
BIRCH: An Efficient Data Clustering Method for Very Large

Databases

Tian Zhang Raghu Ramakrishnan Miron Livny”

(“lornputer Sciences Dept. Computer Sciences Dept. Computer Sciences Dept.

[Jniv. of Wisconsin-Maciison [Jniv. of Wisconsin-Maciison LJniv. of Wisconsin-Maclison

zhang@cs. wise.edu raghuf~cs.wise.edu mironf~cs. wise.eclu

Abstract

Finding useful patterns in large datasets has attracted

considerable interest recently, and one of the most widely

st,udied problems in this area is the identification of clusters,

or deusel y populated regions, in a multi-dir nensional clataset.

Prior work does not adequately address the problem of large

datasets and minimization of 1/0 costs.

This paper presents a data clustering method named

Bfll (;”H (Balanced Iterative Reducing and Clustering using

Hierarchies), and demonstrates that it is especially suitable

for very large databases. BIRCH incrementally and clynami-

call y clusters incoming multi-dimensional metric data points

to try to produce the best quality clustering with the avail-

able resources (i. e., available memory and time constraints).

BIRCH can typically find a goocl clustering with a single scan

of the data, and improve the quality further with a few acl-

ditioual scans. BIRCH is also the first clustering algorithm

proposerl in the database area to handle “noise)’ (data points

that are not part of the underlying pattern) effectively.

We evaluate BIRCH’S time/space efficiency, data input

order sensitivity, and clustering quality through several

experiments. We also present a performance comparisons

of BIR (;’H versus CLARA NS, a clustering method proposed

recently for large datasets, and S11OW that BIRCH is

consistently superior.

1 Introduction
In this paper, we examine data clustering, which is

a particular kind of clatla mining problem. (~iven a

large set of rnulti-clirnensional data points, the data

spare is usually not uniformly occupied. Data clustering

identifies the sparse and the crowded places, and

hence discovers the overall distribution patterns of

the dataset. Besides, the derived clusters can be

visualized more efficiently and effectively than the

original dataset[Lee81, D,J80].

*This research has been supported by NSF Grant IRI-9057562

and NASA (;rant 144-EC 78.

Permission to make digitalhard copy of part or all of this work for personal
or classroom use is ranted without fee provided that copies are not made

7or distributed for pro tt or commercial advantage, the aopyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
andlor a fee.

SIGMOD ’96 6/96 Montreal, Canada
IQ 1996 ACM 0-89791 -794-4/96/0006 ...$3.50

Generally, there are two types of attributes involved

in the data to be clustered: metrtc and nonmetrzri. ln

this paper, we consider metric attributes, as in most,

of the Statistics literature, where the clustering prol>-

lern is formalized as follows: G’tven the destred rlum-

ber of clusters K and a dataset of N potnts, and a

dzstance-based measurement functzon (e.g., the uletghted

totrd/average dwtunce betuleeri pazr-s of pozrtts tn clus-

ters), rue are asked to find a partatzon of the dataset that

rrl~nrmizes the value of thf measurement functton. This

is a nonconvm dtscrete [KR90] optimization problem.

Due to an abundance of local minima, there is typically

no way to find a global minimal solution without trying

all possible partitions.

We adopt, the problem definition used in Statistics,

but with an additional, database-oriented constraint,:

The amount of memory available M ltrntted (t~yptcall~y,

much -smaller than the data set .sw~) and ule rvant to

rninzmt.ze the tzrne required for 1/0. A related point, is

that it is desirable to Lre able to take into account the

amount of ttme that a user is willing to wait for the

results of the clustering algorithm.

We present a clustering method named BIRCH and

demonstrate that it is especially suitable for very large

databases. Its 1/(> cost is linear in the size of the

dataset: a .szngle scan of the dataset yields a good

clustering, ancl one or more additional passes can

(optionally) be used to improve the quality further.

By evaluating BIRCH’S time/space eficieucy, data ill-

put order sensitivity, and clustering quality, and com-

paring with other existing algorithms through experi-

ments, we argue that BIRCH is the best available clus-

tering method for very large databases. BIRCIPs ar-

chitecture also offers opportunities for parallelism, and

for interactive or dynamic performance tuning based on

knowledge about the ciataset, gained over the course of

the execution. Finally, BIRCH is the first clustering al-

1 Informally, a metmc attribute is an attribote whose values

satisfy the requirements of Eucltdtan space, i.e., self identity (for

any X, X = X) and triangular inequality (there exists a distance

definition such that for any XI ,XZ,X3, d(XI , X2) + d(X2, X3) ~
[1(X1,X3)).

103

goritlhm proposed in the datlahase area that addresses

outl~~rs (intuitively, data points that, should be regarded

a,s “noispi’) and proposes a plausible solution.

1.1 Outline of Paper

The rest of the paper is organized as follows. Sec. 2

surveys relat,ed work ancl summarizes BIRCH’S contri-

l)utlunh Sec. 3 presents some background material.

Ser. 4 introduces the concepts of clustering feature ((~F)

au(i (~F tree, which are central to BIRCH. The details

of BIll(’H algorithm is described in Sec. 5, and a pre-

liminary performance study of BIRCH is presented in

Sec. 6, Finally our conclusions and directions for fw

ture rmearch are presented in Sec. 7,

2 Summary of Relevant Research

Data clustering has been studied in the Statistics

[DHi’3, D.J80, Lee81, Mur83], Machine Learning [CKS88,

Fis87, Fis95, Lel>87] and Database [NH94, EKX95a,

E1iX951]] communities with different, methods and dif-

ferent emphases, Previous approaches, probability-

I)ased (like most approaches in Machine Learning) or

distauce-basecl (like most work in Statistics) , C1O not,

adequately consider the case that, the clataset can he too

large to fit in main memory. In particular, they do not

rerognize that, the problem must be viewed in terms of

how to work with a limited resources (e.g., memory that,

is typirally, mu[-h smaller than the size of the dataset) to

do the clustering as accurately as possible while keeping

the 1/() costs low.

Probability-based approaches: They typically

[FisH7, (‘KSt38] make the assumption that probahilit,y

distributions on separate attributes are statistically

independent of each other, In reality, this is far

from true. (correlation between attributes exists, and

sometimes this kind of correlation is exactly what we are

looking for. The probability representations of c-lusters

make updating and storing the clusters very expensive,

eslxv-ially if the attributes have a large number of values

because their complexities are dependent not, only on

the number of attributes, but also on the number of

values for each attribute. A related problem is that

often (e. g., [Fis87]), the probability-based tree that is

hllilt to identify clusters is not, height, -balanced, For

skpwed input data, this may cause the performance to

(Iqiyade drarnatlically,

Distance-based apprc)aclles: They assume that all

data points are given in advance and can be scanned

freclueutly. They totally or partially ignore the fact that

not, all clata points in the clataset are eclually irrrportant

with respect to the clustering purpose, and that dat, a

points which are close ancl d;nse shoulci he considered

collectively insteacl of individually, They are global or

.se771z-globol methods at the granularity of data points.

