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t. Personal media 
olle
tions are stru
tured in very di�erentways by di�erent users. Their support by standard 
lustering algorithmsis not su�
ient. First, users have their personal preferen
es whi
h theyhardly 
an express by a formal obje
tive fun
tion. Instead, they mightwant to sele
t among a set of proposed 
lusterings. Se
ond, users mostoften do not want hand-made partial stru
tures be overwritten by anautomati
 
lustering. Third, given 
lusterings of others should not be ig-nored but used to enhan
e the own stru
ture. In 
ontrast to other 
lusterensemble methods or distributed 
lustering, a global model (
onsensus) isnot the aim. Hen
e, we investigate a new learning task, namely learninglo
alized alternative 
luster ensembles, where a set of given 
lusteringsis taken into a

ount and a set of proposed 
lusterings is delivered. Thispaper proposes an algorithm for solving the new task together with amethod for evaluation.1 Introdu
tionCollaborative approa
hes allow users to share preferen
es and knowledge with-out requiring a 
ommon semanti
 or expli
it 
oordination. Data-driven methodsas link analysis for web sear
h and 
ollaborative �ltering have proven to besu

essful despite their la
k of a 
lear semanti
. Furthermore, not requiring 
o-ordination is one of the key fa
tors that led to the fast growth of the Internet,as users 
an 
ontribute information 
ompletely independently of other users.Re
ently, new appli
ations emerged under this Web 2.0 paradigm. Systemsas �ikr or del.i
io.us allow users to annotate items with arbritrary 
hosen tags.Su
h tags 
omplement global properties, e.g. artist, album, genre, et
. for musi

olle
tions used by media organizers as iTunes. In 
ontrast to these global prop-erties, many user-assigned tags are lo
al, i.e. they represent the personal viewsof a 
ertain user not aiming at a global stru
ture or semanti
.While users tend to start the organization of their personal 
olle
tion eagerly,they often end up with a large set of items whi
h are not yet annotated and astru
ture whi
h is too 
oarse. A major 
hallenge for ma
hine learning is to exploitsu
h lo
al information in order to enable other users to navigate and stru
turemedia 
olle
tions.



If there are enough annotated items, 
lassi�
ation learning 
an deliver ade
ision fun
tion ϕ whi
h maps items x of the domain X to a 
lass g in a set of
lasses G. New items will be 
lassi�ed as soon as they 
ome in and the user hasno burden of annotation any more. However, 
lassi�
ation does not re�ne thestru
ture. If there is no stru
ture given yet, 
lustering is the method to 
hoose.It 
reates a stru
ture of groups G for the not yet annotated items S ⊆ X .Traditional 
lustering s
hemes do not take into a

ount the stru
ture whi
husers already have built up. Semi-supervised 
lustering obeys given groupings[1,2℄, but it does not re�ne stru
tures. Non-redundant data 
lustering 
reatesalternative stru
tures to a set of given ones [3℄. Given a stru
ture G for all itemsin the 
olle
tion, it 
reates an alternative stru
ture G′ for all items. However, itdoes not fo
us on the not yet annotated items S but restru
tures also the itemswhi
h were already 
arefully stru
tured.Non-redundant 
lustering is 
onne
ted to another area that has re
entlyfound in
reasing attention: 
lustering with ba
kground knowledge. In general,the idea of exploiting (user supplied) ba
kground knowledge has shown advan-tages, e.g., in text 
lustering [4℄ or lane �nding in GPS data [5℄. Although must-link 
onstrained 
lustering reuse existing 
lustering, the label information willnot be preserved. In addition, these approa
hes use a feature-based 
lusteringinstead of given input 
lusterings and are hen
e not appli
able to our problem.We may 
onsider the stru
turing a
hieved so far a set of partitionings ϕi,ea
h mapping S to a set of groups Gi. Ensemble 
lustering then produ
es a
onsensus ϕ whi
h 
ombines these input partitionings [6℄. This is almost whatwe need. However, there are three major drawba
ks: �rst, all input 
lusteringsmust be de�ned at least on S. Se
ond, the 
onsensus model does not take thelo
ality of S into a

