2∆ +m log n) Upper bound

WISH (Ermon et al., 2013) O(n ln(n/ζ))× Time(MAP) (16, ζ)-approx

DCCQ (Alg. 1) O(k2εd
2kε) ε-approx (Theorem 5)

SDCCQ (Alg. 2) O(k2εd
2kε) +O(k2εmζ) (ε, ζ)-approx (Theorem 7)

It can be easily verified that each Tk is a polynomial of
degree-k. The degree-k Chebyshev interpolation hk of a
continuous function f is hk(x) =

∑k
i=0 ciTi(x) with

ci =
2

k + 1

k+1∑
j=1

f(xj)Ti(xj). (8)

The interpolation points xj = cos jπk are given by the ex-
trema of the corresponding Chebyshev polynomial which
are, at the same time, the zero of the Chebyshev polynomi-
als of the second kind.

The major distinguishing properties of Tk are (i) discrete
orthogonality, which is required for the derivation of the
coefficients (8) and (ii) the fact that 21−kTk is the mini-
max approximation to the 0-function on [−1, 1] (Mason &
Handscomb, 2002). Let h ∈ H be an approximation to f
on the domain [l, u]; h is called minimax approximation to
f iff

∀h′ ∈ H : ‖f − h‖∞ = sup
x∈[l,u]

|f(x)−h(x)| ≤ ‖f − h′‖∞

Chebyshev showed that an outstanding property of any
minimax approximation is an oscillating error curve.

The coefficients given by (8) result in an approximation to
the theoretically optimal (minimax) approximation (Mason
& Handscomb, 2002) and allow for a rather fast computa-
tion in time O(k log k) via discrete cosine transformation
(DCT). Coefficients which deliver an approximation that
is even closer to the optimal one can be obtained by the
Remez exchange algorithm (Fraser, 1965). Error functions
for DCT and Remez coefficients are shown in Figure 1 (i).
Since both approaches deliver high quality approximations,
we use DCT because of its superior efficiency.

Finally, the coefficients c, which are coefficients of Cheby-
shev polynomials, can be converted to native coefficients
c̃—coefficients of powers of x, say xi—by summing the
corresponding coefficients that appear in the Chebyshev
polynomials, weighted by ci. Every Chebyshev interpo-
lation can thus be equivalently expressed as

hk(x) =

k∑
i=0

c̃ix
i. (9)

Although the general quadrature is known since long, we,
for the first time, exploit it for approximating the partition
function.

3. Algorithm
We start with the intuition behind our algorithm for approx-
imating Z(θ) called Discrete Clenshaw-Curtis Quadra-
ture. Indeed, we aim at approximating (5) by a quadrature
rule (6). In contrast to (6), the integration in (5) has to be
carried out over the n-dimensional set X . Note, however,
that evaluating the potential at x is equivalent to comput-
ing exp(r) for r = 〈θ, φ(x)〉. Integrating ψ over X is thus
equivalent to integrating exp over W = {r ∈ R : r =
〈θ, φ(x)〉,x ∈ X}. But without any further assumption
on W , the definite integral

∫
W

exp(z)dz continues to have
no closed-form expression. We hence take hk to be the
Chebyshev interpolation of exp on [l, u] with l = minW
and u = maxW . Moreover, hk may be interpreted as ap-
proximation ψ̂k(x) ≈ ψ(x) over X . Computing maxW is
NP-hard, since it is equivalent to computing the maximum-
a-posteriori assignment of the underlying graphical model.

We may use an upper bound on maxW instead: Remem-
ber that C(G) is the number of (maximal) cliques in G.
For binary sufficient statistics (2), (3) and (4), it holds
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Algorithm 1 DCCQ
Input: θ ∈ Rd, k ∈ N, φ
Output: Approximate partition function Ẑk(θ)

1: [l, u]← interval(θ)
2: c̃← coefficients(k, [l, u]) // Eq. (8)
3: Ẑk(θ)←

∑k
i=0 c̃i

∑
j∈[d]i χφ(j)

∏i
l=1 θjl

that ∀x : ‖φ(x)‖2 =
√
|C(G)|, since each clique is in

exactly one state. Therefore, maxW ≤ ‖θ‖2B which
follows directly from the Cauchy-Schwarz inequality with
B =

√
|C(G)|.