That, is, for each clustering decision, they inspect, all

data l)oints or all currently existing clusters eclually no

matter how close or far away they are, and they use

glol]al measurements, which require scanning all data

points or all currently existing clusters. Hence none of

them have linear time scalability with stal)le quality,

For example, using exhausttvt eTmnltratzort (EE),

there are approximately IiN/I< ! [DH73] ways of par-

titioning a set of N data points into K subsets. So in

practice, though it can find the global minimum, it is

infeasible except, when IV and K are extremely small.

Iterattve optzmwatzon (10) [DH73, KR90] starts with

an initial partition, then tries all possible moving or

swapping of data points from one group to another to

see if such a moving or swapping improves the value of

the measurement function, It can find a local minimum,

hut, the c!uality of the local minimum is vpry sensitivp to

the initially selected partition, ancl the worst, case tirnp

complexity is still exponential. Hierarchtml clustertn[g

(HC) [DH73, KR90, Mur83] does not try to find “lwst,”

clusters, but keeps merging the closest, pair (or splitting

the farthest, pair) of objects to form clusters, Witlh a

reasonable distance measurement,, the best time com-

plexity of a practical HC algorithm is 0(N2). Scj it is

still unable to scale well with large N.

Clustering has been recognized as a useful spatial data

mining method recently. [NH94] presents (’L,4BAN,$’

that is based on ranclornizecl search, and proposes

that (_’LARAN,$ outperforms traditional clustering al-

gorithms in Statistics. In CLARANS, a rluster is repre-

sented by its medotd, or the most, centrally loc-ated data

point in the cluster The clustering process is formali-

zed as searching a graph in which each uocle is a Ii”-

partition representeci by a set of Ii rnedoi(ls, and two

nodes are neighbors if they only differ by one medoid,

CLARANS starts with a randomly selectecl node. For

the current node, it checks at most the n~om~e~ghbor

number of neighbors randomly, ancl if a better neigh-

bor is founcl, it moves to the neighbor ancl contiulles;

otherwise it records the current, node as a 10CCZ1T7LZnZ-

mum, and restarts with a new randomly selected node

to search for another local mtntmum, {“?LARAN,S stops

after the numlocol number of the so-called loccd nLznz71w

have been found , and returns the best, of these,

(YA RA N,S suffers from the same ch-awbacks as the

shove IO method wrt. efficiency In addition, it, may

not find a real local minimum due to the searching

trimming controlled by mmmezghbor. Later [EKX9,5aj

and [EK.X95h] propose focusing techniques (based on

R*-trees) to improve CLARA N,S’s ability to deal with

data objects that, may reside on clisks by (1) clustering

a sample of the ciat, aset that is drawn from each R*-tree

data page; ancl (2) focusing on relevant data points for

clist, ance and quality updates, Their experiments show

that, the time 1s improved with a small loss of quality,

2.1 Cent ributions of BIRCH

An important contribution is our formulation of the

clustering, problem in a way that, is appropriate for

104

very large clatasets, by making the time and memo-

ry constraints explicit. In addition, BIRCH has the

following advantages over previous distance-based ap-

proaches.

●BIRCH is local (as opposed to global) in that each

clustering decision is made without scanning all data

points or all currently existing clusters. It uses

rneasnrements that reflect the natural closeness of

points, and at the same time, can be incrementally

maintained during the clustering process.

● BIRCH exploits the observation that the data space

is usually not uniformly occupied, and hence not

every data point is equally important for clustering

purposes. A dense region of points is treated

collectively as a single cluster. Points in sparse regions

are treated as outlters and removed optionally.

. BIRt~H makes full use of available memory to derive

the finest possible subclusters (to ensure accuracy)

while minimizing 1/0 costs (to ensure efficiency).

The clustering and reducing process is organized and

characterized by the use of an in-memory, height-

balanced and highly-occupied tree structure. Due to

these features, its running time is linearly scalable.

. If we ornit the optional Phase 4 5, BIRCH is an

incremental method that does not require the whole

clataset in advance, and only scans the clataset once.

3 Background
Assume that readers are familiar with the terminology
of vector spaces, we begin by defining centroid, radius
and diameter for a cluste~. Given N d-dimensional data

points in a cluster: {.Xi} where i = 1,2, N, the

centroid XO, radius R and diameter D of the cluster
are defined as:

f,. Ztl ~,
AT (1)

Jx’mt-m’)+
N(N–1)

(2)

(3)

R is the average distance from member points to the

centroid. D is the average pairwise distance within

a cluster. They are two alternative measures of the

tightness of the cluster around the centroid. Next

between two clusters, we define 5 alternative distances

for measuring their closeness.

(iiven the centroids of two clusters: X~l ancl X_62,
the centroid Euclidian distance DO and centroid
Manhattan distance D1 of the two clusters are
defined as:

Do = ((X731 – xi12)’)+ (4)

d

1)1 = Ixbl – X7121= ~ [Xhl(t) – xb2(t)\ (5)

,=1

(iiven NI d-dimensional data points in a cluster: {.~i }
where i = 1,2, N], and N2 data points in another

cluster: {X-’} where j = N1 + l,N1 + 2, . ..)Nl + N2,

~he average in$er.clust er distancs D%, average
mtra-cluster distance D3 and variance increase
distance D4 of the two clusters are defined as:

(6)

D3 is actually D of the merged cluster. For the sake

of clarity, we treat X-O, R and D as properties of a

single cluster, and DO, D 1, D2, D3 and D4 as properties

between two clusters and state them separately. [Jsers

can optionally preprocess data by weighting or shifting

along different dimensions without affecting the relative

placement.

4 Clustering Feature and CF Tree

The concepts of Clustering Feature and CF tree

are at the core of BIRCH’S incremental clustering.

A Clustering Feature is a triple summarizing the

information that we maintain about a cluster.

Definition 4.1 Given N d-dimensional data points in

a cluster: {ii} where i = 1, 2, N, the Clustering

Feature (CF) vector of the cluster is defined as a

triple: CF = (N, L%’, S’S), where N is the number of

data points in the cluster, L~$ is the linear sum of the

N data points, i.e., ~~ ~ ~~, and S’5’ is the square sum

of the N data points, i.e., ~~=1 X-iz. ❑

Theorem 4.1 (CF Additivity Theorem); Assu7ne

that CF1 = (Nl , L~l , ,$,$1), a91~ CF2 = (N2, L3’2, ,$,$’z)

are the CF vectors of two dw~oint clusters. Then the

CF vector of the cluster that is formed by merging the

two disjoint clusters, is:

CF1 + CF2 = (Nl + N2, L~l + L~2, ,$,$1 + ,5’,5’2) (9)

The proof consists of straightforward algebra. []

From the CF definition and additivity theorem, we

know that the CF vectors of clusters can be stored and

calculated incrementally and accurately as clusters are

merged. It is also easy to prove that given the CF

vectors of clusters, the corresponding XO, R, D, DO,

D1, D2, D3 and D4, as well as the usual quality rnet,rics

(such as weighted total/average diameter of clusters)

can all be calculated easily.

One can think of a cluster as a set of data points,

but only the CF vector stored as summary. This

CF summary is not only efficient because it stores

much less than all the data points in the cluster, hut

also accurate because it is sufficient for calculating all

the measurements that we need for making clustering

decisions in BIRCH.