ount. Finally, merging several heterogenous user 
lusteringsby a global 
onsensus does not preserve valuable label information.In many 
urrent appli
ations it is important to 
onsider stru
tures of severalusers who intera
t in a network, ea
h o�ering a 
lustering ϕi : Si → Gi. Auser with the problem of stru
turing her left-over items S might now exploit the
luster models of other users in order to enhan
e the own stru
ture. Distributed
lustering learns a global model integrating the various lo
al ones [7℄. However,this global 
onsensus model again destroys the stru
ture already 
reated by theuser and does not fo
us on the set S of not appropriately stru
tured items.Whether own partial 
lusterings or those of other peers in a network are given,the situation is the same: 
urrent 
lustering methods deliver a 
onsensus modeloverwriting the given ones and do not take into a

ount S. In addition, usersmight want to sele
t among proposed models whi
h the learner delivers. Thepra
ti
al need of the user in organizing her media 
olle
tion is not yet 
overedby existing methods. The situation we are fa
ing is a
tually a new learning task.Let X denote the set of all possible items. A fun
tion ϕ : S → G is a fun
tionthat maps obje
ts S ⊆ X to a (�nite) set G of groups. The set Φ 
ontains allpossible fun
tions ϕ. We denote the domain of a fun
tion ϕ with Dϕ. In 
aseswhere we have to deal with overlapping and hierar
hi
al groups, we denote theset of groups as 2G.



De�nition 1 (Lo
alized Alternative Cluster Ensembles) Given a set S ⊆
X, a set of input fun
tions I ⊆ {ϕi : Si → Gi}, and a quality fun
tion

q : 2Φ × 2Φ × 2S → R (1)with R being partially ordered1 lo
alized alternative 
lustering ensem-bles delivers the output fun
tions O ⊆ {ϕi|ϕi : Si → Gi} so that q(I, O, S) ismaximized and for ea
h ϕi ∈ O it holds that S ⊆ Dϕi
.Note that in 
ontrast to 
luster ensembles, the input 
lusterings 
an be de�nedon any subset Si of X . Sin
e for all ϕi ∈ O it must hold that S ⊆ Dϕi

, all output
lusterings must at least 
over the items in S.We present a method solving this task in two steps: a base algorithm (Se
-tion 2.1) whi
h is enhan
ed to be
ome a hierar
hi
al 
lustering in Se
tion 2.2.The method is well suited for distributed 
lustering (Se
tion 3) and we presentthe appli
ation from whi
h the work originated (Se
tion 3.1). Based on a
tualstru
tures of musi
 
olle
tions we 
an evaluate our approa
h in a way similar tothat of evaluating supervised learning tasks (Se
tion 4).2 An Approa
h to Lo
alized Alternative ClusterEnsemblesIn the following, we des
ribe a 
lustering method, that is based on the idea ofbag of 
lusterings: deriving a new 
lustering from existing ones by extending theexisting 
lusterings and 
ombining them su
h, that ea
h of them 
overs a subsetof obje
ts in S. In order to preserve existing label information but allowing thegroup mapping for new obje
ts we de�ne the extension of fun
tions ϕi:De�nition 2 (Extended fun
tion) Given a fun
tion ϕi : Si → Gi, the fun
-tion ϕ′

i : S′

i → Gi is an extended fun
tion for ϕi, if Si ⊂ S′

i and ∀x ∈ Si :
ϕi(x) = ϕ′

i(x).Extended fun
tions allow us to de�ne a bag of extensions of non-overlappingoriginally labeled subsets that 
overs the entire 
olle
tion:De�nition 3 (Bag of 
lusterings) Given a set I of fun
tions. A bag of
lusterings is a fun
tion
ϕi(x) =
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(2)where ea
h ϕ′

ij is an extension of a ϕij ∈ I and {S′

i1, . . . , S
′

im} partitioning S.1 For example, R = R if one is interested in a unique solution.



