

DeepLearning on FPGAs

Introduction to Data Mining

Sebastian Buschjäger

Technische Universität Dortmund - Fakultät Informatik - Lehrstuhl 8

October 11, 2017

Structure of this course

Goals

- \rightarrow Learning the basics of Data Mining
- \rightarrow Learning the basics of Deep Learning
- \rightarrow Learning the basics of FPGA programming

 $^{1}\rm https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/ DeepLearning on FPGAs$

Structure of this course

Goals

- \rightarrow Learning the basics of Data Mining
- \rightarrow Learning the basics of Deep Learning
- \rightarrow Learning the basics of FPGA programming

Small lecture-phase in the beginning

- Week 1 3: Data Mining and Deep Learning
- Week 4 5: FPGAs and Software

¹https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/ DeepLearning on FPGAs

Structure of this course

Goals

- \rightarrow Learning the basics of Data Mining
- \rightarrow Learning the basics of Deep Learning
- \rightarrow Learning the basics of FPGA programming

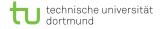
Small lecture-phase in the beginning

- Week 1 3: Data Mining and Deep Learning
- Week 4 5: FPGAs and Software

Goal Dogs vs. Cats Kaggle competition¹

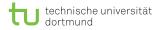
- Image classification on FPGA with Deep Learning
- Train classifier on FPGA with Deep Learning

¹https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/ DeepLearning on FPGAs

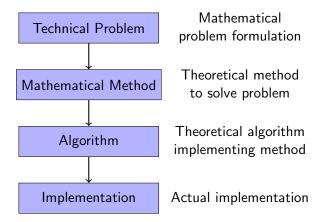


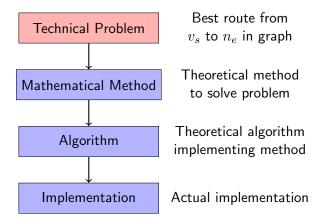
The Goal: Predict dogs and cats

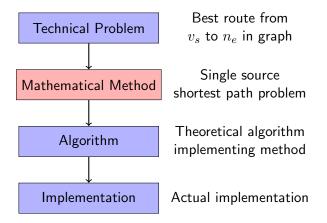
DeepLearning on FPGAs

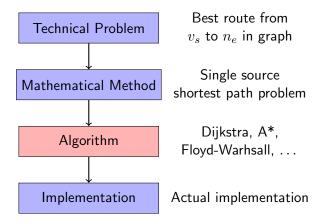


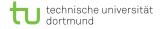
Overall Computer Science Approach

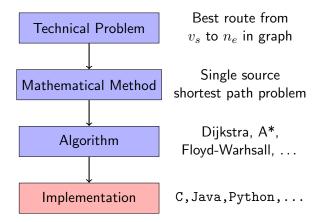


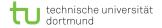












What is Data Mining?

"The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use."

"The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use."

Fact: Data Mining follows the same general approach **But:** Some problems are hard to be exactly formalised and thus need some special treatment

"The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use."

Fact: Data Mining follows the same general approach **But:** Some problems are hard to be exactly formalised and thus need some special treatment

Example: Find all cats on the given pictures

 \rightarrow What is a mathematical representation of a cat?

"The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use."

Fact: Data Mining follows the same general approach **But:** Some problems are hard to be exactly formalised and thus need some special treatment

Example: Find all cats on the given pictures

 \rightarrow What is a mathematical representation of a cat?