105

4.1 CF Tree

A CF tree is a height-balanced tree with two pararrl-

et(ers: branching factor B and threshold T. Each

nonleaf node contains at most B entries of the form

[CFi, rhddi], where r’ = 1,2,..., B, “~hildi’) is a pointer

to its i-th child node, and CF, is the CF of the sub-

clust, er represented by this child. So a nonleaf node

represents a cluster made up of all the subclusters rep-

resented l>y its entries. A leaf node contains at most, L

entries, each of the form [CFi], where i = 1, 2, L, In

addition, each leaf node has two pointers, “prev” and

“nrxt” which are used to chain all leaf nodes together

for efficient scans. A leaf node also represents a clus-

ter made up of all the subclusters represented by its

entries. But all entries in a leaf node must] satisfy a

thrr.shold requirement, with respect to a thresholci value

T: tht- dtametrr (or radtus) has to & less than T.

The tree size is a function of T. The larger ‘T is, the

slllaller the tree is. We require a node to it, in a pa~e

of size P, once the dimension d of the data space 1s

g]veu, the sizes of leaf and nonleaf entries are known,

then B and L are determined by P. So P can be varied

for performance tuning.

Such a CF tree will be built dynamically as new data

ohjectls are inserted. It, is used to guide a new insertion

illtlo the correct suhcluster for clustering purposes just

the same as a B+--tree is USd to guide a new insertion

il]tu the corrert position for sorting purposes. The CF

tree is a very compact representation of the dat,aset

I>eralme each entry in a leaf node is not a single data

l)oint hut, a subcluster (which absorbs many data points

with diameter (or radius) under a specific threshold T).

4.2 Insertion into a CF Tree

We now present, the algorithm for inserting an entry

into a CF tree. (~iveu entry “Ent”, it proceeds as

helnw:

ldentzf~ymg the appropriate leaf: Starting from the

root,, it recursively descends the CF tree by choosing

tile closest child node according to a chosen distance

metric: DO, D1 ,D2, D3 or D4 as defined in Sec. 3.

Modtf?ytn~g the leaf: When it reaches a leaf node, it

finc]s the rlosest leaf entry, say L,, and then tests

whether L! can “ahsorh” “ Ent” withoutv iolatingthe

threshold conclitionz. If SO, the CF vector for Li is

ul~dated to reflect this, If not,, a new entry for “Ent,”

is addecl to the leaf. If there is space on the leaf for

this new entry, we are done, otherwise we must, .sp/it

the leaf node. ,Nocle splitting is done by choosing the

farthest pair of entries as seeds, and redistributing

the remaining entries based on the closest criteria.

.x. Modtf;jzn!g th~ ~mth to the leaf: After inserting “Ent”

mt,o a leaf, we must, update the CF information for

2Tl}at is, the cluster n)erged with “Ent” and L, n]ust satisfy

the threshold condition. Note that the CF vector of the new

rluster cal} be eomputecl from the CF vectors for L! and “Ent”.

each nonleaf entry on the path to the leaf. In the

absence of a split, this simply involves adding CF

vectors to reflect the addition of “Ent”. A leaf split,

requires us to insert a new nonleaf entry into the

parent, node, to describe the newly created leaf, If

the parent, has space for this entry, at all higher levels,

we only need to update the CF vectors to reflect, the

addition of “Ent”. In general, however, we may have

to split the parent as well, ancl so on up to the root,,

If the root is split, the tree height increases by one.

4.A Mergz?~gRefi?lelrte?tt: Splits are caused hy the page

size, which is independent of the clustering properties

of the data. In the presence of skewed data input,

order , this can affect the clustering quality, and also

recluce space utilization. A simple additional merging

step often helps ameliorate these problems: Suppose

that there is a leaf split, and the propagation of this

split stops at some nonleaf nocle NJ, i.e., N,T can

accommodate the additional entry resulting from the

split. We now scan node N,T to find the two closest

entries. If they are not the pair corresponding to the

split, we try to merge them and the corresponding two

child nodes. If there are more entries in the two child

nodes than one page can hold, we split the merging

result again. During the resplitting, in case one of

the seed attracts enough merged entries to fill a page,

we just put the rest entries with the other seed. In

summary, if the mergecl entries fit, on a single page, we

free a node space for later use, create one more entry

space in node NJ, thereby increasing space utilization

and postponing future splits; otherwise we improve

the distribution of entries in the closest, two children.

Since each node can only hold a limited number of

entries clue to its size, it does not always correspond

to a natural cluster. occasionally, two subclusters that

should have been in one cluster are split, across nodes.

Depending upon the order of data input and the degree

of skew, it is also possible that two subclust,ers that

should not be in one cluster are kept in the same node.

These infrequent, but unclesirahle anomalies caused Ijy

page size are remedied with a global (or semi-glo]>al)

algorithm that arranges leaf entries across nodes (Phase

3 discussed in Sec. 5), Another undesirable artifact, is

that if the same data point is inserted twice, hut at,

different, times, the two copies might be entered into

distinct leaf entries. or, in another word, occasionally

with a skewed input order, a point, might enter a leaf

entry that it, should not have entered. This problem

can he addressed with further refinement passes over

the data (Phase 4 discussed in Ser. 5),

5 The BIRCH Clustering Algorithm

Fig. 1 presents the overview of BIRCH. The main task

of Phase 1 is to scan all data and build an initial in-

memory CF tree using the given amount, of memory

106

Data J/

Initial CF tree

Phase 2 <optional): Condense tit. desirable rang.
by buildkpj . sm.11.r CF tree

1

.n, aller C-F tree

+

r F’base.z 3: Global Clu steting 1

Better clusters
+~

Figure 1: BIRCH OvervZcuI

and recycling space on disk. This CF tree tries to

reflect the clustering information of the dataset as fine

as possible under the memory limit. With crowded

data points grouped as fine subclusters, and sparse

data points removed as outliers, this phase creates a in-

memory summary of the data. The details of Phase 1

will be discussed in Sec. 5.1. After Phase 1, subsequent

computations in later phases will be:

1fast became (a) no 1/0 operations are needed, and (b)

the problem of clustering the original data is reduced

to a smaller problem of clustering the subclusters in

the leaf entries;

2. accurate because (a) a lot of outliers are eliminated,

ancl (b) the remaining data is reflected with the finest

granularity that can be achieved given the available

rnernory;

3. less order sensitive because the leaf entries of the

initial tree form an input order containing better data

locality compared with the arbitrary original data

input, order.

Phase 2 is optional. We have observed that the ex-

isting global or semi-global clustering methods applied

in Phase 3 have different input size ranges within which

they perform well in terms of both speed and quality.

So potentially there is a gap between the size of Phase

1 results and the input range of Phase 3. Phase 2 serves

as a cushion and bridges this gap: Similar to Phase 1,

it scans the leaf entries in the initial CF tree to rebuild

a smaller CF tree, while removing more outliers and

grouping crowded subclusters into larger ones.

