Localized Alternative Cluster Ensembles for
Collaborative Structuring

Michael Wurst, Katharina Morik and Ingo Mierswa

University of Dortmund, Department of Computer Science
Baroperstr. 301, 44221 Dortmund, Germany
{wurst,morik,mierswa}@ls8.cs.uni-dortmund

Abstract. Personal media collections are structured in very different
ways by different users. Their support by standard clustering algorithms
is not sufficient. First, users have their personal preferences which they
hardly can express by a formal objective function. Instead, they might
want to select among a set of proposed clusterings. Second, users most
often do not want hand-made partial structures be overwritten by an
automatic clustering. Third, given clusterings of others should not be ig-
nored but used to enhance the own structure. In contrast to other cluster
ensemble methods or distributed clustering, a global model (consensus) is
not the aim. Hence, we investigate a new learning task, namely learning
localized alternative cluster ensembles, where a set of given clusterings
is taken into account and a set of proposed clusterings is delivered. This
paper proposes an algorithm for solving the new task together with a
method for evaluation.

1 Introduction

Collaborative approaches allow users to share preferences and knowledge with-
out requiring a common semantic or explicit coordination. Data-driven methods
as link analysis for web search and collaborative filtering have proven to be
successful despite their lack of a clear semantic. Furthermore, not requiring co-
ordination is one of the key factors that led to the fast growth of the Internet,
as users can contribute information completely independently of other users.

Recently, new applications emerged under this Web 2.0 paradigm. Systems
as flikr or del.icio.us allow users to annotate items with arbritrary chosen tags.
Such tags complement global properties, e.g. artist, album, genre, etc. for music
collections used by media organizers as iTunes. In contrast to these global prop-
erties, many user-assigned tags are local, i.e. they represent the personal views
of a certain user not aiming at a global structure or semantic.

While users tend to start the organization of their personal collection eagerly,
they often end up with a large set of items which are not yet annotated and a
structure which is too coarse. A major challenge for machine learning is to exploit
such local information in order to enable other users to navigate and structure
media collections.

If there are enough annotated items, classification learning can deliver a
decision function ¢ which maps items z of the domain X to a class g in a set of
classes G. New items will be classified as soon as they come in and the user has
no burden of annotation any more. However, classification does not refine the
structure. If there is no structure given yet, clustering is the method to choose.
It creates a structure of groups G for the not yet annotated items S C X.
Traditional clustering schemes do not take into account the structure which
users already have built up. Semi-supervised clustering obeys given groupings
[1,2], but it does not refine structures. Non-redundant data clustering creates
alternative structures to a set of given ones [3]. Given a structure G for all items
in the collection, it creates an alternative structure G’ for all items. However, it
does not focus on the not yet annotated items S but restructures also the items
which were already carefully structured.

Non-redundant clustering is connected to another area that has recently
found increasing attention: clustering with background knowledge. In general,
the idea of exploiting (user supplied) background knowledge has shown advan-
tages, e.g., in text clustering [4] or lane finding in GPS data [5]. Although must-
link constrained clustering reuse existing clustering, the label information will
not be preserved. In addition, these approaches use a feature-based clustering
instead of given input clusterings and are hence not applicable to our problem.

We may consider the structuring achieved so far a set of partitionings ¢;,
each mapping S to a set of groups G;. Ensemble clustering then produces a
consensus ¢ which combines these input partitionings [6]. This is almost what
we need. However, there are three major drawbacks: first, all input clusterings
must, be defined at least on S. Second, the consensus model does not take the
locality of S into account. Finally, merging several heterogenous user clusterings
by a global consensus does not preserve valuable label information.

In many current applications it is important to consider structures of several
users who interact in a network, each offering a clustering ¢; : S; — G;. A
user with the problem of structuring her left-over items S might now exploit the
cluster models of other users in order to enhance the own structure. Distributed
clustering learns a global model integrating the various local ones [7]. However,
this global consensus model again destroys the structure already created by the
user and does not focus on the set S of not appropriately structured items.