Idea: Formalise given problem by positive and negative examples \rightarrow That is our data

Problem 1: Data needs to be gathered and pre-processed

 \rightarrow crawling the web for images with tag "cat"

Problem 1: Data needs to be gathered and pre-processed

 \rightarrow crawling the web for images with tag "cat"

Problem 2: Totally unclear what knowledge our data might contain

- \rightarrow cats and dogs can be on the same picture
- \Rightarrow We have to "mine" data and knowledge from it

Problem 1: Data needs to be gathered and pre-processed

 \rightarrow crawling the web for images with tag "cat"

Problem 2: Totally unclear what knowledge our data might contain

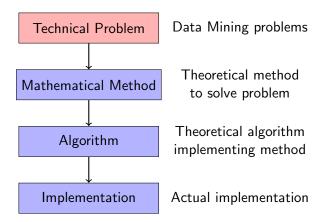
- \rightarrow cats and dogs can be on the same picture
- \Rightarrow We have to "mine" data and knowledge from it

Data Mining is an interdisciplinary field of:

- computer science: algorithm, theory, data structure, algorithm implementation, data warehousing, ...
- statistics: algorithm, theoretical insights, modelling, ...
- domain specifics: theoretical and practical insights, special knowledge, . . .

Our focus: Mostly implementation and algorithms

Overall Computer Science Approach



Data Mining: Problems

Our focus: Classification

Given:

- Set of possible classes \mathcal{Y} , e.g. $\mathcal{Y} = \{-1, +1\}$
- Set of labelled training examples / data $\mathcal{D} = \{ (\vec{x}_1, y_1), \dots, (\vec{x}_N, y_N) \mid (\vec{x}_i, y_i) \in \mathcal{X} \times \mathcal{Y} \}$
- A model $f_{\theta} : \mathcal{X} \to \mathcal{Y}$ with parameter $\theta \in \Theta$

Find: $\hat{\theta}$, so that $f_{\hat{\theta}}(\vec{x}) = \hat{f}(\vec{x})$ that predicts class y for given \vec{x}

Data Mining: Problems

Our focus: Classification

Given:

- Set of possible classes \mathcal{Y} , e.g. $\mathcal{Y} = \{-1, +1\}$
- Set of labelled training examples / data $\mathcal{D} = \{ (\vec{x}_1, y_1), \dots, (\vec{x}_N, y_N) \mid (\vec{x}_i, y_i) \in \mathcal{X} \times \mathcal{Y} \}$

• A model $f_{\theta} : \mathcal{X} \to \mathcal{Y}$ with parameter $\theta \in \Theta$

Find: $\hat{\theta}$, so that $f_{\hat{\theta}}(\vec{x}) = \hat{f}(\vec{x})$ that predicts class y for given \vec{x}

Note 1: If $|\mathcal{Y}| = 2$ its called binary classification Note 2: If $\mathcal{Y} = \mathbb{R}$ its called regression Our focus: Binary classification: $\mathcal{Y} = \{0, +1\}$ or $\mathcal{Y} = \{-1, +1\}$

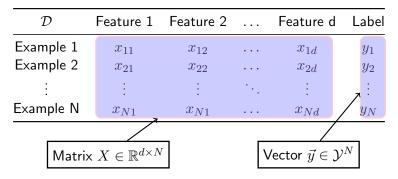
Data Mining: Notation

Note: The input space can be (nearly) everything **Our focus:** d-dimensional vectors: $\vec{x} \in \mathcal{X} \subseteq \mathbb{R}^n$

\mathcal{D}	Feature 1	Feature 2		Feature d	Label
Example 1	x_{11}	x_{12}		x_{1d}	y_1
Example 2	x_{21}	x_{22}		x_{2d}	y_2
÷	÷	:	·	÷	:
Example N	x_{N1}	x_{N1}		x_{Nd}	y_N

Data Mining: Notation

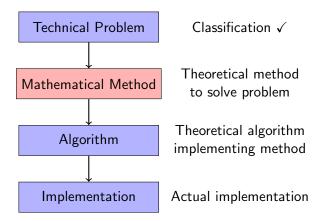
Note: The input space can be (nearly) everything **Our focus:** d-dimensional vectors: $\vec{x} \in \mathcal{X} \subseteq \mathbb{R}^n$



then: in short $\mathcal{D}=(X,\vec{y})$

DeepLearning on FPGAs

Overall Computer Science Approach



What is a good model function?

Observation

We need model function f_{θ}

What is a good model function?