The undesirable effect of the skewed input order,

and splitting triggered by page size (Sec. 4.2) causes

us to be unfaithful to the actual clustering patterns

in the data. This is remedied in Phase 3 by using

a global or semi-global algorithm to cluster all leaf

entries. We observe that existing clustering algorithms

for a set of data points can be readily adapted to work

with a set, of subclusters, each described by its CF

vector. For example, with the CF vectors known, (1)

naively, by calculating the centroid as the representative

of a subcluster, we can treat each subcluster as a

single point and use an existing algorithm without,

modification; (2) or to be a little more sophisticated, we

can treat a subcluster of n data points as its cent, roid

repeating n times and modify an existing algorithm

slightly to take the counting information into account;

(3) or to be general and accurate, we can apply an

existing algorithm directly to the subclusters because

the information in their CF vectors is usually sufficient,

for calculating most distance and quality metrics.

In this paper, we adapted an agglomerative hierarchic-

al clustering algorithm by applying it directly to the

subclusters represented by their CF vectors. It uses

the accurate distance metric D2 or D4, which can he

calculated from the CF vectors, during the whole clus-

tering, and has a complexity of O(lV2). It also provides

the flexibility of allowing the user to specify either the

desired number of clusters, or the desired diameter (or

radius) threshold for clusters.

After Phase 3, we obtain a set, of clusters that,

captures the major distribution pattern in the data,

However minor and localized inaccuracies might exist

because of the rare misplacement problem mentioned in

Sec. 4.2, and the fact that Phase 3 is applied on a coarse

summary of the data. Phase 4 is optional and entails

the cost of additional passes over the data to correct

those inaccuracies and refine the clusters further. Note

that up to this point, the original data has only been

scanned once, although the tree and outlier information

may have been scanned multiple times.

Phase 4 uses the centroids of the clusters produced Ly

Phase 3 as seeds, and redistributes the data points to

its closest seed to obtain a set of new clusters. Not only

does this allow points belonging to a cluster to rnigrat,e,

but also it ensures that all copies of a given data point

go to the same cluster. Phase 4 can be extended with

additional passes if desired by the user, and it has been

proved to converge to a minimum [G G92]. As a bonus,

during this pass each data point can be labeled with the

cluster that it belongs to, if we wish to identify the data

points in each cluster. Phase 4 also provides us with the

option of discarding outliers. That is, a point which is

too far from its closest, seed can be treated as an outlier

and not included in the result.

5.1 Phase 1 Revisited

Fig. 2 shows the details of Phase 1. It starts with

an initial threshold value, scans the data, and inserts

points into the tree. If it runs out of memory before

it finishes scanning the data, it increases the threshold

value, rebuilds a new, smaller CF tree, by re-inserting

the leaf entries of the old tree. After the old leaf entries

have been re-inserted, the scanning of the data (and

insertion into the new tree) is resumed from the point

at which it was interrupted.

107

,
f (.ontmue scanning data and insert to +1 1

out of mem”l-v Fuush scamm~ data..
Result?

I
v

(1) Increase T.

(2) Rebudd (LF txe t2 of new T from (.F tree tl:
if. leaf entry of tl k potential outher and disk space .wadabks,
write to disk; othewise use it to mbudd t2.
(3) tl <- tz

Otherw’,.e Out of disk space
c ~

(Re-absmb tmtentid outiiers into tl 1

c 1

(Re-.bamb potemi.+1 outkrs mto tl

I

Figure 2: (!ontrol Flou) of Phase 1
old Tree New Tree

A-A
OldCurrentPath NeWClOSeStPath NewCurrentPath

Figure 3: Ftebuddtmg <’F Tree

5.1.1 Reducibility

Assume t, is a CF tree of threshold T,. Its height

is h, and its size (numl>er of nodes) is ,’i’t, (iiven

T,+l > T,, we want to use all the leaf entries of tz to

rebuild a CF tree. t%+l , of threshold T,+l such that the

size of tt+ 1 should not, be larger than ,$’~. Following

ifi the rebuilding algorithm as well as the consequent

reduril>ility theorem.

Assome within each node of CF tree t,, the entries

are labeled contiguously from O to nk — 1, where 71k is

the number of entries in that node, then a path from

an entry in the root (level 1) to a leaf node (level h)

(an he uniquely representeci by (il , i2, ,.., i}~_,), where

i,) , :1 = ll...,)/ – 1 is the label of the j-th level entry
.(1) .(1)

‘(’)) ison that path. So naturally, path (tl ,Z2 ,zl~_l

befc)re (or<)pat,h(i\2), i$),i~~l) ifi\l)=i~2) ..,.,

.(1) = ~(~)z,7–1 l_l, and i~l) < iJ2)(0 <j ~ h-l). It is obvious

that, a leaf node corresponds to a path uniquely, and we

will use path and leaf node interchangeably from now

on.

The algorithm is illustrated in Fig. 3. With the

natural path order defined above, it, scans and frees the

old tree path by path, and at, the same time, creates the

new tree path hy path. The new tree starts with NIJLL,

an[l “ol~l(.~urrentpat n’” starts with the leftmost path

in the old tree. For “old(!urrentpat h’”, the algorithr~l

proceeds as below:

1

2

3,

4.

Creatr thr corrrspondL7ig “Nru)(!urre~it[’atll” tn the

new tree: nodes are added to the new tree exactly

the same as in the old tree, so that there is no chance

that the new tree ever hecornes larger than the old

tree.

Insert leaf e7itrze.s tn “OldCurrmtI)atli” to thy neti)

tree: with the new threshold, each leaf entry in “olCi-

(.~urrentPath” is tested against the new tree to see if it,

can fit 3 in the “NewC1osest Pat, h” that, is found top

down with the closest criteria in the new tree. If yes

and ‘LNew(~losestPath” is before “New(.~urrentPa t,h”,

then it is inserted to “NewClosestPath”, and the space

in “NewCurrentPath” is left available for later use;

otherwise it is inserted to “New(;urrent F’ath” without

creating any new node.

Frer spare iIt “OldCurrentPath” and “Ne W(‘ur7rnt-

Path”: Once all leaf entries in “OICI(;urrentF’ath” are

processed, the un-needed nodes along “01[1(!urrent,-

Path>’ can be freed. It is also likely that some nodes

along “NewC;urrentPath” are empty because leaf en-

tries that originally correspond to this path are now

“pushed forward”. In this case the empty nodes can

be freed too.

“OldCurre71tPath” M set to thr next pdh z71 the> old

tnw tf ther-r rxzsts 071r, a71d repeat the abmw stq3s.

From the rebuilding steps, old leaf entries are re-

inserted, but the new tree can never become larger

than the old tree. Since only nodes corresponding

to “OldC!urrent Path” and “New(k~rrentPath” need to

exist simultaneously, the maximal extra space needed

for the tree transforrnation is h pages. So hy increasing

the threshold, we can rebuild a smaller CF tree with a

limited extra memory.

Theorem 5.1 (Tkducibilit y Theorem:): .+!,ssunt c

we rekld CF t me t ~+1 of thrr.shold Ti+ ~ from (“’F t,rr~

t, of threshold T% by the about, al~gorlthm, and let ,5’, GItd

S,+l be the szz~s oft, and t,+l resprctzuel~j. If T,+l > T,,

then ,S1+l < ,S%, and the transforniatzo71 from t% to t,+,

71eeds at Tnost h ext r-o pages of 7r~e7n ory, 71111we h 1s the

Ileaght oft,.

