
Maintaining Frequent Itemsets over High-Speed

Data Streams⋆

James Cheng, Yiping Ke, and Wilfred Ng

Department of Computer Science
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong, China
{csjames, keyiping, wilfred}@cs.ust.hk

Abstract. We propose a false-negative approach to approximate the set
of frequent itemsets (FIs) over a sliding window. Existing approximate
algorithms use an error parameter, ǫ, to control the accuracy of the min-
ing result. However, the use of ǫ leads to a dilemma. A smaller ǫ gives a
more accurate mining result but higher computational complexity, while
increasing ǫ degrades the mining accuracy. We address this dilemma by
introducing a progressively increasing minimum support function. When
an itemset is retained in the window longer, we require its minimum sup-
port to approach the minimum support of an FI. Thus, the number of
potential FIs to be maintained is greatly reduced. Our experiments show
that our algorithm not only attains highly accurate mining results, but
also runs significantly faster and consumes less memory than do existing
algorithms for mining FIs over a sliding window.

1 Introduction

Frequent itemset (FI) mining is fundamental to many important data mining
tasks. Recently, the increasing prominence of data streams has led to the study of
online mining of FIs [5]. Due to the constraints on both memory consumption and
processing efficiency of stream processing, together with the exploratory nature
of FI mining, research studies have sought to approximate FIs over streams.

Existing approximation techniques for mining FIs are mainly false-positive
[5, 4, 1, 2]. These approaches use an error parameter, ǫ, to control the quality
of the approximation. However, the use of ǫ leads to a dilemma. A smaller ǫ
gives a more accurate mining result. Unfortunately, a smaller ǫ also results in
an enormously larger number of itemsets to be maintained, thereby drastically
increasing the memory consumption and lowering processing efficiency. A false-
negative approach [6] is proposed recently to address this dilemma. However, the
method focuses on the entire history of a stream and does not distinguish recent
itemsets from old ones.

We propose a false-negative approach to mine FIs over high-speed data
streams. Our method places greater importance on recent data by adopting
a sliding window model. To tackle the problem introduced by the use of ǫ, we

⋆ This work is partially supported by RGC CERG under grant number
HKUST6185/02E and HKUST6185/03E.

consider ǫ as a relaxed minimum support threshold and propose to progressively
increase the value of ǫ for an itemset as it is kept longer in a window. In this way,
the number of itemsets to be maintained is greatly reduced, thereby saving both
memory and processing power. We design a progressively increasing minimum
support function and devise an algorithm to mine FIs over a sliding window. Our
experiments show that our approach obtains highly accurate mining results even
with a large ǫ, so that the mining efficiency is significantly improved. In most
cases, our algorithm runs significantly faster and consumes less memory than do
the state-of-the-art algorithms [5, 2], while attains the same level of accuracy.

2 Preliminaries

Let I = {x1, x2, . . . , xm} be a set of items. An itemset is a subset of I. A trans-
action, X , is an itemset and X supports an itemset, Y , if X ⊇ Y . A transaction
data stream is a continuous sequence of transactions. We denote a time unit in
the stream as ti, within which a variable number of transactions may arrive. A
window or a time interval in the stream is a set of successive time units, denoted
as T = 〈ti, . . . , tj〉, where i ≤ j, or simply T = ti if i = j. A sliding window
in the stream is a window that slides forward for every time unit. The window
at each slide has a fixed number, w, of time units and w is called the size of
the window. In this paper, we use tτ to denote the current time unit. Thus, the
current window is W = 〈tτ−w+1, . . . , tτ 〉.

We define trans(T) as the set of transactions that arrive on the stream in
a time interval T and |trans(T)| as the number of transactions in trans(T).
The support of an itemset X over T , denoted as sup(X, T), is the number of
transactions in trans(T) that support X . Given a predefined Minimum Support
Threshold (MST), σ (0 ≤ σ ≤ 1), we say that X is a frequent itemset (FI) over
T if sup(X, T) ≥ σ|trans(T)|.

Given a transaction data stream and an MST σ, the problem of FI mining
over a sliding window is to find the set of all FIs over the window at each slide.

3 A Progressively Increasing MST Function

Existing approaches [5, 4, 2] use an error parameter, ǫ, to control the mining
accuracy, which leads to a dilemma. We tackle this problem by considering ǫ = rσ
as a relaxed MST , where r (0 ≤ r ≤ 1) is the relaxation rate, to mine the set of
FIs over each time unit t in the sliding window. Since all itemsets whose support
is less than rσ|trans(t)| are discarded, we define the computed support as follows.

Definition 1 (Computed Support) The computed support of an itemset X
over a time unit t is defined as follows:

s̃up(X, t) =

{
0 if sup(X, t) < rσ|trans(t)|
sup(X, t) otherwise.

The computed support of X over a time interval T = 〈tj , . . . , tl〉 is defined as

s̃up(X, T) =

l∑

i=j

s̃up(X, ti). 2

Based on the computed support of an itemset, we apply a progressively in-
creasing MST function to define a semi-frequent itemset.

