
DeepLearning on FPGAs
Introduction to Artificial Neural Networks

Sebastian Buschjäger

Technische Universität Dortmund - Fakultät Informatik - Lehrstuhl 8

November 2, 2016

1

Recap: Computer Science Approach

Technical Problem

Mathematical Method

Algorithm

Implementation

Classification X

K-NN X

Brute force
trees, hashing X

System and language X

DeepLearning on FPGAs 2

Recap: Data Mining (1)

Important concepts:

Classification is one data mining task

Training data is used to define and solve the task

A Method is a general approach / idea to solve a task

A algorithm is a way to realise a method

A model forms the extracted knowledge from data

Accuracy measures the model quality given the data

K-NN: Look at the k nearest neighbours of ~x∗ and use most
common label as prediction
Homework: How good was your prediction?

DeepLearning on FPGAs 3

Recap: Data Mining (1)

Important concepts:

Classification is one data mining task

Training data is used to define and solve the task

A Method is a general approach / idea to solve a task

A algorithm is a way to realise a method

A model forms the extracted knowledge from data

Accuracy measures the model quality given the data

K-NN: Look at the k nearest neighbours of ~x∗ and use most
common label as prediction
Homework: How good was your prediction?

DeepLearning on FPGAs 3

The MNIST dataset

Common error rates1 without pre-procssing:
K-NN: 2.83 % - SVM: 1.4 % - CNN: ∼ 0.4 %

Big Note: Dataset already centered and scaled
1See: http://yann.lecun.com/exdb/mnist/

DeepLearning on FPGAs 4

http://yann.lecun.com/exdb/mnist/

K-NN: Example (1)

negative

positive

unknown

k = 1, all points available

negative

positive

unknown

k = 1, 2 points missing

DeepLearning on FPGAs 5

K-NN: Example (2)

negative

positive

unknown

k = 1, 8 points missing

negative

positive

unknown

k = 1, 12 points missing

DeepLearning on FPGAs 6

Feature Engineering and Feature Dimensions

Note: K-NN fails to recognize patterns in incomplete data

Fact 1: State space grows exponentially with increasing
dimension. Example X = {1, 2, . . . , 10}

For: X 1, there are 10 different observations

For: X 2, there are 102 = 100 different observations

For: X 3, there are 103 = 1000 different observations . . .

Fact 2: Training data is generated by a noisy real-world process

We usually have no influence on the type of training data

We usually cannot interfere with the real-world process

Thus: Training data should be considered incomplete and noisy

DeepLearning on FPGAs 7

Feature Engineering and Feature Dimensions

Note: K-NN fails to recognize patterns in incomplete data
Fact 1: State space grows exponentially with increasing
dimension. Example X = {1, 2, . . . , 10}

For: X 1, there are 10 different observations

For: X 2, there are 102 = 100 different observations

For: X 3, there are 103 = 1000 different observations . . .

Fact 2: Training data is generated by a noisy real-world process

We usually have no influence on the type of training data

We usually cannot interfere with the real-world process

Thus: Training data should be considered incomplete and noisy

DeepLearning on FPGAs 7

Feature Engineering and Feature Dimensions

Note: K-NN fails to recognize patterns in incomplete data
Fact 1: State space grows exponentially with increasing
dimension. Example X = {1, 2, . . . , 10}

For: X 1, there are 10 different observations

For: X 2, there are 102 = 100 different observations

For: X 3, there are 103 = 1000 different observations . . .

Fact 2: Training data is generated by a noisy real-world process

We usually have no influence on the type of training data

We usually cannot interfere with the real-world process

Thus: Training data should be considered incomplete and noisy

DeepLearning on FPGAs 7

Feature Engineering and Feature Dimensions

Note: K-NN fails to recognize patterns in incomplete data
Fact 1: State space grows exponentially with increasing
dimension. Example X = {1, 2, . . . , 10}

For: X 1, there are 10 different observations

For: X 2, there are 102 = 100 different observations

For: X 3, there are 103 = 1000 different observations . . .

Fact 2: Training data is generated by a noisy real-world process

We usually have no influence on the type of training data

We usually cannot interfere with the real-world process

Thus: Training data should be considered incomplete and noisy

DeepLearning on FPGAs 7

Feature Engineering and Feature Dimensions

Fact: There is no free lunch (Wolpert, 1996)

Every method has is advantages and disadvantages

Most methods are able to perfectly learn a given toy data set

Problem occurs with noise, outlier and generalisation

Conclusion: All methods are equally good or bad
But: Some methods prefer certain representations

Feature Engineering: Finding the right representation for data

Reduce dimension? Increase dimension?