Whether own partial clusterings or those of other peers in a network are given,
the situation is the same: current clustering methods deliver a consensus model
overwriting the given ones and do not take into account S. In addition, users
might want to select among proposed models which the learner delivers. The
practical need of the user in organizing her media collection is not yet covered
by existing methods. The situation we are facing is actually a new learning task.

Let X denote the set of all possible items. A function ¢ : S — G is a function
that maps objects S C X to a (finite) set G of groups. The set @ contains all
possible functions ¢. We denote the domain of a function ¢ with D,. In cases
where we have to deal with overlapping and hierarchical groups, we denote the
set of groups as 2€.

Definition 1 (Localized Alternative Cluster Ensembles) Given a set S C
X, a set of input functions I C {p; : S; — G;}, and a quality function

q:22%x2%x2% - R (1)

with R being partially ordered' LOCALIZED ALTERNATIVE CLUSTERING ENSEM-
BLES delivers the output functions O C {p;|¢; : Si — G} so that ¢(I1,0,5) is
mazimized and for each p; € O it holds that S C D, .

Note that in contrast to cluster ensembles, the input clusterings can be defined
on any subset S; of X. Since for all ¢; € O it must hold that .S C D,,,, all output
clusterings must at least cover the items in S.

We present a method solving this task in two steps: a base algorithm (Sec-
tion 2.1) which is enhanced to become a hierarchical clustering in Section 2.2.
The method is well suited for distributed clustering (Section 3) and we present
the application from which the work originated (Section 3.1). Based on actual
structures of music collections we can evaluate our approach in a way similar to
that of evaluating supervised learning tasks (Section 4).

2 An Approach to Localized Alternative Cluster
Ensembles

In the following, we describe a clustering method, that is based on the idea of
bag of clusterings: deriving a new clustering from existing ones by extending the
existing clusterings and combining them such, that each of them covers a subset
of objects in S. In order to preserve existing label information but allowing the
group mapping for new objects we define the extension of functions ¢;:

Definition 2 (Extended function) Given a function @, : S; — G;, the func-
tion ¢} : S! — G; is an EXTENDED FUNCTION for ¢;, if S; C S; and Vx € S; :
pi(z) = ¢i(z).

Extended functions allow us to define a bag of extensions of non-overlapping
originally labeled subsets that covers the entire collection:

Definition 3 (Bag of clusterings) Given a set I of functions. A BAG OF
CLUSTERINGS is a function

<P§1(513)a Zf.I € Szll

pi(x) = ¢i;(z), ifre s (2)

Pim (), if w €S,
where each }; is an extension of a @i; € I and {S},...,S;,,} partitioning S.

! For example, R = R if one is interested in a unique solution.

Since each gp’ij is an extension of an input clustering ¢;; on a subset S;;, the
label information is preserved. Now, we can define the objective function for our
bag of clusterings approach to local alternative clustering ensembles.

Definition 4 (Quality of an output function) The QUALITY OF AN INDI-
VIDUAL OUTPUT FUNCTION s measured as

(1,9, 5) = max sim(z,z") with j = h;(x) (3)
z'€Sij
S

where sim is a similarity function sim : X x X — [0,1] and h; assigns each

example to the corresponding function in the bag of clusters h; : S — {1,...,m}
with
hi(z) =j &z € Sj;. (4)
The QUALITY OF A SET OF OUTPUT FUNCTIONS now becomes
Q(LO?S): Z q*(I790i75)' (5)
;€O

Besides optimizing this quality function, we want to cover the set S with a bag
of clusterings that contains as few clusterings as possible.