Definition 2 (Semi-Frequent Itemset) Let W = 〈tτ−w+1, . . . , tτ 〉 be a win-
dow of size w and T k = 〈tτ−k+1, . . . , tτ 〉, where 1 ≤ k ≤ w, be the most recent
k time units in W . We define a progressively increasing function

minsup(k) =
⌈
mk × rk

⌉
,

where mk = σ|trans(T k)| and rk = (1−r
w

)(k − 1) + r.
An itemset X is a semi-frequent itemset (semi-FI) over W if s̃up(X, T k) ≥

minsup(k), where k = τ − o + 1 and to is the oldest time unit such that
s̃up(X, to) > 0. 2

The first term mk in the minsup function in Definition 2 is the minimum
support required for an FI over T k, while the second term rk progressively in-
creases the relaxed MST rσ at the rate of ((1 − r)/w) for each older time unit
in the window. We keep X in the window only if its computed support over T k

is no less than minsup(k), where T k is the time interval starting from the time
unit to, in which the support of X is computed, up to the current time unit tτ .

4 Mining FIs over a Sliding Window
We use a prefix tree to keep the semi-FIs. A node in the prefix tree represents
an itemset, X , and has three fields: (1) item which is the last item of X ; (2)
uid(X) which is the ID of the time unit, tuid(X), in which X is inserted into the
prefix tree; (3) s̃up(X) which is the computed support of X since tuid(X).

The algorithm for mining FIs over a sliding window, MineSW, is given in
Algorithm 1, which is self-explanatory.

Algorithm 1 (MineSW)
Input: (1) An empty prefix tree. (2) σ, r and w. (3) A transaction data stream.
Output: An approximate set of FIs of the window at each slide.
1. Mine all FIs over each time unit using a relaxed MST rσ.
2. Initialization: For each of the first w time units, ti (1 ≤ i ≤ w), mine all FIs

from trans(ti). For each mined itemset, X, check if X is in the prefix tree.
(a) If X is in the prefix tree, perform the following operations: (i) Addgsup(X, ti)

togsup(X); (ii) Ifgsup(X) < minsup(i−uid(X)+1), remove X from the prefix
tree and stop mining the supersets of X from trans(ti).

(b) If X is not in the prefix tree, create a new node for X in the prefix tree with
uid(X) = i andgsup(X) =gsup(X, ti).

3. Incremental Update:

– For each expiring time unit, tτ−w+1, mine all FIs from trans(tτ−w+1). For each
mined itemset, X:
• If X is in the prefix tree and τ −uid(X)+1 ≥ w, subtractgsup(X, tτ−w+1)

fromgsup(X). Otherwise, stop mining the supersets of X from trans(tτ−w+1).
• Ifgsup(X) becomes 0, remove X from the prefix tree. Otherwise, set uid(X) =

τ − w + 2.
– For each incoming time unit, tτ , mine all FIs from trans(tτ). For each mined

itemset, X, check if X is in the prefix tree.
(a) If X is in the prefix tree, perform the following operations: (i) Addgsup(X, tτ)

togsup(X); (ii) If either τ − uid(X) + 1 ≤ w andgsup(X) < minsup(τ −
uid(X) + 1), or τ − uid(X) + 1 > w andgsup(X) < minsup(w), remove X

from the prefix tree and stop mining the supersets of X from trans(tτ).
(b) If X is not in the prefix tree, create a new node for X in the prefix tree

with uid(X) = τ andgsup(X) =gsup(X, tτ).

4. Pruning and Outputting: Scan the prefix tree once. For each itemset X visited:

– Remove X and its descendants from the prefix tree if (1) τ − uid(X) + 1 ≤ w

and gsup(X) < minsup(τ − uid(X) + 1), or (2) τ − uid(X) + 1 > w andgsup(X) < minsup(w).

– Output X ifgsup(X) ≥ σ|trans(W)| (we can thus set minsup(w) = σ|trans(W)|
to prune more itemsets).

5 Experimental Evaluation

We run our experiments on a Sun Ultra-SPARC III with 900 MHz CPU and
4GB RAM. We compare our algorithm MineSW with a variant of the Lossy
Counting algorithm [5] applied in the sliding window model, denoted as LCSW.
We remark that LCSW, which updates a batch of incoming/expiring transactions
at each window slide, is different from the algorithm proposed by Chang and Lee
[2], which updates on each incoming/expiring transaction. We implement both
algorithms and find that the algorithm by Chang and Lee is much slower than
LCSW and runs out of our 4GB memory. We generate two types of data streams,
t10i4 and t15i6, using a generator [3] that modifies the IBM data generator.

We first find (see details in [3]) that when r increases from 0.1 to 1, the
precision of LCSW (ǫ = rσ in LCSW) drops from 98% to around 10%, while
the recall of MineSW only drops from 99% to around 90%. This result reveals
that the estimation mechanism of the Lossy Counting algorithm relies on ǫ to
control the mining accuracy, while our progressively increasing minsup function
maintains a high accuracy which is only slightly affected by the change in r.
Since increasing r means faster mining process and less memory consumption,
we can use a larger r to obtain highly accurate mining results at much faster
speed and less memory consumption.