Sin
e ea
h ϕ′

ij is an extension of an input 
lustering ϕij on a subset Sij , thelabel information is preserved. Now, we 
an de�ne the obje
tive fun
tion for ourbag of 
lusterings approa
h to lo
al alternative 
lustering ensembles.De�nition 4 (Quality of an output fun
tion) The quality of an indi-vidual output fun
tion is measured as
q∗(I, ϕi, S) =

∑

x∈S

max
x′∈Sij

sim(x, x′) with j = hi(x) (3)where sim is a similarity fun
tion sim : X × X → [0, 1] and hi assigns ea
hexample to the 
orresponding fun
tion in the bag of 
lusters hi : S → {1, . . . , m}with
hi(x) = j ⇔ x ∈ S′

ij . (4)The quality of a set of output fun
tions now be
omes
q(I, O, S) =

∑

ϕi∈O

q∗(I, ϕi, S). (5)Besides optimizing this quality fun
tion, we want to 
over the set S with a bagof 
lusterings that 
ontains as few 
lusterings as possible.2.1 The AlgorithmIn the following, we present a greedy approa
h to optimizing the bag of 
luster-ings problem. The main task is to 
over S by a bag of 
lusterings ϕ. The basi
idea of this approa
h is to employ a sequential 
overing strategy. In a �rst step,we sear
h for a fun
tion ϕi in I that best �ts the set of query obje
ts S. Forall obje
ts not su�
iently 
overed by ϕi, we sear
h for another fun
tion in Ithat �ts the remaining points. This pro
ess 
ontinues until either all obje
ts aresu�
iently 
overed, a maximal number of steps is rea
hed, or there are no inputfun
tions left 
overing the remaining obje
ts. All data points that 
ould not be
overed are assigned to the input fun
tion ϕj 
ontaining the obje
t whi
h is 
los-est to the one to be 
overed. Alternative 
lusterings are produ
ed by performingthis pro
edure several times using ea
h input fun
tion at most on
e.We now have to formalize the notion of a fun
tion su�
iently 
overing anobje
t and a fun
tion �tting a set of obje
ts su
h that the quality fun
tion isoptimized. When is a data point su�
iently 
overed by an input fun
tion so thatit 
an be removed from the query set S? We de�ne a threshold based 
riterionfor this purpose:De�nition 5 A fun
tion ϕ suffi
iently 
overs a obje
t x ∈ S (written as
x ⊏α ϕ ), i� x ⊏α ϕ :⇔ maxx′∈Zϕ

sim(x, x′) > α.The set Zϕi
of items is delivered by ϕ. This threshold allows us to balan
e thequality of the resulting 
lustering and the number of input 
lusters. A smallvalue of α allows a single input fun
tion to 
over many obje
ts in S. This, on



average, redu
es the number of input fun
tions needed to 
over the whole queryset. However, it may also redu
e the quality of the result, as the algorithm
overs many obje
ts in a greedy manner, whi
h 
ould be 
overed better usingan additional input fun
tion.Turning it the other way around: when do we 
onsider an input fun
tionto �t the items in S well? First, it must 
ontain at least one similar obje
tfor ea
h obje
t in S. This is essentially what is stated in the quality fun
tion
q∗. Se
ond, it should 
over as few additional obje
ts as possible. This 
onditionfollows from the lo
ality demand. Using only the �rst 
ondition, the algorithmwould not distinguish between input fun
tions whi
h span a large part of the dataspa
e and those whi
h only span a small lo
al part. This distin
tion, however, isessential for treating lo
al patterns in the data appropriately. The situation weare fa
ing is similar to that in information retrieval. The target 
on
ept S � theideal response � is approximated by ϕ delivering a set of items � the retrievalresult. If all members of the target 
on
ept are 
overed, the retrieval result hasthe highest re
all. If no items in the retrieval result are not members of S, it hasthe highest pre
ision. We want to apply pre
ision and re
all to 
hara
terize howwell ϕ 
overs S. We 
an de�ne