2.1 The Algorithm

In the following, we present a greedy approach to optimizing the bag of cluster-
ings problem. The main task is to cover S by a bag of clusterings ¢. The basic
idea of this approach is to employ a sequential covering strategy. In a first step,
we search for a function ¢, in I that best fits the set of query objects S. For
all objects not sufficiently covered by ¢;, we search for another function in [
that fits the remaining points. This process continues until either all objects are
sufficiently covered, a maximal number of steps is reached, or there are no input
functions left covering the remaining objects. All data points that could not be
covered are assigned to the input function ¢; containing the object which is clos-
est to the one to be covered. Alternative clusterings are produced by performing
this procedure several times using each input function at most once.

We now have to formalize the notion of a function sufficiently covering an
object and a function fitting a set of objects such that the quality function is
optimized. When is a data point sufficiently covered by an input function so that
it can be removed from the query set S7 We define a threshold based criterion
for this purpose:

Definition 5 A function ¢ SUFFICIENTLY COVERS a object © € S (written as
T Ca ¢), iff £ Ca ¢ 1 maxpeg, sim(z,2') > a.

The set Z,, of items is delivered by ¢. This threshold allows us to balance the
quality of the resulting clustering and the number of input clusters. A small
value of a allows a single input function to cover many objects in S. This, on

average, reduces the number of input functions needed to cover the whole query
set. However, it may also reduce the quality of the result, as the algorithm
covers many objects in a greedy manner, which could be covered better using
an additional input function.

Turning it the other way around: when do we consider an input function
to fit the items in S well? First, it must contain at least one similar object
for each object in S. This is essentially what is stated in the quality function
q*. Second, it should cover as few additional objects as possible. This condition
follows from the locality demand. Using only the first condition, the algorithm
would not distinguish between input functions which span a large part of the data
space and those which only span a small local part. This distinction, however, is
essential for treating local patterns in the data appropriately. The situation we
are facing is similar to that in information retrieval. The target concept S — the
ideal response — is approximated by ¢ delivering a set of items — the retrieval
result. If all members of the target concept are covered, the retrieval result has
the highest recall. If no items in the retrieval result are not members of S, it has
the highest precision. We want to apply precision and recall to characterize how
well ¢ covers S. We can define

prec(Zy,,,S) = Z mazx {sim(x, z)|x € S} (6)

IZ J.Z

and
rec(Zy,,,S) |S| Z max {sim(x,z)|z € Zy,,}. (7)
z€eS

Please note that using a similarity function which maps identical items to 1 (and
0 otherwise) leads to the usual definition of precision and recall. The fit between
an input function and a set of objects now becomes a continuous f-measure:

(62 + 1)TEC(Z<PU S)pTEC(Z@) S)
B%rec(Zy,,,S) + prec(Z,,, S)

Q;(Z%DNS) = (8)

Recall directly optimizes the quality function ¢*, precision ensures that the result
captures local structures adequately. The fitness ¢}(Zy,,S) balances the two
criteria.

Deciding whether ; fits S or whether an object « € S is sufficiently covered
requires to compute the similarity between an object and a cluster. If the cluster
is represented by all of its objects (Z,, = S;, as usual in single-link agglomerative
clustering), this central step becomes inefficient. If the cluster is represented by
exactly one point (|Z,,| = 1, a centroid in k-means clustering), the similarity
calculation is very efficient, but sets of objects with irregular shape, for instance,
cannot be captured adequately. Hence, we adopt the representation by “well
scattered points” Z,, as representation of ¢; [8], where 1 < |Z,,| < |S;|. These
points are selected by stratified sampling according to G.

o=40
I'=1
while (|O] < mazaqi¢) do
S'=S
B=10
step =0
while ((S" #0) A (I' # 0) A (step < maTsteps)) do
i = argmax gy (Zy, ')
I'=T1"\{g:}
B =BU{p:}
S =8 \{zeSrCapi}
step = step+ 1
end while
O =0U{bag(B,S)}

end while

Fig. 1. The sequential covering algorithm finds bag of clusterings in a greedy manner.
mazqai: denotes the maximum number of alternatives in the output, maxsieps denotes
the maximum number of steps that are performed during sequential covering. The
function bag constructs a bag of clusterings by assigning each object x € S to the
function ¢; € B that contains the object most similar to x.