Observation

We need model function f_{θ}

Maybe simplest model

$$f(\vec{x}) = \begin{cases} +1 \text{ if } x_i > c \\ -1 \text{ else} \end{cases}$$

What is a good model function?

Observation

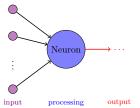
We need model function f_{θ}

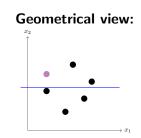
Maybe simplest model

$$f(\vec{x}) = \begin{cases} +1 \text{ if } x_i > c \\ -1 \text{ else} \end{cases}$$

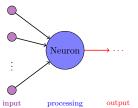
Thus $\theta = (i, c)$ But Which feature is important? Again simple Just use all

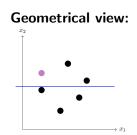
Simple case: Let $\vec{x} \in \mathbb{B}^d$ Biology's view:





Simple case: Let $\vec{x} \in \mathbb{B}^d$ Biology's view:





"Fire" if input signals reach threshold:

$$f(\vec{x}) = \begin{cases} +1 & \text{if } \sum_{i=1}^{d} x_i \ge b\\ 0 & \text{else} \end{cases}$$

Predict class depending on side of line (count):

$$f(\vec{x}) = \begin{cases} +1 & \text{if } \sum_{i=1}^{d} x_i \ge b\\ 0 & \text{else} \end{cases}$$

Note: We basically count the number of positive inputs **1943:** McCulloch-Pitts Neuron:

- Simple linear model with binary input and output
- Can model boolean OR with b = 1
- Can model boolean AND with b = d
- Simple extension also allows boolean NOT

Note: We basically count the number of positive inputs **1943:** McCulloch-Pitts Neuron:

- Simple linear model with binary input and output
- Can model boolean OR with b = 1
- Can model boolean AND with b = d
- Simple extension also allows boolean NOT

Thus: A network of McCulloch-Pitts neurons can simulate every boolean function (functional complete)

Note: We basically count the number of positive inputs **1943:** McCulloch-Pitts Neuron:

- Simple linear model with binary input and output
- Can model boolean OR with b = 1
- Can model boolean AND with b = d
- Simple extension also allows boolean NOT

Thus: A network of McCulloch-Pitts neurons can simulate every boolean function (functional complete)

Remark: That does not help with classification, thus

- **Rosenblatt 1958:** Use weights $w_i \in \mathbb{R}$ for every input $x_i \in \mathbb{B}$
- **Minksy-Papert 1959:** Allow real valued inputs $x_i \in \mathbb{R}$

Artificial Neural Networks: Perceptron

A perceptron is a linear classifier $f \colon \mathbb{R}^d \to \{0,1\}$ with

$$\widehat{f}(\vec{x}) = \begin{cases} +1 & \text{if } \sum_{i=1}^{d} w_i \cdot x_i \ge b \\ 0 & \text{else} \end{cases}$$

Artificial Neural Networks: Perceptron

A perceptron is a linear classifier $f \colon \mathbb{R}^d \to \{0,1\}$ with

$$\widehat{f}(\vec{x}) = \begin{cases} +1 & \text{if } \sum_{i=1}^{d} w_i \cdot x_i \ge b \\ 0 & \text{else} \end{cases}$$

Linear function in d = 2: $y = mx + \tilde{b}$ Perceptron: $w_1 \cdot x_1 + w_2 \cdot x_2 \ge b \Leftrightarrow x_2 = \frac{b}{w_2} - \frac{w_1}{w_2}x_1$ Obviously: A perceptron is a hyperplane in d dimensions

Artificial Neural Networks: Perceptron

A perceptron is a linear classifier $f \colon \mathbb{R}^d \to \{0,1\}$ with

$$\widehat{f}(\vec{x}) = \begin{cases} +1 & \text{if } \sum_{i=1}^d w_i \cdot x_i \ge b \\ 0 & \text{else} \end{cases}$$