prec(Zϕi
, S) =

1

|Zϕi
|

∑

z∈Zϕi

max {sim(x, z)|x ∈ S} (6)and
rec(Zϕi

, S) =
1

|S|

∑

x∈S

max {sim(x, z)|z ∈ Zϕi
}. (7)Please note that using a similarity fun
tion whi
h maps identi
al items to 1 (and0 otherwise) leads to the usual de�nition of pre
ision and re
all. The �t betweenan input fun
tion and a set of obje
ts now be
omes a 
ontinuous f-measure:

q∗f (Zϕi
, S) =

(β2 + 1)rec(Zϕi
, S)prec(Zϕi

, S)

β2rec(Zϕi
, S) + prec(Zϕi

, S)
. (8)Re
all dire
tly optimizes the quality fun
tion q∗, pre
ision ensures that the result
aptures lo
al stru
tures adequately. The �tness q∗f (Zϕi

, S) balan
es the two
riteria.De
iding whether ϕi �ts S or whether an obje
t x ∈ S is su�
iently 
overedrequires to 
ompute the similarity between an obje
t and a 
luster. If the 
lusteris represented by all of its obje
ts (Zϕi
= Si, as usual in single-link agglomerative
lustering), this 
entral step be
omes ine�
ient. If the 
luster is represented byexa
tly one point (|Zϕi

| = 1, a 
entroid in k-means 
lustering), the similarity
al
ulation is very e�
ient, but sets of obje
ts with irregular shape, for instan
e,
annot be 
aptured adequately. Hen
e, we adopt the representation by �wells
attered points� Zϕi
as representation of ϕi [8℄, where 1 < |Zϕi

| < |Si|. Thesepoints are sele
ted by strati�ed sampling a

ording to G.



O = ∅
I ′ = Iwhile (|O| < maxalt) do

S′ = S

B = ∅
step = 0while ((S′ 6= ∅) ∧ (I ′ 6= ∅) ∧ (step < maxsteps)) do

ϕi = arg max
ϕ∈J

q∗f (Zϕ, S′)

I ′ = I ′ \ {ϕi}
B = B ∪ {ϕi}
S′ = S′ \ {x ∈ S′|x ⊏α ϕi}
step = step + 1end while

O = O ∪ {bag(B, S)}end whileFig. 1. The sequential 
overing algorithm �nds bag of 
lusterings in a greedy manner.
maxalt denotes the maximum number of alternatives in the output, maxsteps denotesthe maximum number of steps that are performed during sequential 
overing. Thefun
tion bag 
onstru
ts a bag of 
lusterings by assigning ea
h obje
t x ∈ S to thefun
tion ϕi ∈ B that 
ontains the obje
t most similar to x.We 
an now dare to 
ompute the �tness q∗f of all Zϕi

∈ I with respe
t toa query set S in order to sele
t the best ϕi for our bag of 
lusterings. Thewhole algorithm works as depi
ted in �gure 1. We start with the initial set ofinput fun
tions I and the set S of obje
ts to be 
lustered. In a �rst step, wesele
t an input fun
tion that maximizes q∗f (Zϕi
, S). ϕi is removed from the setof input fun
tions leading to a set I ′. For all obje
ts S′ that are not su�
iently
overed by ϕi, we sele
t a fun
tion from I ′ with maximal �t to S′. This pro
essis iterated until either all obje
ts are su�
iently 
overed, a maximal numberof steps is rea
hed, or there are no input fun
tions left that 
ould 
over theremaining obje
ts. All input fun
tions sele
ted in this pro
ess are 
ombined toa bag of 
lusters, as des
ribed above. Ea
h obje
t x ∈ S is assigned to the inputfun
tion 
ontaining the obje
t being most similar to x. Then, all input fun
tionsare extended a