Add additional information? Regularities?

Transform data completely?

DeepLearning on FPGAs 8

Feature Engineering and Feature Dimensions

Fact: There is no free lunch (Wolpert, 1996)

Every method has is advantages and disadvantages

Most methods are able to perfectly learn a given toy data set

Problem occurs with noise, outlier and generalisation

Conclusion: All methods are equally good or bad
But: Some methods prefer certain representations

Feature Engineering: Finding the right representation for data

Reduce dimension? Increase dimension?

Add additional information? Regularities?

Transform data completely?

DeepLearning on FPGAs 8

Feature Engineering and Feature Dimensions

Fact: There is no free lunch (Wolpert, 1996)

Every method has is advantages and disadvantages

Most methods are able to perfectly learn a given toy data set

Problem occurs with noise, outlier and generalisation

Conclusion: All methods are equally good or bad
But: Some methods prefer certain representations

Feature Engineering: Finding the right representation for data

Reduce dimension? Increase dimension?

Add additional information? Regularities?

Transform data completely?

DeepLearning on FPGAs 8

Feature Engineering: Example

x1

x2

Raw data without transformation.
Linear model is a bad choice.
Parabolic model would be better.

φ−→
x1

x2

Data transformed with
φ(x1, x2) = (x1, x2 − 0.3 · x21).
Now linear model fits the problem.

DeepLearning on FPGAs 9

Feature Engineering: Conclusion

Conclusion: Good features are crucial for good results!
Question: How to get good features?

1 By hand: Domain experts and data miner examine the data
and try different features based on common knowledge.

2 Semi supervised: Data miner examines the data and tries
different similarity functions and classes of methods

3 Unsupervised: Data miner only encodes some assumptions
about regularities into the method.

Note 1: Hand-crafted features give us insight about the process
Note 2: Semi/unsupervised features give us insight about the data
Our focus: Unsupervised feature extraction.

DeepLearning on FPGAs 10

Feature Engineering: Conclusion

Conclusion: Good features are crucial for good results!
Question: How to get good features?

1 By hand: Domain experts and data miner examine the data
and try different features based on common knowledge.

2 Semi supervised: Data miner examines the data and tries
different similarity functions and classes of methods

3 Unsupervised: Data miner only encodes some assumptions
about regularities into the method.

Note 1: Hand-crafted features give us insight about the process
Note 2: Semi/unsupervised features give us insight about the data
Our focus: Unsupervised feature extraction.

DeepLearning on FPGAs 10

Feature Engineering: Conclusion

Conclusion: Good features are crucial for good results!
Question: How to get good features?

1 By hand: Domain experts and data miner examine the data
and try different features based on common knowledge.

2 Semi supervised: Data miner examines the data and tries
different similarity functions and classes of methods

3 Unsupervised: Data miner only encodes some assumptions
about regularities into the method.

Note 1: Hand-crafted features give us insight about the process
Note 2: Semi/unsupervised features give us insight about the data
Our focus: Unsupervised feature extraction.

DeepLearning on FPGAs 10

Data Mining Basics

What is Deep Learning?

DeepLearning on FPGAs 11

Deep Learning Basics

So... What is Deep Learning?
Well... its currently one of the big things in AI!

Since 2010: DeepMind learns and plays old Atari games

Since 2012: Google is able to find cats in youtube videos

December 2014: Near real-time translation in Skype

October 2015: AlphaGo beats the European Go champion

October 2015: Tesla deploys Autopilot in their cars

March 2016: AlphaGo beats the Go Worldchampion

June 2016: Facebook introduces DeepText

. . .

DeepLearning on FPGAs 12

Deep Learning: Example

DeepLearning on FPGAs 13

Deep Learning Basics

Deep Learning: is a branch of Machine Learning dealing with

(Deep) Artificial Neural Networks (ANN)

High Level Feature Processing

Fast Implementations

ANNs are well known! So what’s new about it?

We have more data and more computation power

We have a better understanding of optimization

We use a more engineering-style approach

Our focus now: Artificial Neural Networks

DeepLearning on FPGAs 14

Deep Learning Basics

Deep Learning: is a branch of Machine Learning dealing with

(Deep) Artificial Neural Networks (ANN)

High Level Feature Processing

Fast Implementations

ANNs are well known! So what’s new about it?

We have more data and more computation power

We have a better understanding of optimization

We use a more engineering-style approach

Our focus now: Artificial Neural Networks

DeepLearning on FPGAs 14

Artificial Neural Networks: Single Neuron

Simple case: Let ~x ∈ Bd
Biology’s view:

...