5.1.2 Threshold Values

A good choice of threshold value can greatly reduce the

number of rebuilds. Since the initial threshold value To

is increased dynamically, we can adjust for its lwing tc)o

low. But if the initial TO is too high, we will obtain a

less detailed CF tree than is feasible with the available

memory. So To should he set conservatively. BIR(~H

sets it, t,o zero by default; a knowledgeable user could

change this,

3Eit11er absorbed by an existing leaf entry, or created as a IIeW

leaf entry witllOut splitting.

108

Suppose that T, turns out to lx= too small, and we

subsequently run out of memory after Nt data points

have been scanneci, and ~~%leaf entries have hem formed

(eaeh satisfying the threshold condition wrt. fi). Based

on the portion of the data that we have scanned and the

tree that, we have built up so far, we need to estimate

the next threshold value T,+l This estimation is a

diflirult i>roblemi and a full solution is beyond the scope

of this paper. (!urrently, we use the following heuristie

approarh:

1. We try to choose 2“%+1 so that, N,+l = Min(2N,, N).

That, is, whether N is known, we choose to estirnat,e

T,+ I at most in proportion to the data we have seen

thus far.

2. Intuitivelyj we want to increase threshold based on

some measure of volrme. There are two distinct,

notions of volume that we use in estimating threshold,

The first is average volume, which is defineci as t~ = rd

where r is the average radius of the root cluster in the

CF tree, and d is the (Iimensionality of the space.

Intuitively, this is a measure of the space oeeupied by

the portion oft he data seen thus far (the “footprint” of

seen data). A second notion of volume packed tdum~,

which is defined as Vp = (~, * T%(i, where ~1~ is the

number of leaf entries and Tt d is the maximal volume

of a leaf entry. Intuitively, this is a measure of the

actual volume occupied by the leaf clusters. Since ~~z

is essentially the same whenever we run out of memory

(since we work with a fixed amount, of memory), we

can approximate VP by Ti d.
We make the assumption that r grows with the

number of data points Ni. By maintaining a rerord

of r and the number of points Ni, we ean estimate

ri+ 1 using least, squares linear regression. We define

the ezpnrmon factor f = Maz(1.01 *), and use

it as a heuristic measure of how the data footprint

is growing. The use of Max is motivated by our

observation that for most large datasets, the observeci

footprint heeomes a constant quite quickly (unless

the input order is skewed). Similarly, by making

the assumption that VT, grows linearly with Ni, we

estimate Ti+ 1 using least squares linear regression.

3. We traverse a path from the root to a leaf in the CF

tree, always going to the child with the most points

in a “greedy” attempt to find the most crowded leaf

node. We calculate the distance (~),nin) between the

rlosest two entries on this leaf. If we want to build a

more condensed tree, it is reasonable to expeet that we

should at least increase the threshold value to D~Zn,

so that these two entries can he merged.

4. We multiplied the Ti+l value obtained through linear

regression with the expansion factor f, ancl adjustecl

it using D~i~ as follows: Tt+l = Mwr(DTntn, f *

T%+,). To ensure that the threshold value grows

monotonically, in the very unlikely case that, Ti+ 1

obtained thus is less than T~ then we choose Tt+l = T! Y

(~)~. (This is equivalent to assuming that aII iar:~

points are uniformly distributed in a d-(dimensional

sphere, and is really just a crude :tI>l]roxiI1l:iti t)ll,

however, it is rarely called for.)

5.1.3 Outlier-Handling Option

Optionally, we c-an use R bytes of disk space for handling

outlters, which are leaf entries of low density that are

judged to be unimportant, wrt. the overall elllst,ering

pattern. When we rebuild the CF tree by re-inserting

the old leaf entries, the size of the new tree is reduce(l

in two ways. First, we increase the threshold value,

thereby allowing each leaf entry to “ahsorh” more

points. Second, we treat some leaf entries as potential

outliers and write them out to disk. An old leaf entry 1s

considered to be a potential outlier if it has “far fewer”

data points than the average. “Far fewer”, is of course

another heuristics.

Periodically, the disk space may run out, and the

potential outliers are scanned to see if they can he re-

absorbed into the current tree without causing the tree

to grow in size. — An increase in the threshold value

or a change in the distribution due to the new (Iat, a

read after a potential outlier is written out] could well

mean that the potential outlier no longer qualities as an

outlier. When all data has been scanneci, the potential

outliers left, in the disk space must be scanned to verify

if they are indeed outliers. If a potential outlier ran not

he absorbed at this last chance, it, is very likely a real

outlier and can be removed.

Note that the entire cycle — insufficient memory

triggering a rebuilding of the tree, insufficient disk spare

triggering a re-absorbing of outliers, etc. — could

be repeated several times before the datlasetf is fldly

scanned. This effort must be considered in a[l(lit,ion t,c

the cost of scanning the data in order to assess t,he (-Ost,

of Phase 1 accurately.

5.1.4 Delay-Split Option

When we run out of main memory, it may well he the

case that still more data points can fit, in the current, CF

tree, without changing the threshold. However, some of

the data points that we read may require us to sl)lit

a node in the (3F tree, A simple idea is to writ, e such

data points to disk (in a manner similar to how outliers

are written), and to proceed reading the data until we

run out, of disk space as well. The advantage of this

approach is that in general, more data points ean fit in

the tree before we have to rebuild.

6 Performance Studies

We present a complexity analysis, and then discuss the

experiments that we have conducted on BIRC’H (an(l

(~LARAN,S) using synthetic’ as well as real dataset,s.

109

6.1 Analysis

First we analyze the cpu cost of Phase 1. The maximal

size of the tree is #. To insert a point, we need to follow

a path from root to leaf, touching about 1 + logB ~

nodes. At each node we must examine B entries, looking

for the “closest”; the cost per entry is proportional to

the dimension d. So the cost for inserting all data points

is O(d * N * B(l + logB $)). In case we must rebuild

the tree, let ES be the CF entry size. There are at

most & leaf entries to re-insert, so the cost of re-

inserting leaf entries is O(d * & * B(1 + logB ~)). The

number of times we have to re-builcl the tree depends

upon our threshold heuristics. Currently, it is about

logz & , where the value 2 arises from the fact that we

never estimate farther than twice of the cm-rent size,

and NO is the number of data points loaded into memory

with threshold To. So the total CPU cost of Phase 1 is

()(d*N*B(l+logB *)+log2 ~*i*#$*B(l+logB *)).

The analysis of Phase 2 cpu cost is similar, and hence

omitted.

As for 1/0, we scan the data once in Phase 1 and

not at all in Phase 2. With the outlier-handling and

delay-split options on, there is some cost associated with

writing out outlier entries to disk and reading them

back during a rebuilt. Considering that the amount

of disk available for outlier-handling (and delay-split)

is not more than M, and that there are about log2 ~

re-builds, the 1/0 cost of Phase 1 is not significantly

different from the cost of reading in the dataset. Based

on the above analysis — which is actually rather

pessimistic, in the light of our experimental results —

the cost of Phases 1 and 2 should scale linearly with N.