ordingly, again by nearest-neighbor 
lassi�
ation (
f. de�nition2). We start this pro
ess anew with the 
omplete set S and the redu
ed set I ′of input fun
tions until the maximal number of alternatives is rea
hed.As ea
h fun
tion is represented by a �xed number of representative points,the number of similarity 
al
ulations performed by the algorithm is linear in thenumber of query obje
ts and in the number of input fun
tions, thus O(|I||S||Zϕi

|).The same holds for the memory requirements.2.2 Hierar
hi
al Mat
hingA severe limitation of the algorithm des
ribed so far is, that it 
an only 
om-bine 
omplete input 
lusterings. In many situations, a 
ombination of partial




lusterings or even individual 
lusters would yield a mu
h better result. Thisis espe
ially true, if lo
al patterns are to be preserved being 
aptured by maxi-mally spe
i�
 
on
epts. Moreover, the algorithm does not yet handle hierar
hies.Our motivation for this resear
h was the stru
turing of media 
olle
tions. Flatstru
tures are not su�
ient with respe
t to this goal. We 
annot use a standardhierar
hi
al 
lustering algorithm, sin
e we still want to solve the new task oflo
al alternative 
luster ensembles. In the following, we extend our approa
h tothe 
ombination of partial hierar
hi
al fun
tions. A hierar
hi
al fun
tion mapsobje
ts to a hierar
hy of groups.De�nition 6 (Group hierar
hy) The set Gi of groups asso
iated with a fun
-tion ϕi builds a group hierar
hy, i� there is a relation < su
h that (g < g′) :⇔
(∀x ∈ Si : g′ ∈ ϕi(x) ⇒ g ∈ ϕi(x)) and (Gi, <) is a tree. The fun
tion ϕi is then
alled a hierar
hi
al fun
tion.It should be possible to mat
h fun
tions that 
orrespond to only a partialgroup hierar
hy. We formalize this notion by de�ning a hierar
hy on fun
tions,whi
h extends the set of input fun
tions su
h that it 
ontains all partial fun
tions.De�nition 7 (Fun
tion hierar
hy) Two hierar
hi
al fun
tions ϕi and ϕj ,are in dire
t sub fun
tion relation ϕi ≺ ϕj , i� Gi ⊂ Gj , ∀x ∈ Si :
ϕi(x) = ϕj(x) ∩ Gi, and ¬∃ϕ′

i : Gi ⊂ G′

i ⊂ Gj .Let the set I∗ be the set of all fun
tions whi
h 
an be a
hieved following thedire
t sub fun
tion relation starting from I, thus
I∗ = {ϕi|∃ϕj ∈ I : ϕi ≺

∗ ϕj} (9)where ≺∗ is the transitive hull of ≺. While it would be possible to apply thesame algorithm as above to the extended set of input fun
tions I∗, this would berather ine�
ient, be
ause the size of I∗ 
an be 
onsiderably larger than the oneof the original set of input fun
tions I. We therefore propose an algorithm whi
hexploits the fun
tion hierar
hy and avoids multiple similarity 
omputations. Ea
hfun
tion ϕi ∈ I∗ is again asso
iated with a set of representative obje
ts Zϕi
. Weadditionally assume the standard taxonomy semanti
s:

ϕi ≺ ϕj ⇒ Zϕi
⊆ Zϕj

. (10)Now, the pre
ision 
an be 
al
ulated re
ursively in the following way:
prec(Zϕi

, S) =
|Z∗

ϕi
|

|Zϕi
|
prec(Z∗

ϕi
, S) +

∑

ϕj≺ϕi

|Zϕj
|

|Zϕi
|
prec(Zϕj

, S) (11)where Z∗

ϕi
= Zϕi

\
⋃

ϕj≺ϕi
Zϕj

. For re
all a similar fun
tion 
an be derived.Note, that neither the number of similarity 
al
ulations is greater than in thebase version of the algorithm nor are the memory requirements in
reased.Moreover, the bottom-up pro
edure also allows for pruning. We 
an opti-misti
ally estimate the best pre
ision and re
all, that 
an be a
hieved in fun
tion



hierar
hy using all representative obje
ts Ze for whi
h the pre
ision is alreadyknown. The following holds:
prec(Zϕi