Neuron . . .

input processing output

“Fire” if input signals reach
threshold:

f(~x) =

{
+1 if

∑d
i=1 xi ≥ b

0 else

Geometrical view:

x1

x2

Predict class depending on side
of line (count):

f(~x) =

{
+1 if

∑d
i=1 xi ≥ b

0 else

DeepLearning on FPGAs 15

Artificial Neural Networks: Single Neuron

Simple case: Let ~x ∈ Bd
Biology’s view:

...

Neuron . . .

input processing output

“Fire” if input signals reach
threshold:

f(~x) =

{
+1 if

∑d
i=1 xi ≥ b

0 else

Geometrical view:

x1

x2

Predict class depending on side
of line (count):

f(~x) =

{
+1 if

∑d
i=1 xi ≥ b

0 else

DeepLearning on FPGAs 15

Artificial Neural Networks: Single Neuron

Note: We basically count the number of positive inputs
1943: McCulloch-Pitts Neuron:

Simple linear model with binary input and output

Can model boolean OR with b = 1

Can model boolean AND with b = d

Simple extension also allows boolean NOT

Thus: A network of McCulloch-Pitts neurons can simulate every
boolean function (functional complete)

Remark: That does not help with classification, thus

Rosenblatt 1958: Use weights wi ∈ R for every input xi ∈ B
Minksy-Papert 1959: Allow real valued inputs xi ∈ R

DeepLearning on FPGAs 16

Artificial Neural Networks: Single Neuron

Note: We basically count the number of positive inputs
1943: McCulloch-Pitts Neuron:

Simple linear model with binary input and output

Can model boolean OR with b = 1

Can model boolean AND with b = d

Simple extension also allows boolean NOT

Thus: A network of McCulloch-Pitts neurons can simulate every
boolean function (functional complete)

Remark: That does not help with classification, thus

Rosenblatt 1958: Use weights wi ∈ R for every input xi ∈ B
Minksy-Papert 1959: Allow real valued inputs xi ∈ R

DeepLearning on FPGAs 16

Artificial Neural Networks: Single Neuron

Note: We basically count the number of positive inputs
1943: McCulloch-Pitts Neuron:

Simple linear model with binary input and output

Can model boolean OR with b = 1

Can model boolean AND with b = d

Simple extension also allows boolean NOT

Thus: A network of McCulloch-Pitts neurons can simulate every
boolean function (functional complete)

Remark: That does not help with classification, thus

Rosenblatt 1958: Use weights wi ∈ R for every input xi ∈ B
Minksy-Papert 1959: Allow real valued inputs xi ∈ R

DeepLearning on FPGAs 16

Artificial Neural Networks: Perceptron

A perceptron is a linear classifier f : Rd → {0, 1} with

f̂(~x) =

{
+1 if

∑d
i=1wi · xi ≥ b

0 else

Linear function in d = 2: y = mx+ b̃
Perceptron: w1 · x1 + w2 · x2 ≥ b⇔ x2 =

b
w2
− w1

w2
x1

Obviously: A perceptron is a hyperplane in d dimensions

Note: ~w = (w1, . . . , wd, b)
T are the parameters of a perceptron

Notation: Given ~x we add a 1 to the end of it ~x = (x1, . . . , xd, 1)
T

Then : f̂(~x) =

{
+1 if ~x · ~wT ≥ 0

0 else

DeepLearning on FPGAs 17

Artificial Neural Networks: Perceptron

A perceptron is a linear classifier f : Rd → {0, 1} with

f̂(~x) =

{
+1 if

∑d
i=1wi · xi ≥ b

0 else

Linear function in d = 2: y = mx+ b̃
Perceptron: w1 · x1 + w2 · x2 ≥ b⇔ x2 =

b
w2
− w1

w2
x1

Obviously: A perceptron is a hyperplane in d dimensions

Note: ~w = (w1, . . . , wd, b)
T are the parameters of a perceptron

Notation: Given ~x we add a 1 to the end of it ~x = (x1, . . . , xd, 1)
T

Then : f̂(~x) =

{
+1 if ~x · ~wT ≥ 0

0 else

DeepLearning on FPGAs 17

Artificial Neural Networks: Perceptron

A perceptron is a linear classifier f : Rd → {0, 1} with

f̂(~x) =

{
+1 if

∑d
i=1wi · xi ≥ b

0 else

Linear function in d = 2: y = mx+ b̃
Perceptron: w1 · x1 + w2 · x2 ≥ b⇔ x2 =

b
w2
− w1

w2
x1

Obviously: A perceptron is a hyperplane in d dimensions

Note: ~w = (w1, . . . , wd, b)
T are the parameters of a perceptron

Notation: Given ~x we add a 1 to the end of it ~x = (x1, . . . , xd, 1)
T

Then : f̂(~x) =

{
+1 if ~x · ~wT ≥ 0

0 else
DeepLearning on FPGAs 17

ANN: Perceptron Learning

Note: A perceptron assumes that the data is linear separable

Big Note: This is an assumption and not necessarily true!
But: In case of linear separability, there are many “good” ~w

Note: We are happy with one separative vector ~w

DeepLearning on FPGAs 18

ANN: Perceptron Learning

Note: A perceptron assumes that the data is linear separable
Big Note: This is an assumption and not necessarily true!