There is no 1/0 in Phase 3. Since the input to

Phase 3 is bounded, the cpu cost of Phase 3 is therefore

hounded hy a constant that depends upon the maximum

input, size and the global algorithm chosen for this

phase. Phase 4 scans the clataset again and puts each

data point into the proper cluster; the time taken is

proportional to IV * K. (However with the newest

“nearest neighbor” techniques, it can be improved

[(i(~92] to be almost linear wrt. N.)

6.2 Synthetic Dataset Generator

To study the sensitivity of BIRCH to the characteristics

of a wide range of input datasets, we have used a

collection of synthetic datasets generated by a generator

that, we have developed. The data generation is

controlled by a set of parameters that are summarized

in Table 1.

Each dataset consists of 1{ clusters of 2-d data points.

A cluster is characterized by the number of data points

in it,(n), its radius(r), and its center(c). n is in the

range of [7~/,nk], and r is in the range of [rl ,rh]4. once

placed, the clusters cover a range of values in each

4Note tllat wl)en ?LL = TLh tl]e nun)her of points is fixed and

WlIeII rl = r,, tlle radius is fixed,

Paran3eter Values or

. ~..-, u... -

Number of clusters h- 4.. 256

nt (Lower n) 0.. 2500
?Lh(Higher n) 50.. 2500

ur-~ (Lower r) 0.. d2
u

Table 1: Data Generation Parameters and Thetr Values

or Ranges Experimented

dimension. We refer to these ranges as the “overview”

of the dataset.

The location of the center of each cluster is deter-

mined by the pattern parameter. Three patterns —

grzd, ,stne, and random — are currently supported by

the generator. When the gnd pattern is used, the clus-

ter centers are placed on a ~ x @ grid. The distance

between the centers of neighboring clusters on the same

row/column is controlled by kg, and is set to k{+.

This leads to an overview of [O,~kj~] on both

dimensions. The szne pattern places the cluster cen-

ters on a curve of sine function. The K clusters are

divided into 71, groups, each of which is placecl on a

different cycle of the sine function. The c location of

the center of cluster i is 2ni whereas the y location is

~ * sine (2ni/(~)). The overview of a sine dataset is
nc
therefore [0,2mK] and [–~ ,+~] on the x and y di-

rections respectively. The random pattern places the

cluster centers randomly. The overview of the dataset is

[O,K] on both dimensions since the the c and y locations

of the centers are both randomly distributed within the

range [O, K].

Once the characteristics of each cluster are deter-

mined, the data points for the cluster are generated ac-

cording to a 2-d independent normal distribution whose

mean is the center c, and whose variance in each di-

mension is $. Note that due to the properties of the

normal distribution, the maximum distance between a

point in the cluster and the center is unbounded. In

other words, a point may be arbitrarily far from its be-

longing cluster. So a data point that belongs to cluster

A may be closer to the center of cluster B than to the

center of A, and we refer to such points as “outsiders”.

In addition to the clustered data points, noise in the

form of data points uniformly distributed throughout

the overview of the dataset can be added to the dataset.

The parameter rn controls the percentage of data points

in the dataset that are considered noise.

The placement of the data points in the dataset

is controlled by the order parameter o. When the

randomized option is used, the data points of all clusters

and the noise are randomized throughout the entire

110

Scope Parameter Default Value

(;lobal Memory (M) 8OX1O24 bytes

Disk (R) 20%M

Dista;lc~ clef. [)2
L

Quality clef. ::~~,,o,d for ~

Threshold clef.

F’hasel Initial tbresbold 0.0
Delay-split 011

~age size (P) 1024 bytes

outlier-handling 01)

outlier clef. Leaf entry which

contaias < ~5Y0 of

the average aumt)er

of pOints per leaf

Euclidian distance

to the closest seed

is larger than twire

of the radius of

that cluster u

Table 2: BIR(?H Parameters and Tlimr Dclault Wue.s

dataset. Whereas when the ordered option is selected,

the data points of a cluster are placed together, the

c-lusters are placed in the order they are generated, and

the noise is placed at the end.

6.3 Parameters and Default Setting

t? IR.(~H is capable of working under various settings.

Table 2 lists the parameters of BIRCH, their effecting

scopes and their default, values. [Jnless specified

explicitly otherwise. an experiments is conducted under

this default setting.

flf was selected to he 80 kbytes whirh is about 5%

of the dataset size in the base workload used in our

experiments. Since clisk space (R) is just used for

outliers, we assume that, R < M and set R = 20%

of M. The experiments on the effects of the 5 distance

metrics in the first 3 phases[ZR,L9.5] indicate that (1)

using D3 in Phases I and 2 results in a much higher

en(ling threshold, and hence produces clusters of poorer

quality; (2) however, there is no distinctive performance

difference among the ot, hms. So we decided to choose

L)2 as default. Following Statistics tradition, we choose

“weighted average diameter” (denoted as D) as quality

measurement. The smaller ~ is, the het,ter the quality

is. The threshold is defined as the threshold for cluster

diameter as default.

In Phase 1, the initial threshold is default to O. Based

on a study of how page size affects perforrnance[ZR, L95],

we selected P = 1024. The delay-split, option is on

so that given a threshold, the CF tree accepts more

data points and reaches a higher capacity. The outlier-

handling option is on so that BIRL’H can remove outliers

and concentrate on the dense places with the given

amount of resources. For simplicity, we treat a leaf

entry of which the number of ciatla points is less than

a quarter of the average as an outlier.

In Phase 3, most global algorithms can handle 1000

ol>jectls cluitle well. So we default, the input range as

1000. We have chosen the adaptecl H(7 algorithm to use

here. We deciclecl to let Phase 4 refine the clusters only

once with its ciiscarcl-out,lier option off, so that all (Iat, a

points will be counteci in the quality measurement, for

fair comparisons.

6.4 Base Workload Performance

The first set of experiments was to evaluate the ability of

J31R(.’H to cluster various lar~e datasets, All the times

are presented in second in tlus paper. Three synthetir

datasets, one for each pattern, were used. Table 3

presents the generator settings for them. The weight,wi

average diameters of the actual clusters5 , ~)<l,.t are also

inclucie[i in the table.

Fig. 6 visualizes the actual clusters of 1)S 1 hy plotting

a cluster as a circle whose center is the centroid, radius

is the cluster ra[iius, anti label is the number of points in

the cluster, The BIR(”’H clusters of DS 1 are presented

in Fig. 7. We observe that the BIR(’H clusters are

very similar to the actual clusters in terms of location,

number of points, and raclii. The maximal and average

difference between the centroids of an actual cluster

and its corresponding BIRCH cluster are 0.17 and 0.07

respectively. The number of points in a BIll(”~H cluster

is no more t$han 4°i1 ciifferentl from the correspon(ling

actual cluster. The radii of the BIR(~H clusters (ranging

from 1.25 to 1.40 with an average of 1.32) are close to,

those of the actual rlusters (1.41). Note that all the

BIR(~H raclii are smaller than the actual radii. This

is because BIRCH assigns the “outsiders” of an art, ual

clusters to a proper BIRCH cluster. Similar conclusions

can be reached by analyzing the visual presentations

of DS2 and 13S3 (but omitted here clue to the lack of

space).