, S) ≤
|Ze|prec(Ze, S) + |Zϕi

\ Ze|

|Zϕi
|

(12)with Ze ⊂ Zϕi
. An optimisti
 estimate for the re
all is one. If the optimisti
f-measure estimate of the hierar
hy's root node is worse than the 
urrent bests
ore, this hierar
hy does not need to be pro
essed further. This is due to theoptimisti
 s
ore in
reasing with |Zϕi

| and |Zϕi
| > |Zϕj

| for all sub fun
tions
ϕj ≺ ϕi. No sub-fun
tion of the root 
an be better than the 
urrent best s
ore,if the s
ore of the root is equal or worse than the 
urrent best s
ore.This 
onversion to hierar
hi
al 
luster models 
on
ludes our algorithm forLo
al Alternative Cluster Ensembles (LACE).3 A Distributed AlgorithmThe LACE algorithm is well suited for distributed s
enarios. We assume a setof nodes 
onne
ted over an arbitrary 
ommuni
ation network. Ea
h node hasone or several fun
tions ϕi together with the sets Si. If a node A has a set ofobje
ts S to be 
lustered, it queries the other nodes and these respond with aset of fun
tions. The answers of the other nodes form the input fun
tions I. A
omputes the output O for S. The node B being queried uses its own fun
tions
ϕi as input and determines the best �tting ϕi for S and sends this output ba
kto A. The algorithm is the same for ea
h node. Ea
h node exe
utes the algorithmindependently of the other nodes.We introdu
e three optimizations to this distributed approa
h. First, givena fun
tion hierar
hy, ea
h nodes returns exa
tly one optimal fun
tion in thehierar
hy. This redu
es the 
ommuni
ation 
ost, without a�e
ting the result,be
ause any but the optimal fun
tion would not be 
hosen anyway (see pruningin the last se
tion).Se
ond, input fun
tions returned by other nodes 
an be represented moree�
iently by only 
ontaining the items in the query set, that are su�
iently
overed by the 
orresponding fun
tion. Together with the f-measure value q∗f(equation 8) for the fun
tion, this information is su�
ient for the querying nodein order to perform the algorithm.In many appli
ation areas, we 
an apply a third optimization. If obje
ts areuniquely identi�ed, su
h as audio �les, �lms, web resour
es, et
. they 
an berepresented by these IDs only. In this 
ase, the similarity between two obje
tsis 1, if they have the same ID, and 0 otherwise. A distributed version of ouralgorithm only needs to query other nodes using a set of IDs. This redu
es the
ommuni
ation 
ost and makes mat
hing even more e�
ient. Furthermore, su
hqueries are already very well supported by 
urrent (p2p) sear
h engines.In a distributed s
enario, network laten
y and 
ommuni
ation 
ost must betaken into a

ount. If obje
ts are represented by IDs, both are restri
ted to anadditional e�ort of O(|S|+ |I∗|). Thus, the algorithm is still linear in the numberof query obje
ts.



3.1 Distributed Media ManagementThe LACE algorithm is applied within Nemoz2, a distributed media organiza-tion system whi
h fo
uses on the appli
ation of data mining in p2p networks. Itsupports users in stru
turing their private media 
olle
tions by exploiting infor-mation from other peers. Ea
h user may 
reate arbitrary, personal 
lassi�
ations
hemes to organize her media, e.g. musi
. For instan
e, some users stru
turetheir 
olle
tion a