Now, we can approximate ψ on [l, u] by Chebyshev poly-
nomials, and hence:

Z(θ) =

∫
X
ψ(x)dν(x) ≈

∫
X
ψ̂k(x)dν(x)

=

∫
X
hk(〈θ, φ(x)〉)dν(x)

=

∫
X

k∑
i=0

c̃i〈θ, φ(x)〉idν(x)

=

k∑
i=0

c̃i
∑
j∈[d]i

(
i∏
l=1

θjl

)
χφ(j) =: Ẑk(θ). (10)

Evaluating the last line has an asymptotic runtime of
O(k2n2k) × Time(χφ) which is polynomial in the size of
the graph. The procedure is summarized in Algorithm 1.
We will investigate in Section 4 which k is required to
achieve a reasonable accuracy.

3.1. Complexity-decoupling via Randomization.

O(k2n2k) is lower than the time that it takes to enumer-
ate the full state space X , but the partition function has to
be recomputed every time the model changes. This hap-
pens frequently during iterative parameter learning proce-
dures. Moreover, it is well known that the complexity of
inference is mainly influenced by the structure (Lauritzen
& Spiegelhalter, 1988; Wainwright & Jordan, 2008). So
when this structure does not change, is it necessary to redo
this costly computation during learning? It turns out that if
we combine our Algorithm 1 with a probabilistic sampling
scheme, it is possible to decouple the most costly compu-
tation from the rest. Surprisingly, the costly part depends
only on the structure while the feasible part combines it
with the parameters. To see this, notice that the function
χφ : [d]k → R is non-negative, hence

Pφ(j | k) = Qφ(k)−1χφ(j) (11)

with Qφ(k) =
∑
j′∈[d]k χφ(j′) defines a proper probabil-

ity mass function (pmf) on [d]k. Ẑk(θ), as given by (10),

Algorithm 2 SDCCQ
Input: θ ∈ Rd, k ∈ N,m ∈ Nk, φ
Output: Approximate partition function Z̃mk (θ)

1: [l, u]← interval(θ)
2: c̃← coefficients(k, [l, u])
3: for i = 1 to k do
4: if Qφ(i) not cached then
5: Qφ(i)←

∑
j∈[d]i χφ(j)

6: cache Qφ(i)

7: Z̃mk (θ)← 0
8: for i = 1 to k do
9: sum← 0

10: for r = 1 tomi do
11: sample j ∼ Pφ(J | i)
12: sum← sum +

∏i
l=1 θjl

13: Z̃mk (θ)← Z̃mk (θ) + c̃i ×Qφ(i)× 1
mi
× sum

may now be rewritten as follows:

Ẑk(θ) =

k∑
i=0

c̃i
∑
j∈[d]k

χφ(j)

(
i∏
l=1

θjl

)

=

k∑
i=0

c̃iQφ(i)
∑
j∈[d]k

Pφ(j | i)

(
i∏
l=1

θjl

)

=

k∑
i=0

wiEJ

[
i∏
l=1

θJl | i

]
(12)

where wi = c̃iQφ(i) and the expectation is taken with
respect to the random variable J with pmf Pφ(J =
j | i) as defined in (11). The runtime has not yet
improved compared to (10). However, notice that the
expectation EJ

[∏i
l=1 θJl | i

]
may be approximated via

ÊJ
[∏i

l=1 θJl | i
]

= 1
m

∑m
r=1

∏i
l=1 θj(r)l

by drawing m
samples from Pφ(J | i). Most important, Qφ(i) will not
change as long as the structure G does not change. This
procedure is summarized in Algorithm 2.

It is clear from line 4 that the Qφ(i) are only computed
once. If they are cached, the runtime is O(k2 maximi).
In Section 4 it is shown which m suffice to guarantee a
small approximation error. However, we can anticipate that
mi � dk. We like to stress again that the Qφ(i) will not
change as long as the graphical structure and the state space
X are fixed, moreover the Qφ(i) need not be computed on
the same machine. It is reasonable to assume that theQφ(i)
are computed on a large cluster while the inference is even-
tually carried out on a small device with low computational
resources or energy constraints.
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Figure 1. From left to right: (i): Absolute error of degree-16 Taylor, Remez and DCT approximations of exp(x) on the interval [−5, 5].
Only Remez and DCT have oscillating error curves. (ii): Theoretical bounds for the absolute error |Z(θ)− Ẑk(θ)| of DCCQ (Alg. 1) as
a function of the parameter norm for a 4× 4 Ising grid model, predicted by Lemma 3. (iii): Absolute error |Z(θ)− Z̃m
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(Alg. 2) as a function of the parameter norm for a 4×4 Ising grid model. ∀i : mi = 104. (iv): Scalability of SDCCQ (Alg. 2). Runtime
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4. Analysis
The most important prerequisite for our algorithms is χ-
integrability of the sufficient statistic.