Linear function in d = 2: $y = mx + \tilde{b}$ Perceptron: $w_1 \cdot x_1 + w_2 \cdot x_2 \ge b \Leftrightarrow x_2 = \frac{b}{w_2} - \frac{w_1}{w_2}x_1$ Obviously: A perceptron is a hyperplane in d dimensions

Note: $\vec{w} = (w_1, \dots, w_d, b)^T$ are the parameters of a perceptron Notation: Given \vec{x} we add a 1 to the end of it $\vec{x} = (x_1, \dots, x_d, 1)^T$

$$\mathbf{Then}: \ \widehat{f}(\vec{x}) = \begin{cases} +1 & \text{if } \vec{x} \cdot \vec{w}^T \ge 0 \\ 0 & \text{else} \end{cases}$$

DeepLearning on FPGAs

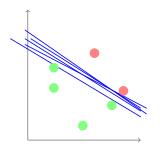
ANN: Perceptron Learning

Note: A perceptron assumes that the data is linear separable

Note: A perceptron assumes that the data is linear separable **Big Note:** This is an assumption and not necessarily true!

Note: A perceptron assumes that the data is linear separable **Big Note:** This is an assumption and not necessarily true! **But:** In case of linear separability, there are many "good" \vec{w}

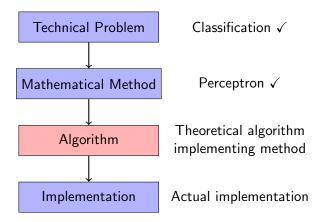
Note: A perceptron assumes that the data is linear separable **Big Note:** This is an assumption and not necessarily true! **But:** In case of linear separability, there are many "good" \vec{w}



Note: We are happy with one separative vector \vec{w}

DeepLearning on FPGAs

Overall Computer Science Approach



Question: How do we get the weights \vec{w} ?

Question: How do we get the weights \vec{w} ? **Observation:** We look at $\vec{x} \cdot \vec{w}^T \ge 0$

- if output was 0 but should have been 1 increment weights
- if output was 1 but should have been 0 decrement weights
- if output was correct, don't change weights

Question: How do we get the weights \vec{w} ? **Observation:** We look at $\vec{x} \cdot \vec{w}^T \ge 0$

- if output was 0 but should have been 1 increment weights
- if output was 1 but should have been 0 decrement weights
- if output was correct, don't change weights

1:
$$\vec{w} = rand(1, \dots, d+1)$$

- 2: while ERROR do
- 3: for $(\vec{x}_i, y_i) \in \mathcal{D}$ do

4:
$$\vec{w} = \vec{w} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}(\vec{x}_i))$$

- 5: end for
- 6: end while

Question: How do we get the weights \vec{w} ? **Observation:** We look at $\vec{x} \cdot \vec{w}^T \ge 0$

- \blacksquare if output was 0 but should have been 1 increment weights
- if output was 1 but should have been 0 decrement weights
- if output was correct, don't change weights

1:
$$\vec{w} = rand(1, \dots, d+1)$$

- 2: while ERROR do
- 3: for $(\vec{x}_i, y_i) \in \mathcal{D}$ do

4:
$$\vec{w} = \vec{w} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}(\vec{x}_i))$$

5: end for

6: end while

Note: $\alpha \in \mathbb{R}_{>0}$ is a stepsize / learning rate

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Wrong classification:

• Case 1: $y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0$

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Wrong classification:

• Case 1: $y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0$

$$\widehat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T$$

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Wrong classification:

• Case 1: $y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0$

$$\widehat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T$$

$$= \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot ||\vec{x}_i||^2$$

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Wrong classification:

• Case 1: $y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0$

$$\widehat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T$$

$$= \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot ||\vec{x}_i||^2$$

 $\rightarrow \vec{w}$ is incremented and classification is moved towards $1 \; \checkmark$

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Wrong classification:

• Case 1: $y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0$

$$\widehat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T$$

$$= \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot ||\vec{x}_i||^2$$

 $\rightarrow \vec{w}$ is incremented and classification is moved towards $1 \checkmark$ • Case 2: $y_i - \hat{f}_{old}(\vec{x}_i) = -1 \Rightarrow y_i = 0, \hat{f}_{old}(\vec{x}_i) = 1$