ording to mood and situations, others a

ording to genres,et
. Some su
h stru
tures overlap, e.g., the blues genre may 
over similar musi
as does the melan
holi
 mood.Nemoz supports the users in stru
turing their media obje
ts while not for
ingthem to use the same set of 
on
epts or annotations. If an ad ho
 network hasbeen established, peers support ea
h other in stru
turing. A user who needsto stru
ture a set of media obje
ts S (e.g., re�ning an over-full node in hertaxonomy) invokes the distributed algorithm des
ribed above. Then, the systemo�ers a set of alternative 
lusterings, ea
h 
ombined from peers' response and
overing S. The user 
hooses whi
h of the 
lusterings she wants to in
orporateinto her 
olle
tion's stru
ture. Note, that in this s
enario, the enhan
ed fun
tionsfrom de�nition 2 be
ome parti
ularly meaningful � she re
eives re
ommendationsfor similar musi
 in addition to her own set S!4 ExperimentsThe evaluation of LACE is performed on a real world ben
hmark dataset gath-ered in a student proje
t on distributed audio 
lassi�
ation based on peer-to-peernetworks (Nemoz). The data set 
ontains 39 taxonomies (fun
tions ϕ1, ..., ϕ39)and overall 1886 songs [9℄3. All experiments des
ribed in this paper were per-formed with the ma
hine learning environment Yale [10℄4.The evaluation of LACE is performed by subsequently leaving out one fun
-tion ϕi of the dataset. Then we apply 
lustering to re
onstru
t this taxonomy.Hen
e, we 
an evaluate 
luster models in a way similar to 
lassi�
ation learning.We have a �ground truth� available. A user taxonomy ϕ is 
ompared with a tax-onomy ϕ′ 
reated automati
ally by 
lustering as follows. We 
onstru
t the usualtree distan
e matrix for the two taxonomies and 
ompare these matri
es on allpairs of obje
ts in the set S. For the absolute distan
e 
riterion, the di�eren
ebetween the tree distan
e in ϕ and the one in ϕ′ are summed-up and divided bythe number of obje
ts (see Table 1 for illustration).As se
ond 
riterion we use the 
orrelation between these tree distan
es. Fi-nally, for ea
h 
luster in the left-out taxonomy we sear
h for the best 
orre-sponding 
luster in the learned taxonomy a

ording to f-measure. The averageperforman
e over all user-given 
lusters is then used as the (FS
ore) evaluationmeasure [11℄. Note, that although we report the FS
ore, it is not normalized with2 Available at http://www.sour
eforge.net/proje
ts/nemoz3 Available at http://www-ai.
s.uni-dortmund.de/audio.html4 Available at http://yale.sf.net.



S x1 x2 ... xm sum of di�eren
es
x1 - ϕ:1;ϕ′:3 2+
x2 - ϕ:1;ϕ′:2 1+... -
xm -Total 3+Table 1. Tree distan
e matrix indi
ating for all pairs of items in S how many edgesthey are away from ea
h other, on
e 
on
erning the hierar
hy of ϕ and on
e 
on
erningthe hierar
hy of ϕ′. For instan
e, in ϕ there is only one edge between x1 and x2, butin ϕ, there are three. The last 
olumns sums-up the di�eren
es between the distan
esin ϕ and ϕ′ for one item with respe
t to all other items. The last �eld gives the totalof all di�eren
es. Total/m gives the absolute distan
e of ϕ and ϕ′.Method Correlation Absolute distan
e FS
oreLACE 0.44 0.68 0.63TD audio 0.19 2.2 0.51TD ensemble 0.23 2.5 0.55single-link audio 0.11 9.7 0.52single-link ensemble 0.17 9.9 0.60random 0.09 1.8 0.5Table 2. The results for di�erent evaluation measures.respe
t to the number of 
reated 
lusters. Finer grained stru
tures therefore al-ways lead to equal or better performan
e than their 
oarse grained variants.This, however, does often not re�e
t the similarity to the user-given taxonomy.We 
ompare our approa
h with single-link agglomerative 
lustering using 
o-sine measure, top down divisive 
lustering based on re
ursively applying kernelk-means [12℄ (TD), and with random 
lustering. Lo
alized Alternative ClusterEnsembles were applied using 
osine similarity as inner similarity measure. TDand random 
lustering were started �ve times with di�erent random initializa-tions. We use a set of 20 features whi
h were shown to work well in a widerange of appli
ations [13℄ as underlying audio features. Sin
e, here, we want totest the new 
lustering method, we do not investigate di�erent feature sets. Theparameter β was set to 1.Table 2 shows the results. As 
an be seen, the lo
al alternative 
luster ensem-bles approa
h LACE performs best. Note however, that absolute distan
e doesnot lead to results that are representative for agglomerative 
lustering as su
h,be
ause it usually builds-up quite deep hierar
hies, while the user 
onstru
tedhierar
hies were rather shallow.A se
ond experiment inspe
ts the in�uen
e of the representation on the a
-
ura
y. The results of LACE with di�erent numbers of instan
es at a node areshown in Table 3. Representing fun
tions by all points performs best. Using asingle 
entroid for representing a subtree leads to inferior results, as we already