Lemma 2. The sufficient statistics of a discrete state space
model, constructed from binary indicator functions, (2), (3)
and (4), is χ-integrable.

Proof. The state space is discrete and thus the definition
of χ-integrability becomes

χφ(j) =
∑
x∈X

(
k∏
i=1

φ(x)ji

)
,∀k ∈ N,∀j ∈ [d]k

Since φ(x)ji is binary, the product
∏k
i=1 φ(x)ji is binary

too. The summation therefore equals the number of in-
stances x ∈ X for which the product evaluates to 1 for an
arbitrary but fixed j. We will derive this number now: As
described in Section 2, each index of the vector φ(x) cor-
responds to a particular assignment of a value y to a clique
C. Since j may be any k-dimensional vector with elements
from {1, 2, . . . , d}, it might happen that it contains incom-
patible indices. Two incompatible indices correspond to
two different assignments to the same vertex, which is
not possible. Since the summation is over all possible in-
stances, the product can never evaluate to 1 for vectors j
which contain incompatible indices, and hence χφ(j) = 0.
Checking if a vector contains a pair of incompatible indices
can be done with o(k2) comparisons. Any j that contains
only compatible indices, corresponds to a possible assign-
ment yU(j) to an induced subset U(j) ⊂ V of vertices.
The product will evaluate to 1 for every instance x that
matches this particular assignment, i.e., xU (j) = yU (j).
Fixing the values of the vertices in U(j) results in a re-
maining state space of size |X |/|XU(j)|, which is exactly
the number of times that the product will evaluate to 1. This
finally implies that iff j contains no incompatible indices,

then χφ(j) = |X |/|XU(j)| and 0 otherwise. This can of
course be computed in polynomial time and φ is thus χ-
integrable. �

In the rest of this section, we present our main theorems
which provide bounds on the error of Algorithms 1 and 2.
Formally, the following error bound is known for Cheby-
shev approximations (Xiang et al., 2010).

Lemma 3. Suppose f is analytic in the region bounded by
the ellipse Eρ = {z ∈ C : |z +

√
z2 − 1| = ρ} with major

and minor semi-axis lengths summing to ρ > 1, foci at
±1, and maxz∈Eρ |f(z)| ≤M . Let gk denote the degree-k
interpolant of f according to Eq. (9), then for each k ≥ 0,

max
z∈{−1,1}

|f(z)− gk(z)| ≤ 4M

(ρ− 1)ρk
.

To apply this Lemma in the sequel, we will consider the
function f = exp ◦ γ with γ : [l, u] → [−1, 1] and
γ(x) = l+u

2 + xu−l2 (Bernstein, 1912; Mason & Hand-
scomb, 2002). Any choice of ρ > 1 would suffice, but
increasing ρ increases the imaginary axis of E , and, at the
same time, both numerator and denominator of the error
bound. On the other hand, for ρ = 1, Eρ collapses to the
real line, which is not compatible with the Lemma. We set
ρ = 1 +

√
2 as suggested in (Xiang et al., 2010).

Lemma 4. Mean field lower bound. Any mean parameter
µ ∈ M◦ with µ =

∑
x P(x)φ(x) yields a lower bound

on the partition function: A(θ) ≥ 〈θ,µ〉 − A∗(µ), where
A∗ is the convex conjugate of A = lnZ. (Wainwright &
Jordan, 2008)

It can be shown that −A∗ is equal to the Shannon entropy
H(P) = −

∑
x P(x) lnP(x).

Theorem 5. Deterministic approximation error. Let
φ be χ-integrable, ε > 0, k ≥ (ln 8 + 2 lnM −
ln(ε(ρ− 1)))(ln ρ)−1 and ∀x : ‖φ(x)‖2 ≤ B. Then, the
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output Ẑk(θ) of Algorithm 1 satisfies

|Z(θ)− Ẑk(θ)| ≤ ε

2
|Z(θ)|.

Proof. The idea is to show that the lower bound from
Lemma 4 is also an upper bound for the right-hand-side in
Lemma 3. To see this, construct the naive mean field vari-
ational lower bound, based on a fully factored joint prob-
ability P(X = x) =

∏
v∈V Pv(Xv) with uniform vertex

marginals Pv(Xv) = U(Xv) (here we assume that the uni-
form distribution on Xv exists) for all v ∈ V . This implies
for edge marginals that Pvu(Xv,Xu) = Pv(Xv)Pu(Xu).
Plugging this into Lemma 4, we get

A(θ) ≥ 〈θ,µ〉+H(µ)

≥ −‖θ‖2‖µ‖2 +H(µ)