But: In case of linear separability, there are many “good” ~w

Note: We are happy with one separative vector ~w

DeepLearning on FPGAs 18

ANN: Perceptron Learning

Note: A perceptron assumes that the data is linear separable
Big Note: This is an assumption and not necessarily true!
But: In case of linear separability, there are many “good” ~w

Note: We are happy with one separative vector ~w

DeepLearning on FPGAs 18

ANN: Perceptron Learning

Note: A perceptron assumes that the data is linear separable
Big Note: This is an assumption and not necessarily true!
But: In case of linear separability, there are many “good” ~w

Note: We are happy with one separative vector ~w
DeepLearning on FPGAs 18

ANN: Perceptron Learning

Question: How do we get the weights ~w?

Observation: We look at ~x · ~wT ≥ 0

if output was 0 but should have been 1 increment weights

if output was 1 but should have been 0 decrement weights

if output was correct, don’t change weights

1: ~w = rand(1, . . . , d+ 1)
2: while ERROR do
3: for (~xi, yi) ∈ D do
4: ~w = ~w + α · ~xi · (yi − f̂(~xi))
5: end for
6: end while

Note: α ∈ R>0 is a stepsize / learning rate

DeepLearning on FPGAs 19

ANN: Perceptron Learning

Question: How do we get the weights ~w?
Observation: We look at ~x · ~wT ≥ 0

if output was 0 but should have been 1 increment weights

if output was 1 but should have been 0 decrement weights

if output was correct, don’t change weights

1: ~w = rand(1, . . . , d+ 1)
2: while ERROR do
3: for (~xi, yi) ∈ D do
4: ~w = ~w + α · ~xi · (yi − f̂(~xi))
5: end for
6: end while

Note: α ∈ R>0 is a stepsize / learning rate

DeepLearning on FPGAs 19

ANN: Perceptron Learning

Question: How do we get the weights ~w?
Observation: We look at ~x · ~wT ≥ 0

if output was 0 but should have been 1 increment weights

if output was 1 but should have been 0 decrement weights

if output was correct, don’t change weights

1: ~w = rand(1, . . . , d+ 1)
2: while ERROR do
3: for (~xi, yi) ∈ D do
4: ~w = ~w + α · ~xi · (yi − f̂(~xi))
5: end for
6: end while

Note: α ∈ R>0 is a stepsize / learning rate

DeepLearning on FPGAs 19

ANN: Perceptron Learning

Question: How do we get the weights ~w?
Observation: We look at ~x · ~wT ≥ 0

if output was 0 but should have been 1 increment weights

if output was 1 but should have been 0 decrement weights

if output was correct, don’t change weights

1: ~w = rand(1, . . . , d+ 1)
2: while ERROR do
3: for (~xi, yi) ∈ D do
4: ~w = ~w + α · ~xi · (yi − f̂(~xi))
5: end for
6: end while

Note: α ∈ R>0 is a stepsize / learning rate
DeepLearning on FPGAs 19

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))

Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X

DeepLearning on FPGAs 20

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X

DeepLearning on FPGAs 20

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X

DeepLearning on FPGAs 20

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X

DeepLearning on FPGAs 20

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X

DeepLearning on FPGAs 20

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X

DeepLearning on FPGAs 20

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X

DeepLearning on FPGAs 20

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X

DeepLearning on FPGAs 20

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X
DeepLearning on FPGAs 20

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))

Correct classification: yi − f̂(~xi) = 0

~wnew = ~wold, thus ~w is unchanged X

Rosenblatt 1958 showed:

Algorithms converges if D is linear separable

Algorithm may have exponential runtime

Variation: Batch processing - Update ~w after testing all examples

~wnew = ~wold + α
∑

(~xi,yi)∈Dwrong

~xi · (yi − f̂old(~xi))

Usually: Faster convergence, but more memory needed

DeepLearning on FPGAs 21

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Correct classification: yi − f̂(~xi) = 0

~wnew = ~wold, thus ~w is unchanged X

Rosenblatt 1958 showed:

Algorithms converges if D is linear separable

Algorithm may have exponential runtime

Variation: Batch processing - Update ~w after testing all examples

~wnew = ~wold + α
∑

(~xi,yi)∈Dwrong

~xi · (yi − f̂old(~xi))

Usually: Faster convergence, but more memory needed

DeepLearning on FPGAs 21

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Correct classification: yi − f̂(~xi) = 0

~wnew = ~wold, thus ~w is unchanged X

Rosenblatt 1958 showed:

Algorithms converges if D is linear separable

Algorithm may have exponential runtime

Variation: Batch processing - Update ~w after testing all examples

~wnew = ~wold + α
∑

(~xi,yi)∈Dwrong

~xi · (yi − f̂old(~xi))

Usually: Faster convergence, but more memory needed

DeepLearning on FPGAs 21

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Correct classification: yi − f̂(~xi) = 0

~wnew = ~wold, thus ~w is unchanged X

Rosenblatt 1958 showed:

Algorithms converges if D is linear separable

Algorithm may have exponential runtime

Variation: Batch processing - Update ~w after testing all examples

~wnew = ~wold + α
∑

(~xi,yi)∈Dwrong

~xi · (yi − f̂old(~xi))

Usually: Faster convergence, but more memory needed
DeepLearning on FPGAs 21

ANN: The XOR Problem
Question: What happens if data is not linear separable?

Data linear separable, but noisy

?

Data not linear separable

Answer: Algorithm will never converge, thus:

Use fixed number of iterations

Introduce some acceptable error margin

DeepLearning on FPGAs 22

ANN: The XOR Problem
Question: What happens if data is not linear separable?

Data linear separable, but noisy

?

Data not linear separable

Answer: Algorithm will never converge, thus:

Use fixed number of iterations

Introduce some acceptable error margin

DeepLearning on FPGAs 22

ANN: The XOR Problem
Question: What happens if data is not linear separable?

Data linear separable, but noisy

?

Data not linear separable

Answer: Algorithm will never converge, thus:

Use fixed number of iterations

Introduce some acceptable error margin

DeepLearning on FPGAs 22

ANN: Multilayer perceptrons

Recap: (Hand crafted) Feature transformation always possible
But: What about an automatic way?

Idea: If all you have is a perceptron, use more perceptrons!

Biology’s view:
x1

x2

...

xd

input layer hidden layer output layer

Geometric view:

Now outputs depends on layers: f̂(~x) = fK(. . . f2(f1(~x)))

DeepLearning on FPGAs 23

ANN: Multilayer perceptrons

Recap: (Hand crafted) Feature transformation always possible
But: What about an automatic way?

Idea: If all you have is a perceptron, use more perceptrons!

Biology’s view:
x1

x2

...

xd

input layer hidden layer output layer

Geometric view:

Now outputs depends on layers: f̂(~x) = fK(. . . f2(f1(~x)))

DeepLearning on FPGAs 23

ANN: Multilayer perceptrons

Recap: (Hand crafted) Feature transformation always possible
But: What about an automatic way?

Idea: If all you have is a perceptron, use more perceptrons!

Biology’s view:
x1

x2

...

xd

input layer hidden layer output layer

Geometric view:

Now outputs depends on layers: f̂(~x) = fK(. . . f2(f1(~x)))

DeepLearning on FPGAs 23

ANN: Multilayer perceptrons

Recap: (Hand crafted) Feature transformation always possible
But: What about an automatic way?

Idea: If all you have is a perceptron, use more perceptrons!

Biology’s view:
x1

x2

...

xd

input layer hidden layer output layer

Geometric view:

Now outputs depends on layers: f̂(~x) = fK(. . . f2(f1(~x)))

DeepLearning on FPGAs 23

ANN: Multilayer perceptrons

Observation:

1 perceptron: Separates space into two sets

Many perceptrons in 1 layer: Identifies convex sets

Many perceptrons in 2 layer: Identifies arbitrary sets

Hornik et. al 1989: MLP is a universal approximator
→ Given enough hidden units, a MLP is able to represent any

“well-conditioned” function perfectly
Barron 1993: Worst case needs exponential number of hidden units

But: That does not necessarily mean, that we will find it!

Usually we cannot afford exponentially large networks

Learning of ~w might fail due to data or numerical reasons

DeepLearning on FPGAs 24

ANN: Multilayer perceptrons

Observation:

1 perceptron: Separates space into two sets

Many perceptrons in 1 layer: Identifies convex sets

Many perceptrons in 2 layer: Identifies arbitrary sets

Hornik et. al 1989: MLP is a universal approximator
→ Given enough hidden units, a MLP is able to represent any

“well-conditioned” function perfectly

Barron 1993: Worst case needs exponential number of hidden units

But: That does not necessarily mean, that we will find it!