Representation Correlation Absolute distan
e FS
oreall points 0.44 0.68 0.63
|Z| = 10 0.44 0.68 0.63
|Z| = 5 0.41 0.69 0.63
|Z| = 3 0.40 0.69 0.62
entroid 0.19 1.1 0.42Table 3. The in�uen
e of 
on
ept representation (
ardinality of |Z|).Alternatives Correlation Absolute distan
e FS
ore5 0.44 0.68 0.633 0.38 0.73 0.601 0.34 0.85 0.56Table 4. The in�uen
e of response set 
ardinality |O|.expe
ted. Well s
attered points perform well. We obtain good results even for avery small number of representative items at ea
h node of the 
luster model.We also evaluated how the number of output fun
tions in�uen
es the qualityof the result. The result should be 
learly inferior with a de
reasing number.Table 4 shows the result. On one hand, we observe that even with just onemodel, i.e. |O| = 1, LACE still outperforms the other methods with respe
t totree distan
e. On the other hand, the results are, indeed, getting worse with lessalternatives. Providing alternative solutions seems to be essential for improvingthe quality of results at least in heterogeneous settings as the one dis
ussed here.Probably, the performan
e would in
rease even further for more output 
luster-ings. Although a user still would sele
t the best available 
lustering from allalternatives � whi
h motivates this form of evaluation � the number of solutionsshould be rather small and was restri
ted to 5 in this setting.5 Con
lusionStru
turing media 
olle
tions is one of the most important tasks for 
urrent andfuture media organization appli
ations. Clustering is a basi
 te
hnique for thisproblem. A 
orre
t or optimal 
lustering of items depends strongly on intentionsand preferen
es of the user. An important 
hallenge for new 
lustering te
hniquesis the question of how to integrate 
lusterings provided by other users in a waythat allows for a 
ertain personalization whi
h re�e
ts the lo
ality of the dataand preserves user 
reated 
lusterings. In 
ontrast to other 
luster ensemblemethods or distributed 
lustering, a global model (
onsensus) is not the aim.Investigating the pra
ti
al needs 
arefully has led to the de�nition of a newlearning task, namely learning lo
alized alternative 
luster ensembles, where aset of given 
lustering is taken into a

ount and a set of proposed 
lusterings isdelivered. We have formalized the learning task and developed a greedy approa
h



solving it. Enhan
ements for hierar
hi
al stru
tures a

omplish the LACE algo-rithm. It is well suited for distributed settings.The performan
e of algorithms solving the lo
alized alternative 
luster en-sembles task 
an be measured by a leave-one-stru
turing-out approa
h. The pro-posed algorithm outperforms standard 
lustering s
hemes on a real-world dataset in the domain of musi
 
olle
tions. We also investigated the in�uen
e of thenumber of representative points and the in�uen
e of response set 
ardinalitywhi
h are important in distributed s
enarios.In our opinion, appli
ations in the Web 2.0 
ontext o�er many interestingopportunities for ma
hine learning. LACE is a very promising approa
h to over-
ome some of the problems asso
iated with this new kind of appli
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