≥ −‖θ‖2B −
∑
v∈V

∑
x∈Xv

1

|Xv|
ln

1

|Xv|

> − lnM +
∑
v∈V

ln |Xv|

since ‖φ(x)‖2 ≤ B ⇒ ‖µ‖2 ≤ B. Now, let
M = maxz∈Eρ | exp(γ(z))| = exp(γ(

√
2)) = exp((l +

u)/2 +
√

2(u − l)/2) > exp((l + u)/2 + (u − l)/2) =
exp(‖θ‖2B) ≥ maxx ψ(x) be an upper bound on the po-
tential, where we set u = ‖θ‖2B as suggested in Section 3.
By applying Lemma 3, it follows that

|Z(θ)− Ẑk(θ)| = |
∑
x

ψ(x)−
∑
x

ψ̂k(x)|

≤
∑
x

|ψ(x)− ψ̂(x)| ≤ |X | 4M

(ρ− 1)ρk

≤ |X | 4ε

8M
≤ ε

2
Z(θ) �

Notice that the occurrence of ‖θ‖2 is an artifact of the
Cauchy-Schwarz inequality. One may conduct the same
derivation based on Hölder’s inequality, which in turn
would replace the term ‖θ‖2B by ‖θ‖1B′.

Now, we analyze the error that we have to tolerate, if we
want to apply complexity-decoupling as explained in Sec-
tion 3.1. Therein, additional error is introduced by ap-
proximating the expected value EJ [

∏i
l=1 θJl | i] with the

sample mean Êm[
∏i
l=1 θJl | i] := 1

m

∑m
r=1

∏i
l=1 θj(r)l

,

where each j(r) is sampled from the distribution with pmf
(11). Indeed, Êm is unbiased and converges to EJ . How-
ever, we would like to quantify the amount of samples that
is required to achieve a desired accuracy.

Theorem 6. Let X = X(J) =
∏i
l=1 θJl , where J is the

random variable with pmf (11). Moreover, let εi > 0, ζ0 ∈

(0, 1) and m ≥ (ln ζ0)/(2 ‖θ‖i∞ − εi |− lnM + ln |X ||),
where M is an upper bound on the potential, then

P
(∣∣∣EJ [X | i]− Êm [X | i]

∣∣∣ ≥ εi |Z (θ)|
)
≤ ζ0.

Proof. Applying a Chernoff-like argument, followed by
the triangle inequality and Lemma 4, we have

P
(∣∣∣Êm [X | i]− E [X | i]

∣∣∣ ≥ εi |Z (θ)|
)
≤

E

[
exp

(∣∣∣∣∣
m∑
l=1

Xl

∣∣∣∣∣+m |E [X]| −mεi |Z (θ)|

)]
≤

exp
(
m2 ‖θ‖i∞ −mεi |Z (θ)|

)
≤

exp
(
m
(

2 ‖θ‖i∞ − εi |− lnM + ln |X ||
))

= ζ0

�

Theorem 7. Stochastic approximation error. Let the pre-
conditions of Theorem 5 hold. Furthermore, let ζ ∈
(0, 1). Algorithm 2 with mi ≥ (ln ζ

k )/(2 ‖θ‖i∞ −
ε

2k|wi| |ln |X | − lnM |) delivers an (ε, ζ)-approximation of
the partition function. In particular,

P
(
|Z(θ)− Z̃mk (θ)| ≥ εZ(θ)

)
≤ ζ.

Proof. Let X = X(J) = [
∏i
l=1 θJl | i] and wi =

c̃iQφ(i). We conclude, that

P
(
|Z(θ)− Z̃mk (θ)| ≥ εZ(θ)

)
≤

P

(
k∑
i=1

|EJ [X | i]− Êmi
[X | i]| ≥ ε

2|wi|
Z(θ)

)
≤

k∑
i=1

P
(
|EJ [X | i]− Êmi

[X | i]| ≥ ε

2k|wi|
Z(θ)

)
from the triangle inequality and Theorem 5. Now, the claim
follows from Theorem 6 with εi = ε

2k|wi| and ζ0 = ζ
k . �

Notice that c̃ is required to compute m. But this is not re-
strictive, since c̃ can be computed easily with (8) followed
by a conversion to native coefficients. Hence, it is safe to
assume that the c̃ are available for computingm.