We can now dare to compute the fitness ¢} of all Z,, € I with respect to
a query set S in order to select the best @; for our bag of clusterings. The
whole algorithm works as depicted in figure 1. We start with the initial set of
input functions I and the set S of objects to be clustered. In a first step, we
select an input function that maximizes ¢}(Zy,,5). ¢; is removed from the set
of input functions leading to a set I’. For all objects S’ that are not sufficiently
covered by ¢;, we select a function from I’ with maximal fit to S’. This process
is iterated until either all objects are sufficiently covered, a maximal number
of steps is reached, or there are no input functions left that could cover the
remaining objects. All input functions selected in this process are combined to
a bag of clusters, as described above. Each object x € S is assigned to the input
function containing the object being most similar to . Then, all input functions
are extended accordingly, again by nearest-neighbor classification (cf. definition
2). We start this process anew with the complete set S and the reduced set I’
of input functions until the maximal number of alternatives is reached.

As each function is represented by a fixed number of representative points,
the number of similarity calculations performed by the algorithm is linear in the
number of query objects and in the number of input functions, thus O(|I]|S||Z,,]).
The same holds for the memory requirements.

2.2 Hierarchical Matching

A severe limitation of the algorithm described so far is, that it can only com-
bine complete input clusterings. In many situations, a combination of partial

clusterings or even individual clusters would yield a much better result. This
is especially true, if local patterns are to be preserved being captured by maxi-
mally specific concepts. Moreover, the algorithm does not yet handle hierarchies.
Our motivation for this research was the structuring of media collections. Flat
structures are not sufficient with respect to this goal. We cannot use a standard
hierarchical clustering algorithm, since we still want to solve the new task of
local alternative cluster ensembles. In the following, we extend our approach to
the combination of partial hierarchical functions. A hierarchical function maps
objects to a hierarchy of groups.

Definition 6 (Group hierarchy) The set G; of groups associated with a func-
tion p; builds a GROUP HIERARCHY, iff there is a relation < such that (g < ¢') &
(Vz € S;: ¢ € pi(x) = g € pi(x)) and (G4, <) is a tree. The function g; is then
called @ HIERARCHICAL FUNCTION.

It should be possible to match functions that correspond to only a partial
group hierarchy. We formalize this notion by defining a hierarchy on functions,
which extends the set of input functions such that it contains all partial functions.

Definition 7 (Function hierarchy) Two hierarchical functions ¢; and @;,
are in DIRECT SUB FUNCTION RELATION ¢; < ¢;, iff G C G, Vo € S; :
©i(z) = ¢;(x) NG;, and =3¢ : G; C G} C Gj.

Let the set I* be the set of all functions which can be achieved following the
direct sub function relation starting from I, thus

I" ={pil3p; € I : i <" 95} 9)

where <* is the transitive hull of <. While it would be possible to apply the
same algorithm as above to the extended set of input functions I'*, this would be
rather inefficient, because the size of I* can be considerably larger than the one
of the original set of input functions I. We therefore propose an algorithm which
exploits the function hierarchy and avoids multiple similarity computations. Each
function ¢; € I'* is again associated with a set of representative objects Z,,. We
additionally assume the standard taxonomy semantics:

wi < ;= Ly, C Zyp,. (10)

Now, the precision can be calculated recursively in the following way:

prec(Zy,,,S) = |Z§0 prec(Z,,,S) + Z |Z¢ prec(Zy,,;, S) (11)
Pi Pi

Pi=pi

where Z3 = Z,, \ Uw_«pi Z,,. For recall a similar function can be derived.
Note, that neither the number of similarity calculations is greater than in the
base version of the algorithm nor are the memory requirements increased.
Moreover, the bottom-up procedure also allows for pruning. We can opti-
mistically estimate the best precision and recall, that can be achieved in function

hierarchy using all representative objects Z. for which the precision is already
known. The following holds:

| Ze|prec(Z., S) + |Zsoi \ Z|
| Zs|

with Z, C Z,,. An optimistic estimate for the recall is one. If the optimistic
f-measure estimate of the hierarchy’s root node is worse than the current best
score, this hierarchy does not need to be processed further. This is due to the
optimistic score increasing with |Z,,| and |Z,,| > |Z,,| for all sub functions
©; < ;. No sub-function of the root can be better than the current best score,
if the score of the root is equal or worse than the current best score.