We test r = 0.1 and r = 0.5 for MineSW. According to Lossy Counting [5],
a good choice of ǫ is 0.1σ and hence we set r = 0.1 for LCSW. Fig. 1 (a) and (b)
show that for all σ, the precision of LCSW is over 94% and the recall of MineSW
is over 96% (mostly over 99%). The recall of MineSW (r = 0.5) is only slightly
lower than that of MineSW (r = 0.1). However, Fig. 2 (a) and (b) show that
MineSW (r = 0.5) is significantly faster than MineSW (r = 0.1) and LCSW,
especially when σ is small. Fig. 3 (a) and (b) show the memory consumption of
the algorithms in terms of the number of itemsets maintained at the end of each
slide. The number of itemsets kept by MineSW (r = 0.1) is about 1.5 times less
than that of LCSW, while that kept by MineSW (r = 0.5) is less than that of
LCSW by up to several orders of magnitude.

6 Conclusions

We propose a progressively increasing minimum support function, which allows
us to increase ǫ at the expense of only slightly degraded accuracy, but signif-
icantly improves the mining efficiency and saves memory usage. We verify, by
extensive experiments, that our algorithm is significantly faster and consumes
less memory than existing algorithms, while attains the same level of accuracy.
When applications require highly accurate mining results, our experiments show
that by setting ǫ = 0.1σ (a rule-of-thumb choice of ǫ in Lossy Counting [5]), our
algorithm attains 100% precision and over 99.99% recall.

90

92

94

96

98

100

0.05 0.075 0.1 0.25 0.5
Minimum Support Threshold (%)

P
re

ci
si

o
n

 (
%

)
MineSW(r=0.5, t10i4)
MineSW(r=0.1, t10i4)
LCSW(t10i4)
MineSW(r=0.5, t15i6)
MineSW(r=0.1, t15i6)
LCSW(t15i6)

(a) Precision

90

92

94

96

98

100

0.05 0.075 0.1 0.25 0.5

Minimum Support Threshold (%)

R
ec

al
l (

%
)

MineSW(r=0.5, t10i4)
MineSW(r=0.1, t10i4)
LCSW(t10i4)
MineSW(r=0.5, t15i6)
MineSW(r=0.1, t15i6)
LCSW(t15i6)

(b) Recall
Fig. 1. Precision and Recall with Varying Minimum Support Threshold

0

5

10

15

20

25

30

35

40

0.05 0.075 0.1 0.25 0.5

Minimum Support Threshold (%)

T
im

e
(s

ec
)

MineSW(r=0.5)

MineSW(r=0.1)

LCSW

(a) Processing Time (t10i4)

0

50

100

150

200

250

300

350

0.05 0.075 0.1 0.25 0.5
Minimum Support Threshold (%)

T
im

e
(s

ec
)

MineSW(r=0.5)

MineSW(r=0.1)

LCSW

(b) Processing Time (t15i6)
Fig. 2. Processing Time with Varying Minimum Support Threshold

0

500

1000

1500

2000

2500

3000

0.05 0.075 0.1 0.25 0.5

Minimum Support Threshold (%)

o

f
It

em
se

ts
 (

K
)

MineSW(r=0.5)
MineSW(r=0.1)
LCSW

(a) Memory Consumption (t10i4)

0

5000

10000

15000

20000

25000

30000

35000

0.05 0.075 0.1 0.25 0.5

Minimum Support Threshold (%)

o

f
It

em
se

ts
 (

K
)

MineSW(r=0.5)

MineSW(r=0.1)

LCSW

(b) Memory Consumption (t15i6)
Fig. 3. Memory Consumption with Varying Minimum Support Threshold

References
1. J. H. Chang and W. S. Lee. estWin: Adaptively Monitoring the Recent Change of

Frequent Itemsets over Online Data Streams. In Proc. of CIKM, 2003.
2. J. H. Chang and W. S. Lee. A Sliding Window method for Finding Recently

Frequent Itemsets over Online Data Streams. In Journal of Information Science
and Engineering, Vol. 20, No. 4, July, 2004.

3. J. Cheng, Y. Ke, and W. Ng. Maintaining Frequent Itemsets over High-Speed Data
Streams. Technical Report, http://www.cs.ust.hk/∼csjames/pakdd06tr.pdf.

4. H. Li, S. Lee, and M. Shan. An Efficient Algorithm for Mining Frequent Itemsets
over the Entire History of Data Streams. In Proc. of First International Workshop
on Knowledge Discovery in Data Streams, 2004.

5. G. S. Manku and R. Motwani. Approximate Frequency Counts over Data Streams.
In Proc. of VLDB, 2002.

6. J. Yu, Z. Chong, H. Lu, and A. Zhou. False Positive or False Negative: Mining
Frequent Itemsets from High Speed Transactional Data Streams. In VLDB, 2004.