As summarized in Table 4, it took BIRC’H less than

50 seconds (on an HP 9000/720 workstation) to cluster

100,000 data points of each dataset,. The pattern of the

dataset haci almost no impact on the clustering time,

Table 4 also presents the performance results for three

additional ciatasets – DS 10, DS20 and DS30 – which

correspon(i to DS 1, DS2 anti 13S3, respectively exceljtl

that the parameter o of the generator is set, to ordered,

As demomtrateci in Table 4, changing the order of the

data points had almost no impact, on the performance

of BIRCH.

6.5 Sensitivity to Parameters

We studied the sensitivity of BIRCH’S performance to

the change of the values of some parameters. Due to

the lack of space, here we can only present some major

conclusions (for details, see [Z RL95]).

5From now on, we refer to the clusters generated by tile

generator as the “actual clusters” whereas the clusters identifimi

by BIRCH as “t?I~ CH clusters”.

111

Dataset C;enerator Setting L)act [

DSI grid, f<’ = 100, nt = 71h = 1000, r~ = rh = 42, kg = 4, r-n = 070,0 = randomized 2.00
DS2 sine, K = 100)711 = 7Lh = 1000, r~ = r~ = ~~, n. = 4, rn = 070, 0 = ra7ut07nized 2.00

DX3 random, A“ = 100, nt = O, n}, = 2000, rt = O, rh = 4, T-n = rn = 0~0, o = randomized 4.18

Table 3: Datasets Userl as Base Workload

Initial threshold: (1) BIRCH’S performance is

stable as long as the initial threshold is not excessively

high wrt. the dataset. (2) To = 0.0 works well with a

little extra running time. (3) If a user does know a good

To, then she/he can be rewarded by saving up to 10%

of the time.

Page Size P: In Phase 1, smaller (larger) P

tends to ciecrease (increase) the running time, requires

higher (lower) ending threshold, produces less (more)

but “coarser (finer)” leaf entries, and hence degrades

(improves) the quality. However with the refinement in

Phase 4, the experiments suggest that from P = 256

to 4096 , although the qualities at the end of Phase 3

are different, the final qualities after the refinement are

almost the same.

Outlier Options: BIRCH was tested on “ noisy’)

datasets with all the outlier options on, and o~. The

results show that with all the outlier options on, BIRCH

is not slower but faster, and at the same time, its quality

is much better.

Memory Size: In Phase 1, as memory size (or the

maximal tree size) increases, the running time increases

because of processing a larger tree per rebuilt, but only

slightly because it is clone in memory; (2) more but

finer subclusters are generated to feed the next phase,

and hence results in better quality; (3) the inaccuracy

caused hy insufficient memory can be compensated

to some extent by Phase 4 refinements. In another

word, BIRCH can tradeoff between memory and time

to achieve similar final quality.

6.6 Time Scalability

Two distinct ways of increasing the clataset size are used

to test the scalability of BIRCH.

Increasing the Number of Points per Cluster:

For each of DS 1, DS2 and DS3, we create a range of

clatasets by keeping the generator settings the same

except for changing 711 and nk to change 71, and hence

N. The running time for the first 3 phases, as well as

for all 4 phases are plotted against the dataset size N

in Fig. 4. Both of them are shown to grow linearly wrt.

N consistently for all three patterns.

Increasing the Number of Clwst ers: For each

of DS 1, DS2 and DS3, we create a range of datasets

by keeping the generator settings the same except for

changing 1{ to change N. The running time for the first

3 phases, as well as for all 4 phases are plotted against

the dataset size N in Fig. 5. Since both N and K are

growing, and Phase 4’s complexity is now 0(1< *N) (can

be improved to be almost linear in the future), the total

Dataset Time D Dataset Time L)

DS1 47.1 1.87 DS1O 47’.4 1.87

DS2 47.5 1.99 DS20 46.4 1.99

DS3 49.5 3.39 DS30 48.4 3.26

Table 4

Time, ~ arid171put Order

4: BIRCH Performance on Base Workload wrt.

.-. ”. II . .me D I
’10 II 1525.7 I 1(3.75

Dataset Time D Dat==-~ II T;,>

DS1 &39.5 2.11 DS 11 I
DS’2 777.5 2.56 DS20 1405.8 179.;:3

DS3 15’20.2 3.36 D%30 2:390.5 6.9:3

Table 5: CLA RANS Performance on Base Workload

wrt. Ttme, ~ and Input Order

time is not exactly linear wrt. N. However the running

time for the first 3 phases is again confirmed to grow

linearly wrt. N consistently for all three patterns.

6.7 Comparison of BIRCH and CLARANS

In this experiment we compare the performance of

C’LARAN,$ and BIRCH on the base workload. First

CLARANS assumes that the memory is enough for

holding the whole clataset, so it needs much more

memory than BIRCH does. In order for CLARAN,S

to stop after an acceptable running time, we set its

7naxnezghbor value to be the larger of 50 (instead of

250) and 1.2.5~o of K(N-K), but no more than 100 (newly

enforced upper limit recommended by Ng). Its numlocal

value is still 2. Fig. 8 visualizes the CLA RANS’ clusters

for DS 1. Comparing them with the actual clusters for

DSI we can observe that: (1) The pattern of the location

of the cluster centers is distorted. (2) The number of

data points in a CLARAN,S cluster can be as many as

57% different from the number in the actual cluster. (3)

The radii of CLA RANS clusters varies largely from 1.15

to 1.94 with an average of 1.44 (larger than those of the

actual clusters, 1.41). Similar behaviors can be observed

the visualization of CLARAN,S clusters for DS2 and DS3

(but omitted here due to the lack of space).

Table 5 summarizes the performance of (’LA RAN,$.

For all three datasets of the base workload, (1) (TLARAN,5’

is at least 15 times slower than BIRCH, and is sensi-

tive to the pattern of the dataset. (2) The ~ value

for the C’LA RANS clusters is much larger than that for

the BIRCH clusters. (3) The results for DS 10, DS20,

and DS30 show that when the data points are ordered,

the time and quality of CLARAN,S degrade dramati-

cally. In conclusion, for the base workload, BIRCH uses

much less memory, hut is faster, more accurate, and less

order-sensitive compared with C’LARAN,S,

112

DS1 : Phase 1-3 ~
D S2: P base 1-3 -----I+----
DS3: Phase 1-3= .
DS1 : Phase 1-4 G
D S2: Phase 1-4 ---------
DS3: Phase 1-4 ------ 1

0 L I
0 100000 200000

Number of Tuples (N)

Figure 4: scalability wrt. I?tcreasing ILL, n},

140

120

100
g
~

80
i%.—
l--
c
z 60

40

20

0

DS1 : Phase 1-3 — ~~
D S2: P base i -3 -----u---- ,.;2
DS3: Phase 1-3 ------=-.; j’\
DS1 : Phase 1-4 - ok,”
D S2: P base 1-4 ----7~~
DS3: Phase 1-4 --; ~,.J’-

,#’

/

,/.’”
./

,/

,/

I

o 100000 200000
Number of Tuples (N)

Figure 5: ,Scalabilit~j 7mt. [nmmsing K

6.8 Application to Real Datasets

BIli(”’H has been used for filtering real images, Fig. 9

are two similar images of trees with a partly cloudy sky

as the background, taken in two different wavelengt 11s.