This conversion to hierarchical cluster models concludes our algorithm for
Local Alternative Cluster Ensembles (LACE).

prec(Zy,, S) < (12)

3 A Distributed Algorithm

The LACE algorithm is well suited for distributed scenarios. We assume a set
of nodes connected over an arbitrary communication network. Each node has
one or several functions ¢; together with the sets S;. If a node A has a set of
objects S to be clustered, it queries the other nodes and these respond with a
set of functions. The answers of the other nodes form the input functions I. A
computes the output O for S. The node B being queried uses its own functions
w; as input and determines the best fitting ¢; for S and sends this output back
to A. The algorithm is the same for each node. Each node executes the algorithm
independently of the other nodes.

We introduce three optimizations to this distributed approach. First, given
a function hierarchy, each nodes returns exactly one optimal function in the
hierarchy. This reduces the communication cost, without affecting the result,
because any but the optimal function would not be chosen anyway (see pruning
in the last section).

Second, input functions returned by other nodes can be represented more
efficiently by only containing the items in the query set, that are sufficiently
covered by the corresponding function. Together with the f-measure value g}
(equation 8) for the function, this information is sufficient for the querying node
in order to perform the algorithm.

In many application areas, we can apply a third optimization. If objects are
uniquely identified, such as audio files, films, web resources, etc. they can be
represented by these IDs only. In this case, the similarity between two objects
is 1, if they have the same ID, and 0 otherwise. A distributed version of our
algorithm only needs to query other nodes using a set of IDs. This reduces the
communication cost and makes matching even more efficient. Furthermore, such
queries are already very well supported by current (p2p) search engines.

In a distributed scenario, network latency and communication cost must be
taken into account. If objects are represented by IDs, both are restricted to an
additional effort of O(]|S|+|I*|). Thus, the algorithm is still linear in the number
of query objects.

3.1 Distributed Media Management

The LACE algorithm is applied within Nemoz?, a distributed media organiza-
tion system which focuses on the application of data mining in p2p networks. It
supports users in structuring their private media collections by exploiting infor-
mation from other peers. Each user may create arbitrary, personal classification
schemes to organize her media, e.g. music. For instance, some users structure
their collection according to mood and situations, others according to genres,
etc. Some such structures overlap, e.g., the blues genre may cover similar music
as does the melancholic mood.

Nemoz supports the users in structuring their media objects while not forcing
them to use the same set of concepts or annotations. If an ad hoc network has
been established, peers support each other in structuring. A user who needs
to structure a set of media objects S (e.g., refining an over-full node in her
taxonomy) invokes the distributed algorithm described above. Then, the system
offers a set of alternative clusterings, each combined from peers’ response and
covering S. The user chooses which of the clusterings she wants to incorporate
into her collection’s structure. Note, that in this scenario, the enhanced functions
from definition 2 become particularly meaningful — she receives recommendations
for similar music in addition to her own set S!

4 Experiments

The evaluation of LACE is performed on a real world benchmark dataset gath-
ered in a student project on distributed audio classification based on peer-to-peer
networks (Nemoz). The data set contains 39 taxonomies (functions ¢1, ..., ©39)
and overall 1886 songs [9]%. All experiments described in this paper were per-
formed with the machine learning environment YALE [10].