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Wrong classification:

• Case 1: $y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0$

$$\widehat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T$$

$$= \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot ||\vec{x}_i||^2$$

→ \vec{w} is incremented and classification is moved towards 1 \checkmark ■ Case 2: $y_i - \hat{f}_{old}(\vec{x}_i) = -1 \Rightarrow y_i = 0, \hat{f}_{old}(\vec{x}_i) = 1$ $\hat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} - \alpha \cdot 1 \cdot \vec{x}_i)^T$

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Wrong classification:

• Case 1: $y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0$

$$\widehat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T$$

$$= \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot ||\vec{x}_i||^2$$

 $\rightarrow \vec{w} \text{ is incremented and classification is moved towards } 1 \checkmark$ **Case 2:** $<math>y_i - \hat{f}_{old}(\vec{x}_i) = -1 \Rightarrow y_i = 0, \hat{f}_{old}(\vec{x}_i) = 1$ $\hat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} - \alpha \cdot 1 \cdot \vec{x}_i)^T$ $= \vec{x}_i \cdot \vec{w}_{old}^T - \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T - \alpha \cdot ||\vec{x}_i||^2$

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Wrong classification:

• Case 1: $y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0$

$$\widehat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T$$

$$= \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot ||\vec{x}_i||^2$$

 $\rightarrow \vec{w} \text{ is incremented and classification is moved towards } 1 \checkmark$ **Case 2:** $<math>y_i - \hat{f}_{old}(\vec{x}_i) = -1 \Rightarrow y_i = 0, \hat{f}_{old}(\vec{x}_i) = 1$ $\hat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} - \alpha \cdot 1 \cdot \vec{x}_i)^T$ $= \vec{x}_i \cdot \vec{w}_{old}^T - \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T - \alpha \cdot ||\vec{x}_i||^2$

 $\rightarrow \vec{w}$ is decremented and classification is moved towards $0~\checkmark$ DeepLearning on FPGAs

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Correct classification: $y_i - \hat{f}(\vec{x}_i) = 0$

• $\vec{w}_{new} = \vec{w}_{old}$, thus \vec{w} is unchanged \checkmark

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Correct classification: $y_i - \hat{f}(\vec{x}_i) = 0$

$$ec{w}_{new}=ec{w}_{old}$$
, thus $ec{w}$ is unchanged \checkmark

Rosenblatt 1958 showed:

- Algorithms converges if \mathcal{D} is linear separable
- Algorithm may have exponential runtime

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Correct classification: $y_i - \hat{f}(\vec{x}_i) = 0$

$$ec{w}_{new}=ec{w}_{old}$$
 , thus $ec{w}$ is unchanged \checkmark

Rosenblatt 1958 showed:

- Algorithms converges if \mathcal{D} is linear separable
- Algorithm may have exponential runtime

Variation: Batch processing - Update \vec{w} after testing all examples

$$\vec{w}_{new} = \vec{w}_{old} + \alpha \sum_{(\vec{x}_i, y_i) \in \mathcal{D}_{wrong}} \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$$

Usually: Faster convergence, but more memory needed

DeepLearning on FPGAs

Overall Computer Science Approach



Obviously: Implementation also influences the runtime!

Obviously: Implementation also influences the runtime!

Fact: We need to take the underlying system into account

- System: CPU, GPU, FPGA, ...
- Hardware: Word length, cache sizes, vectorization, ...
- Software: Paging in OS, (Multi-) Threading, Swapping, ...
- Language: C vs. Java vs. Haskell ...

Obviously: Implementation also influences the runtime!

Fact: We need to take the underlying system into account

- System: CPU, GPU, FPGA, ...
- Hardware: Word length, cache sizes, vectorization, ...
- Software: Paging in OS, (Multi-) Threading, Swapping, ...
- Language: C vs. Java vs. Haskell ...