Usually we cannot afford exponentially large networks

Learning of ~w might fail due to data or numerical reasons

DeepLearning on FPGAs 24

ANN: Multilayer perceptrons

Observation:

1 perceptron: Separates space into two sets

Many perceptrons in 1 layer: Identifies convex sets

Many perceptrons in 2 layer: Identifies arbitrary sets

Hornik et. al 1989: MLP is a universal approximator
→ Given enough hidden units, a MLP is able to represent any

“well-conditioned” function perfectly
Barron 1993: Worst case needs exponential number of hidden units

But: That does not necessarily mean, that we will find it!

Usually we cannot afford exponentially large networks

Learning of ~w might fail due to data or numerical reasons

DeepLearning on FPGAs 24

ANN: Multilayer perceptrons

Observation:

1 perceptron: Separates space into two sets

Many perceptrons in 1 layer: Identifies convex sets

Many perceptrons in 2 layer: Identifies arbitrary sets

Hornik et. al 1989: MLP is a universal approximator
→ Given enough hidden units, a MLP is able to represent any

“well-conditioned” function perfectly
Barron 1993: Worst case needs exponential number of hidden units

But: That does not necessarily mean, that we will find it!

Usually we cannot afford exponentially large networks

Learning of ~w might fail due to data or numerical reasons

DeepLearning on FPGAs 24

MLP: Learning

Question: So how do we learn the weights of our MLP?
Unfortunately: We need some more background

So far: We formulated an optimization algorithm to find
perceptron weights that minimize classification error

This is a common approach in Data Mining:

Specify model family

Specify optimization procedure

Specify a cost / loss function

Note: Loss function 6= Accuracy
→ The loss function is minimized during learning
→ Accuracy is used to measure the model’s quality after learning

DeepLearning on FPGAs 25

MLP: Learning

Question: So how do we learn the weights of our MLP?
Unfortunately: We need some more background

So far: We formulated an optimization algorithm to find
perceptron weights that minimize classification error

This is a common approach in Data Mining:

Specify model family

Specify optimization procedure

Specify a cost / loss function

Note: Loss function 6= Accuracy
→ The loss function is minimized during learning
→ Accuracy is used to measure the model’s quality after learning

DeepLearning on FPGAs 25

MLP: Learning

Question: So how do we learn the weights of our MLP?
Unfortunately: We need some more background

So far: We formulated an optimization algorithm to find
perceptron weights that minimize classification error

This is a common approach in Data Mining:

Specify model family

Specify optimization procedure

Specify a cost / loss function

Note: Loss function 6= Accuracy
→ The loss function is minimized during learning
→ Accuracy is used to measure the model’s quality after learning

DeepLearning on FPGAs 25

MLP: Learning

Question: So how do we learn the weights of our MLP?
Unfortunately: We need some more background

So far: We formulated an optimization algorithm to find
perceptron weights that minimize classification error

This is a common approach in Data Mining:

Specify model family

Specify optimization procedure

Specify a cost / loss function

Note: Loss function 6= Accuracy
→ The loss function is minimized during learning
→ Accuracy is used to measure the model’s quality after learning

DeepLearning on FPGAs 25

Data Mining: Loss function (1)

Question: Given a model f̂ , some data D, how good is f̂?
Fact: There are many different ways to measure the quality of f̂

0-1-loss:

`(D, θ̂) =
N∑
i=1

|yi − 1f
θ̂
(~xi)|

Note: We implicitly used 0-1-loss for perceptron learning

Root-Mean Squared Error (RMSE):

`(D, θ̂) =

√√√√ 1

N

N∑
i=1

(
yi − fθ̂(~xi)

)2
Note: Well known, has been around for ∼ 200 years

DeepLearning on FPGAs 26

Data Mining: Loss function (1)

Question: Given a model f̂ , some data D, how good is f̂?
Fact: There are many different ways to measure the quality of f̂

0-1-loss:

`(D, θ̂) =
N∑
i=1

|yi − 1f
θ̂
(~xi)|

Note: We implicitly used 0-1-loss for perceptron learning

Root-Mean Squared Error (RMSE):

`(D, θ̂) =

√√√√ 1

N

N∑
i=1

(
yi − fθ̂(~xi)

)2
Note: Well known, has been around for ∼ 200 years

DeepLearning on FPGAs 26

Data Mining: Loss function (1)

Question: Given a model f̂ , some data D, how good is f̂?
Fact: There are many different ways to measure the quality of f̂

0-1-loss:

`(D, θ̂) =
N∑
i=1

|yi − 1f
θ̂
(~xi)|

Note: We implicitly used 0-1-loss for perceptron learning

Root-Mean Squared Error (RMSE):

`(D, θ̂) =

√√√√ 1

N

N∑
i=1

(
yi − fθ̂(~xi)

)2
Note: Well known, has been around for ∼ 200 years

DeepLearning on FPGAs 26

Data Mining: Loss function (2)

Let: Y = {0,+1} and f
θ̂
(~xi) ∈ [0, 1]

Cross-entropy / log liklihood

`(D, θ̂) = − 1

N

N∑
i=1

(
yi ln

(
f
θ̂
(~xi)

)
+ (1− yi) ln

(
1− f

θ̂
(~xi)

))

Observation 1: All values in logarithms are negative
Therefore: Minus sign for minimization

Statistical interpretation: Given two distributions p and q

how much entropy (≈ chaos) is present in p

how similar are p and q to each other?

Usually: Faster learning convergence than RMSE

DeepLearning on FPGAs 27

Data Mining: Loss function (2)

Let: Y = {0,+1} and f
θ̂
(~xi) ∈ [0, 1]

Cross-entropy / log liklihood

`(D, θ̂) = − 1

N

N∑
i=1

(
yi ln

(
f
θ̂
(~xi)

)
+ (1− yi) ln

(
1− f

θ̂
(~xi)

))
Observation 1: All values in logarithms are negative
Therefore: Minus sign for minimization

Statistical interpretation: Given two distributions p and q

how much entropy (≈ chaos) is present in p

how similar are p and q to each other?

Usually: Faster learning convergence than RMSE

DeepLearning on FPGAs 27

Data Mining: Loss function (2)

Let: Y = {0,+1} and f
θ̂
(~xi) ∈ [0, 1]

Cross-entropy / log liklihood

`(D, θ̂) = − 1

N

N∑
i=1

(
yi ln

(
f
θ̂
(~xi)

)
+ (1− yi) ln

(
1− f

θ̂
(~xi)

))
Observation 1: All values in logarithms are negative
Therefore: Minus sign for minimization

Statistical interpretation: Given two distributions p and q

how much entropy (≈ chaos) is present in p

how similar are p and q to each other?

Usually: Faster learning convergence than RMSE

DeepLearning on FPGAs 27

Data Mining: Optimization

Question: Given loss `, some data D, how to find optimal θ?

Mathematically:
θ̂ = argmin

θ
`(D, θ)

Gradient descent: Follow steepest descent of ` with stepsize α

→ use 1st derivative ∇θ`(D, θ) = (∂`(D,θ̂)∂θ1
, . . . , ∂`(D,θ̂)∂θd

)T

→ make a step in direction of ∇θ`(D, θ) with stepsize α ∈ R>0

1: θ̂ = rand(1, . . . , d)
2: while NOT STOP do
3: θ̂ = θ̂ − α · ∇θ`(D, θ̂)
4: end while

e.g. 100 iterations
e.g. minimum change in θ

Note: We implicitly used ∇θ`(D, θ̂) = −~xi · (yi − f̂(~xi))

DeepLearning on FPGAs 28

Data Mining: Optimization

Question: Given loss `, some data D, how to find optimal θ?
Mathematically:

θ̂ = argmin
θ

`(D, θ)

Gradient descent: Follow steepest descent of ` with stepsize α

→ use 1st derivative ∇θ`(D, θ) = (∂`(D,θ̂)∂θ1
, . . . , ∂`(D,θ̂)∂θd

)T

→ make a step in direction of ∇θ`(D, θ) with stepsize α ∈ R>0

1: θ̂ = rand(1, . . . , d)
2: while NOT STOP do
3: θ̂ = θ̂ − α · ∇θ`(D, θ̂)
4: end while

e.g. 100 iterations
e.g. minimum change in θ

Note: We implicitly used ∇θ`(D, θ̂) = −~xi · (yi − f̂(~xi))

DeepLearning on FPGAs 28

Data Mining: Optimization

Question: Given loss `, some data D, how to find optimal θ?
Mathematically:

θ̂ = argmin
θ

`(D, θ)

Gradient descent: Follow steepest descent of ` with stepsize α

→ use 1st derivative ∇θ`(D, θ) = (∂`(D,θ̂)∂θ1
, . . . , ∂`(D,θ̂)∂θd

)T

→ make a step in direction of ∇θ`(D, θ) with stepsize α ∈ R>0

1: θ̂ = rand(1, . . . , d)
2: while NOT STOP do
3: θ̂ = θ̂ − α · ∇θ`(D, θ̂)
4: end while

e.g. 100 iterations
e.g. minimum change in θ

Note: We implicitly used ∇θ`(D, θ̂) = −~xi · (yi − f̂(~xi))