The evaluation of LACE is performed by subsequently leaving out one func-
tion ; of the dataset. Then we apply clustering to reconstruct this taxonomy.
Hence, we can evaluate cluster models in a way similar to classification learning.
We have a “ground truth” available. A user taxonomy ¢ is compared with a tax-
onomy ¢’ created automatically by clustering as follows. We construct the usual
tree distance matrix for the two taxonomies and compare these matrices on all
pairs of objects in the set S. For the absolute distance criterion, the difference
between the tree distance in ¢ and the one in ¢’ are summed-up and divided by
the number of objects (see Table 1 for illustration).

As second criterion we use the correlation between these tree distances. Fi-
nally, for each cluster in the left-out taxonomy we search for the best corre-
sponding cluster in the learned taxonomy according to f-measure. The average
performance over all user-given clusters is then used as the (FScore) evaluation
measure [11]. Note, that although we report the FScore, it is not normalized with

% Available at http://www.sourceforge.net/projects/nemoz
% Available at http://www-ai.cs.uni-dortmund.de/audio.html
* Available at http://yale.sf.net.

S 1 T2 .| xm |sum of differences
T1 - |53 2+
22 - 12 1+
Tm -

Total 3+

Table 1. Tree distance matrix indicating for all pairs of items in S how many edges
they are away from each other, once concerning the hierarchy of ¢ and once concerning
the hierarchy of ¢’. For instance, in ¢ there is only one edge between x; and 2, but
in ¢, there are three. The last columns sums-up the differences between the distances
in ¢ and ¢’ for one item with respect to all other items. The last field gives the total
of all differences. Total/m gives the absolute distance of and ¢'.

Method Correlation Absolute distance FScore
LACE 0.44 0.68 0.63
TD audio 0.19 2.2 0.51
TD ensemble 0.23 2.5 0.55
single-link audio 0.11 9.7 0.52
single-link ensemble 0.17 9.9 0.60
random 0.09 1.8 0.5

Table 2. The results for different evaluation measures.

respect to the number of created clusters. Finer grained structures therefore al-
ways lead to equal or better performance than their coarse grained variants.
This, however, does often not reflect the similarity to the user-given taxonomy.

We compare our approach with single-link agglomerative clustering using co-
sine measure, top down divisive clustering based on recursively applying kernel
k-means [12] (TD), and with random clustering. Localized Alternative Cluster
Ensembles were applied using cosine similarity as inner similarity measure. TD
and random clustering were started five times with different random initializa-
tions. We use a set of 20 features which were shown to work well in a wide
range of applications [13] as underlying audio features. Since, here, we want to
test the new clustering method, we do not investigate different feature sets. The
parameter 5 was set to 1.

Table 2 shows the results. As can be seen, the local alternative cluster ensem-
bles approach LACE performs best. Note however, that absolute distance does
not lead to results that are representative for agglomerative clustering as such,
because it usually builds-up quite deep hierarchies, while the user constructed
hierarchies were rather shallow.

A second experiment inspects the influence of the representation on the ac-
curacy. The results of LACE with different numbers of instances at a node are
shown in Table 3. Representing functions by all points performs best. Using a
single centroid for representing a subtree leads to inferior results, as we already

Representation Correlation Absolute distance FScore

all points 0.44 0.68 0.63
|Z| =10 0.44 0.68 0.63
|Z] =5 0.41 0.69 0.63
|Z| =3 0.40 0.69 0.62
centroid 0.19 1.1 0.42

Table 3. The influence of concept representation (cardinality of |Z]).

Alternatives Correlation Absolute distance FScore

5 0.44 0.68 0.63
3 0.38 0.73 0.60
1 0.34 0.85 0.56

Table 4. The influence of response set cardinality |O|.

expected. Well scattered points perform well. We obtain good results even for a
very small number of representative items at each node of the cluster model.