The top one is in near-infrared hand (NIR), and the

bottom one is in visible wavelength band (VIS). Each

image contains 512xl1324 pixels, and each pixel act)llally

has a pair of brightness values corresponding to NIR, and

VIS. Soil scientists receive hundreds of such image pairs

and try to first filter the trees from the background,

and then filter the trees into sunlit leaves, shadows and

branches for statistical analysis.

We applied BIRCH to the (NIR,, VIS) value pairs for

all pixels in an image (512X 1024 2-d tuples) hy using 400

khytes of rnernory (about 5%, of the dataset size) and 80

khytes of disk space (about 20% of the rnernory size),

0 1. 20 m 4,

Figure 6: ActualC’lustmx of D,5’1

Figure 7: BIRCH Clusters of DiSl

and weighting NI R and VIS values equally. We obtained

5 clust, ers that, correspond to (1) very bright part of sl{y,

(2) ordinary part of sky, (3) clouds, (4) sunlit leaves (5)

tree branches and shadows on the trees. This step took

284 seconds.

However the branches and shadows were too sinlilar

to be distinguished from each other, although we COU1[l

separate them from the other [’luster categories, So we

pulled out the part of the data corresponding to (.5)

(146707 2-d tuples) and used BIRCH again, But, this

time, (1) NIR was weighted 10 times heavier than VIS

because we observed that branches and shadows were

easier to tell apart from the NIR image than from the

VIS image; (2) BIRCH ended with a finer threshold

because it processed a smaller dataset wit,h the same

amount, of memory. The two clusters corresponding to

branches and shadows were obtained with 71 secon(ls,

Fig. 10 shows the parts of image that, correspond to

113

Figure 9: The ima~ges taken in NIR and VIS

.h. dt... .
,:.<.., ,,, = ,

.).. ..,..

Figure 10: The sunlit leaves, branches and shadows

sunlit leaves, tree branches and shadows on the trees,

obtained hy clustering using BIRCH. Visually, we can

see that, it is asatisfactory filteringof the original image

according to the user’s intention.

7 Summary and Future Research

BIli(~H is a clustering method for very large datasets.

It makes a large clustering problem tractable hy con-

centrating on densely occupied portions, and using a

compact summary. It utilizes measurements that cap-

ture the natural closeness of data. These measurements

can he stored and updated incrementally in a height-

balanced tree. BIRCH can work with any given amount

of rnernory, and the 1/() complexity is a little more than

one scan of data. Experimentally, BIRCH is shown to

perform very well on several large datasetsj and is signif-

icantly superior to CLARANS in terms of quality, speed

and order-sensitivity.

Proper parameter setting is important to BIR(;H’s

diiciency. In the near future, we will concentrate on

studying (1) more reasonable ways of increasing the

threshold dynamically, (2) the dynamic adjustment of

outlier criteria, (3) more accurate quality rneasure-

me.nts, and (4) data parameters that are good indica-

tors of how well BIRCH is likely to perform. We will

explore BIRCH’S architecture for opportunities of par-

allel executions as well as interactive learnings. As an

incremental algorithrr, BIRCH will be able to read data

directly from a tape drive, or from network by matchi-

ng its clustering speed with the data reading speed. We

will also study how to make use of the clustering infor-

mation obtained to help solve problems such as storage

or query optimization, and data compression.

References

[CKS88] Peter (Ubeeseman, James Kelly, Matthew Self, et al.,

Auto Class : A Bayesian (Ylassijlcation SUstem, Proc. of the

5tb Int’1 Couf. on Machine Learning, Morgan Kaufmau, Jun.

1988.

[DH7:3] Richard Duda, and Peter E. Hart, Patter,L C/aSSijiCatiOn
and Sce7ze Analysis, Wiley, 1973.

[DJ80] f%. Dubes, and A.K. Jaiu, G’Imter-ing Methodologies in

Ezplorator~ Data Anczlgsis Advances in (.~omputers, Edited

by M.C. Yovits, Vol. 19, Academic F’ress, New York, 19/30.

[EKX95a] Martin Ester, Haus-Peter Kriegel, aud Xiaowei Xu,

A Database Interface for Clustering in Largr Spatial

Databases, Proc. of 1st Int’1 Conf. ou Kuowledge Discuvery

aud Data Miuiug, 1995.

[EKX95b] Martiu Ester, Haus-Peter Kriegel, and Xiaowei Xu,

Knowl?dgr Discouery in Larg? Spatial f)atabas~s: Focusing

Techniques for Eficie~~t ~lass Identijlcation, Proc. of 4tb

Int’1 Symposium ou Large Spatial Databases, F)ortlaud,

Maine, I-J.S. A., 1995.

[Fis87] Douglas H. Fisher, Knowledge Acqui~itzon uia lncr.mew
f~l (Tone-rptual Clustering, Machine Leamiug, 2(2), 1987

[Fis95] Douglas H. Fisher, Iterative (optimization and Simp[ijica-

tion of Hierarchical Clusterings, Technical Report (} S-95-01,

Dept. of Computer Science, Vanderbilt IIuiver-sity, Nashville,

TN :372:35.

[(1(+92] A. Gersbo and R. Gray, Vector quantization and signal

compression, Boston, Ma.: Kluwer Academic F)ublishers,

1992.

[KR90] Leonard Kaufman, and Peter J. Rousseeuw, Finding

Groups in Data - An I?Ltroductio?L toCluster Analysis, Wiley

Series in F’robability and Mathematical Statistics, 1990.

[Leb87] Michael Lebowitz, Experiment. with Incremental (;on-

cept Formation : UNIMEM, Machine Learuiug, 1987.

[Lee81] R. C. T.Lee, Clustering anrdgsis ar,d its application., A+

vauces in Information Systems ,Science, Edited by J ,T. Toum,

Vol. 8, pp. 169-292, Plenum Press, New York, 1981,

[Mur8:3] F. Murtagb, A Survey of Recent Advance. in Hierarchi-
cal 6’lustering A~g Orithms, The (.;omputer Jourmal, 1%3:3.

[NH94] Raymond T. Ng and Jiawei Hau, Ejficimt and ,Eflectiue

(blustering Methods for Spatial Data Mining, F’roe, of

VLDB, 1994.

[01s9:3] Clark F. L31son, Parallel Algorithms for Hierarchical

C’[usteri?~g, Technical Report, Computer Scieuce Divisiou,

IIuiv. of California at Berkeley, Dec.,1993.

[ZRL95] Tian Zbau.g, Ragbu Rau)akt-ishuan, aud Mirou Liv,,y,

BIRCH: An Ef%cient Data Clustering Mtthod for VPTV

Largr Databases, Technical Report, Computer Scieuces

Dept., (Juiv. of Wisconsiu-Madison, 1995,

114

	Abstract
	Introduction
	Summary of Relevant Research
	Background
	Clustering Feature and CF Tree
	The BIRCH Clustering Algorithm
	Performance Studies
	Summary and Future Research
	References