DeepLearning on FPGAs 28

Data Mining: Optimization

Question: Given loss `, some data D, how to find optimal θ?
Mathematically:

θ̂ = argmin
θ

`(D, θ)

Gradient descent: Follow steepest descent of ` with stepsize α

→ use 1st derivative ∇θ`(D, θ) = (∂`(D,θ̂)∂θ1
, . . . , ∂`(D,θ̂)∂θd

)T

→ make a step in direction of ∇θ`(D, θ) with stepsize α ∈ R>0

1: θ̂ = rand(1, . . . , d)
2: while NOT STOP do
3: θ̂ = θ̂ − α · ∇θ`(D, θ̂)
4: end while

e.g. 100 iterations
e.g. minimum change in θ

Note: We implicitly used ∇θ`(D, θ̂) = −~xi · (yi − f̂(~xi))

DeepLearning on FPGAs 28

Data Mining: Optimization

Question: Given loss `, some data D, how to find optimal θ?
Mathematically:

θ̂ = argmin
θ

`(D, θ)

Gradient descent: Follow steepest descent of ` with stepsize α

→ use 1st derivative ∇θ`(D, θ) = (∂`(D,θ̂)∂θ1
, . . . , ∂`(D,θ̂)∂θd

)T

→ make a step in direction of ∇θ`(D, θ) with stepsize α ∈ R>0

1: θ̂ = rand(1, . . . , d)
2: while NOT STOP do
3: θ̂ = θ̂ − α · ∇θ`(D, θ̂)
4: end while

e.g. 100 iterations
e.g. minimum change in θ

Note: We implicitly used ∇θ`(D, θ̂) = −~xi · (yi − f̂(~xi))

DeepLearning on FPGAs 28

Data Mining: Optimization

Question: Given loss `, some data D, how to find optimal θ?
Mathematically:

θ̂ = argmin
θ

`(D, θ)

Gradient descent: Follow steepest descent of ` with stepsize α

→ use 1st derivative ∇θ`(D, θ) = (∂`(D,θ̂)∂θ1
, . . . , ∂`(D,θ̂)∂θd

)T

→ make a step in direction of ∇θ`(D, θ) with stepsize α ∈ R>0

1: θ̂ = rand(1, . . . , d)
2: while NOT STOP do
3: θ̂ = θ̂ − α · ∇θ`(D, θ̂)
4: end while

e.g. 100 iterations
e.g. minimum change in θ

Note: We implicitly used ∇θ`(D, θ̂) = −~xi · (yi − f̂(~xi))

DeepLearning on FPGAs 28

Data Mining: Optimization

Question: Given loss `, some data D, how to find optimal θ?
Mathematically:

θ̂ = argmin
θ

`(D, θ)

Gradient descent: Follow steepest descent of ` with stepsize α

→ use 1st derivative ∇θ`(D, θ) = (∂`(D,θ̂)∂θ1
, . . . , ∂`(D,θ̂)∂θd

)T

→ make a step in direction of ∇θ`(D, θ) with stepsize α ∈ R>0

1: θ̂ = rand(1, . . . , d)
2: while NOT STOP do
3: θ̂ = θ̂ − α · ∇θ`(D, θ̂)
4: end while

e.g. 100 iterations
e.g. minimum change in θ

Note: We implicitly used ∇θ`(D, θ̂) = −~xi · (yi − f̂(~xi))
DeepLearning on FPGAs 28

Summary

Important concepts:

Feature Engineering is key to solve Data Mining tasks

Deep Learning combines learning and Feature Engineering

A perceptron is a simple linear model for classification

A multilayer perceptron combine multiple perceptrons

For parameter optimization we define a loss function

For parameter optimization we use gradient descent

The learning rule performs the actual optimization

DeepLearning on FPGAs 29

Homework

Homework until next meeting

Implement perceptron learning

Test your implementation on the MNIST dataset

MNIST has 10 classes, so you’ll need 10 perceptrons
Train one perceptron per class: corresponding perceptron has
label 1 and remaining perceptrons label 0
Check predictions of all perceptrons: Predict corresponding
number of perceptron with positive prediction
If multiple percpetrons predict 1, use that one with highest
prediction value

Note 1: We will later use C, so please use C or a C-like language
Note 2: Use the smaller split for development and the complete
data set for testing → What’s your accuracy?

DeepLearning on FPGAs 30

	Recap
	Feature Engineering
	Deep Learning
	Artificial Neural Networks