We also evaluated how the number of output functions influences the quality
of the result. The result should be clearly inferior with a decreasing number.
Table 4 shows the result. On one hand, we observe that even with just one
model, i.e. |O] = 1, LACE still outperforms the other methods with respect to
tree distance. On the other hand, the results are, indeed, getting worse with less
alternatives. Providing alternative solutions seems to be essential for improving
the quality of results at least in heterogeneous settings as the one discussed here.
Probably, the performance would increase even further for more output cluster-
ings. Although a user still would select the best available clustering from all
alternatives which motivates this form of evaluation the number of solutions
should be rather small and was restricted to 5 in this setting.

5 Conclusion

Structuring media collections is one of the most important tasks for current and
future media organization applications. Clustering is a basic technique for this
problem. A correct or optimal clustering of items depends strongly on intentions
and preferences of the user. An important challenge for new clustering techniques
is the question of how to integrate clusterings provided by other users in a way
that allows for a certain personalization which reflects the locality of the data
and preserves user created clusterings. In contrast to other cluster ensemble
methods or distributed clustering, a global model (consensus) is not the aim.
Investigating the practical needs carefully has led to the definition of a new
learning task, namely learning localized alternative cluster ensembles, where a
set of given clustering is taken into account and a set of proposed clusterings is
delivered. We have formalized the learning task and developed a greedy approach

solving it. Enhancements for hierarchical structures accomplish the LACE algo-
rithm. It is well suited for distributed settings.

The performance of algorithms solving the localized alternative cluster en-
sembles task can be measured by a leave-one-structuring-out approach. The pro-
posed algorithm outperforms standard clustering schemes on a real-world data
set in the domain of music collections. We also investigated the influence of the
number of representative points and the influence of response set cardinality
which are important in distributed scenarios.

In our opinion, applications in the Web 2.0 context offer many interesting
opportunities for machine learning. LACE is a very promising approach to over-
come some of the problems associated with this new kind of applications.

References

1. Cohn, D., Caruana, R., McCallum, A.: Semi-supervised clustering with user feed-
back. Technical Report TR2003-1892, Cornell University (2000)

2. Finley, T., Joachims, T.: Supervised clustering with support vector machines. In:
Proc. of the International Conference on Machine Learning. (2005)

3. Gondek, D., Hofmann, T.: Non-redundant data clustering. In: Proc. of the Inter-
national Conference on Data Mining. (2004)

4. Hotho, A., Staab, S.; Stumme, G.: Ontologies improve text document clustering.
In: Proc. of the International Conference on Data Mining. (2003) 541 544

5. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means clustering
with background knowledge. In: Proc. of the International Conference on Machine
Learning. (2001)

6. Strehl, A., Ghosh, J.: Cluster ensembles a knowledge reuse framework for com-
bining partitionings. In: Proc. of AAAT 2002, Edmonton, Canada. (2002)

7. Datta, S.; Bhaduri, K., Giannella, C., Wolff, R., Kargupta, H.: Distributed data
mining in peer-to-peer networks. IEEE Internet Computing, special issue on dis-
tributed data mining (2005)

8. Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large
databases. In: Proc. of ACM SIGMOD International Conference on Management
of Data. (1998) 73 84

9. Homburg, H., Mierswa, 1., Méller, B., Morik, K., Wurst, M.: A benchmark dataset
for audio classification and clustering. In: Proc. of the International Symposium
on Music Information Retrieval. (2005)

10. Fischer, S., Klinkenberg, R., Mierswa, L., Ritthoff, O.: Yale: Yet Another Learn-
ing Environment Tutorial. Technical Report CI-136/02, Collaborative Research
Center 531, University of Dortmund, Dortmund, Germany (2002)

11. Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering
techniques. In: Proc. of the KDD Workshop on Text Mining. (2000)

12. Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normal-
ized cuts. In: Proc. of the conference on Knowledge Discovery and Data Mining.
(2004)

13. Moerchen, F., Ultsch, A., Thies, M., Loehken, I., Noecker, M.and Stamm, C.,
Efthymiou, N., Kuemmerer, M.: Musicminer: Visualizing perceptual distances of
music as topograpical maps. Technical report, Dept. of Mathematics and Computer
Science, University of Marburg, Germany (2004)