Usually: Use language and system we know **But:** Some systems / hardware is better at certain tasks \rightarrow e.g. graphics cards are built to do matrix-vector multiplication

Obviously: Implementation also influences the runtime!

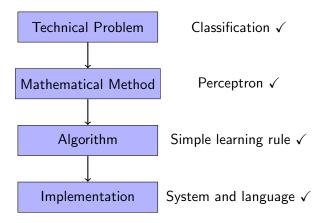
Fact: We need to take the underlying system into account

- System: CPU, GPU, FPGA, ...
- Hardware: Word length, cache sizes, vectorization, ...
- Software: Paging in OS, (Multi-) Threading, Swapping, ...
- Language: C vs. Java vs. Haskell ...

Usually: Use language and system we know **But:** Some systems / hardware is better at certain tasks \rightarrow e.g. graphics cards are built to do matrix-vector multiplication

Thus: Choose method and algorithm depending on system **Our focus:** Mostly methods and algorithms, later implementation

Overall Computer Science Approach



Fact 1: Prediction quality also depends on the algorithm, the implementation and the data

 \rightarrow Integer operations are fast, but less accurate than floating point

Fact 1: Prediction quality also depends on the algorithm, the implementation and the data

 \rightarrow Integer operations are fast, but less accurate than floating point

Fact 2: There are many different models, even more algorithms and even more implementations

 \rightarrow Learning Rule, Gradient Descent, Evolutionary Optimization \ldots

Fact 1: Prediction quality also depends on the algorithm, the implementation and the data

 \rightarrow Integer operations are fast, but less accurate than floating point

Fact 2: There are many different models, even more algorithms and even more implementations

 \rightarrow Learning Rule, Gradient Descent, Evolutionary Optimization \ldots

Bottom line: Comparing specific methods is difficult **Thus:** Compare performance of **computed** model

Fact 1: Prediction quality also depends on the algorithm, the implementation and the data

 \rightarrow Integer operations are fast, but less accurate than floating point

Fact 2: There are many different models, even more algorithms and even more implementations

 \rightarrow Learning Rule, Gradient Descent, Evolutionary Optimization \ldots

Bottom line: Comparing specific methods is difficult **Thus:** Compare performance of **computed** model

Important: There is no free lunch (Wolpert, 1996) \rightarrow Some methods work better on some problems, but no method works well on all problems

Question: So, what is model quality?

Question: So, what is model quality?

- **1** how well explains the model training data?
- 2 can we give any guarantees for new predictions?
- 3 how well generalises the model to new and unseen data?

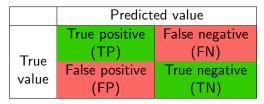
So far Linear model assumption No guarantees at all, especially if linear assumption does not hold

Fact: In binary classification we have two choices: predict 0 or 1 \rightarrow 2 possible wrong predictions and 2 possible correct predictions

Fact: In binary classification we have two choices: predict 0 or 1 \rightarrow 2 possible wrong predictions and 2 possible correct predictions Visualization: Confusion matrix

	Predicted value	
True value	True positive (TP) False positive (FP)	False negative (FN) True negative (TN)

Fact: In binary classification we have two choices: predict 0 or 1 \rightarrow 2 possible wrong predictions and 2 possible correct predictions Visualization: Confusion matrix



Accuracy: $Acc = \frac{TP+TN}{N}$

Big Remark: The accuracy only tells us something about the data \mathcal{D} we know! There are no guarantees for new data

Data Mining: Measure Model quality (4)

Obviously: The best model has Acc = 1, the worst has Acc = 0**Observation:** If we store all the data for look-up, then Acc = 1

Data Mining: Measure Model quality (4)

Obviously: The best model has Acc = 1, the worst has Acc = 0**Observation:** If we store all the data for look-up, then Acc = 1

Question: Is that what we want?

Clear: This is just memorizing the training data, no real learning! **Question:** How well deals our model with new, yet unseen data?