5. Numerical Evaluation
For our experiments, we implemented DCCQ (Alg. 1) and
SDCCQ (Alg. 2) and execute them on a machine with
40 E5-2697 Xeon CPU cores. The numerical evaluation
should show that SDCCQ achieves highly accurate results
whenever the norm of the parameter vector is small. In ad-
dition, we investigate cases when the norm is not small and
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Figure 2. Estimation errors for the log-partition function on 10× 10 Ising grids with randomly generated parameter vectors for various
coupling strengths. (i): attractive, κ = 0.1, (ii) attractive, κ = 1.0, (iii) mixed, κ = 0.1, (iv) mixed, κ = 1.0. Best viewed in color.

compare our method to the approaches which are listed in
Table 1. Finally, we analyze the scalability of SDCCQ in
terms of parallel computing.

One of the main benefits of SDCCQ is the complexity-
decoupling. This allows us to compute the Qφ(i) (see
Alg. 2) only once per structure and reuse them in every
run2. In total, we computed the Qφ(i) for Ising grid mod-
els with sizes 2× 2, . . . , 128× 128 and i ∈ {1, 2, . . . , 16}.

Parameters with small norm. First of all, we show that
SDCCQ achieves small errors when the norm of θ is small
(≤ 1). Therefore, we conducted a 4×4 Ising grid with ran-
dom Gaussian parameters, i.e., θi ∼ N (0, σ). We varied
σ from 10−4 to 1 in order to generate models with vari-
ous norms. The partition function was then estimated by
SDCCQ for polynomial degrees in {2, 4, 6, 8, 10, 12} with
mi = 103,∀i, while the correct value of the partition func-
tion was computed by the JT algorithm. In Figure 1 (iii),
the average absolute estimation error, |Z(θ)− Z̃mk (θ)| (y-
axis), is plotted against the norm of θ (x-axis). For com-
parison, the theoretical error curves which are implied by
Lemma 3 are depicted in Figure 1 (ii). Empirically, the
error of the stochastic low-degree approximations is lower
than predicted while the error of the high-degree approxi-
mations is higher than predicted. Note, however, that the
error bound of SDCCQ (Theorem 7) is stochastic, i.e., an
ε-approximation is achieved with a certain probability. Fur-
ther experiments show that the error can indeed be de-
creased by increasing the mi. In this setting, an absolute
error of 12000 corresponds to a relative error of ε < 0.2.

Parameters with large norm. In the second experiment,
we investigate the quality of our new method when the
norm of the parameter vector is � 1 and hence, The-
orem 7 predicts a high error for small polynomial de-
grees. Nevertheless, the question is how SDCCQ com-
pares to other approaches. We use the same experimen-

2Our C++ source code and the precomputed Qφ(i) values are
available at http://sfb876.tu-dortmund.de/sdccq.

tal setup as in (Ermon et al., 2013). Specifically, we have
n = 10 × 10 binary variables x ∈ {−1, 1}n with weights
θvu=xy = −wvu whenever x 6= y and θvu=xy = wvu oth-
erwise. In the attractive setting, the wvu are drawn from
[0, ω]; in the mixed setting, from [−ω, ω]. Moreover, ver-
tex weights θv=1 = −θv=−1 = wv are sampled from
[−κ, κ] with κ ∈ {0.1, 1.0}. This setting implies that ‖θ‖2
is in the range [3.86, 44.53], which is far outside of the in-
terval in which we should expect small errors. Figure 2
shows the estimation error for the log-partition function,
i.e. ln Z̃mk (θ) − lnZ(θ), averaged over 5-folds of SD-
CCQ, WISH, MF, TRW and LBP. SDCCQ has been run
with mi = 103,∀i and k ∈ {1, 2, 4, 8}, where, due to
space restrictions, the plot shows the average over all SD-
CCQ runs. Individual runs are within a standard deviation
of 5. Clearly, the error increases for increasing coupling
strengths. However, SDCCQ is often close to the MF lower
bound or the TRW upper bound. WISH, delivers the most
accurate result but has by far the largest complexity per run.

Scalability. Finally, we analyze the empirical runtime on
randomly parametrized Ising grids with 128×128 vertices.
Since the major computational cost in Algorithms 1 and 2
arise through a large summation and the sampling step, re-
spectively, both are easy to parallelize. We restricted the
execution to a subset of the available CPU cores and mea-
sured the runtime in seconds. The result is shown in Fig. 1
(iv), where SDCCQ scales well with an increasing number
of CPU cores.

Conclusion. For the first time, we exploited quadrature
rules to construct an approximation to the partition func-
tion of probabilistic models with arbitrary structure. We
derived bounds on the error and compared the new algo-
rithm to other methods. It turned out that the new method
scales well on multi-core systems and that it delivers supe-
rior results, whenever the norm of the model’s parameter
vector is small. Moreover, complexity-decoupling allows
us to run probabilistic inference with error guarantees on
small, resource-constrained devices.

http://sfb876.tu-dortmund.de/sdccq
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