Data Mining: Measure Model quality (4)

Obviously: The best model has Acc = 1, the worst has Acc = 0**Observation:** If we store all the data for look-up, then Acc = 1

Question: Is that what we want?

Clear: This is just memorizing the training data, no real learning! **Question:** How well deals our model with new, yet unseen data?

Idea: Split data into training \mathcal{D}_{Train} and test data \mathcal{D}_{Test} **Then:** \mathcal{D}_{Test} is new to the model $f_{\hat{\theta}}$ **Question:** How to split \mathcal{D} ?

Data Mining: Measure Model quality (5)

- 1) Test/Train: Split ${\cal D}$ by size, e.g. 80% training and 20% test data
- \rightarrow Fast and easy to compute, but sensitive for "bad" splits.
- \rightarrow Model quality might be over- or under-estimated

Data Mining: Measure Model quality (5)

- 1) Test/Train: Split ${\cal D}$ by size, e.g. 80% training and 20% test data
- \rightarrow Fast and easy to compute, but sensitive for "bad" splits.
- \rightarrow Model quality might be over- or under-estimated

2) Leave-One-Out: Use every example once for testing and train model on the remaining data. Average results.

- $\rightarrow N$ models are computed, but insensitive for "bad" splits.
- \rightarrow Usually impractical

Data Mining: Measure Model quality (5)

- 1) Test/Train: Split ${\cal D}$ by size, e.g. 80% training and 20% test data
- \rightarrow Fast and easy to compute, but sensitive for "bad" splits.
- \rightarrow Model quality might be over- or under-estimated

2) Leave-One-Out: Use every example once for testing and train model on the remaining data. Average results.

- \rightarrow N models are computed, but insensitive for "bad" splits.
- \rightarrow Usually impractical

3) K-fold cross validation: Split data into k buckets. Use every bucket once for testing / train model on the rest. Average results. \rightarrow Insensitive for "bad" splits and practical. Usually k = 10.

Summary

Important concepts:

- Classification is one data mining task
- **Training data** is used to define and solve the task
- A Method is a general approach / idea to solve a task
- A algorithm is a way to realise a method
- A model forms the extracted knowledge from data
- Accuracy measures the model quality given the data

Summary

Important concepts:

- Classification is one data mining task
- Training data is used to define and solve the task
- A Method is a general approach / idea to solve a task
- A algorithm is a way to realise a method
- A model forms the extracted knowledge from data
- Accuracy measures the model quality given the data

Note: Runtime and model quality depend on method, algorithm and implementation

Some administration stuff

Requirements to pass this course

Plan an approach to solve kaggle competition including

- Data pre-processing
- Implementation of Neural Network learning
- Incorperate FPGA design
- Give a small presentation / review about your approach

Some administration stuff

Requirements to pass this course

Plan an approach to solve kaggle competition including

- Data pre-processing
- Implementation of Neural Network learning
- Incorperate FPGA design
- Give a small presentation / review about your approach

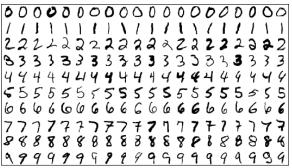
Thus: After the lecture phase you are free to do what you want until the end of the semester \rightarrow you work in self-organizing groups

Question: When will we meet again for lectures?

Homwork Data

For development Use smaller data set

- 32×32 pixel grayscaled images of numbers 0 9 (10 labels)
- already pre-processed in CSV format
- test/train split plus a smaller sample for development



Homework

Homework I give simple homeworks to get you started more easily **But** I will not check the homework, your choice to do it.

Homework

Homework I give simple homeworks to get you started more easily **But** I will not check the homework, your choice to do it.

Homework until next meeting

- Implement a simple CSV-Reader
 - First column contains the label (0-9)
 - Remaining 784 columns contain grayscale value (0-255)
- Implement perceptron learning algorithm for two numbers
- Implement accuracy computation for Test/Train split
- **Note 1:** We will later use C, so please use C or a C-like language **Note 2:** Use the smaller split for development and the complete data set for testing \rightarrow What's your accuracy?