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Structure of this course

Goals
→ Learning the basics of Data Mining
→ Learning the basics of Deep Learning
→ Learning the basics of FPGA programming

Small lecture-phase in the beginning

Week 1 - 3: Data Mining and Deep Learning

Week 4 - 5: FPGAs and Software

Goal Dogs vs. Cats Kaggle competition1

Image classification on FPGA with Deep Learning

Train classifier on FPGA with Deep Learning

1https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/
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The Goal: Predict dogs and cats
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Overall Computer Science Approach

Technical Problem

Mathematical Method

Algorithm

Implementation

Mathematical
problem formulation

Theoretical method
to solve problem

Theoretical algorithm
implementing method

Actual implementation
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Overall Computer Science Approach: Example
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Overall Computer Science Approach: Example

Technical Problem

Mathematical Method

Algorithm

Implementation

Best route from
vs to ne in graph

Single source
shortest path problem

Dijkstra, A*,
Floyd-Warhsall, . . .

C,Java,Python,...
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Data Mining Basics

What is Data Mining?

DeepLearning on FPGAs 9



Data Mining Basics

“The overall goal of the data mining process is to extract
information from a data set and transform it into an
understandable structure for further use.”

Fact: Data Mining follows the same general approach
But: Some problems are hard to be exactly formalised and thus
need some special treatment

Example: Find all cats on the given pictures
→ What is a mathematical representation of a cat?

Idea: Formalise given problem by positive and negative examples
→ That is our data
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Data Mining Basics

Problem 1: Data needs to be gathered and pre-processed
→ crawling the web for images with tag “cat”

Problem 2: Totally unclear what knowledge our data might contain
→ cats and dogs can be on the same picture
⇒ We have to “mine” data and knowledge from it

Data Mining is an interdisciplinary field of:

computer science: algorithm, theory, data structure, algorithm
implementation, data warehousing, . . .

statistics: algorithm, theoretical insights, modelling, . . .

domain specifics: theoretical and practical insights, special
knowledge, . . .

Our focus: Mostly implementation and algorithms
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Overall Computer Science Approach

Technical Problem

Mathematical Method

Algorithm

Implementation

Data Mining problems

Theoretical method
to solve problem

Theoretical algorithm
implementing method

Actual implementation
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Data Mining: Problems

Our focus: Classification

Given:

Set of possible classes Y, e.g. Y = {−1,+1}
Set of labelled training examples / data
D = {(~x1, y1), . . . , (~xN , yN ) | (~xi, yi) ∈ X × Y}
A model fθ : X → Y with parameter θ ∈ Θ

Find: θ̂, so that f
θ̂
(~x) = f̂(~x) that predicts class y for given ~x

Note 1: If |Y| = 2 its called binary classification
Note 2: If Y = R its called regression
Our focus: Binary classification: Y = {0,+1} or Y = {−1,+1}
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Data Mining: Notation

Note: The input space can be (nearly) everything
Our focus: d−dimensional vectors: ~x ∈ X ⊆ Rn

D Feature 1 Feature 2 . . . Feature d Label

Example 1 x11 x12 . . . x1d y1
Example 2 x21 x22 . . . x2d y2

...
...

...
. . .

...
...

Example N xN1 xN1 . . . xNd yN

Matrix X ∈ Rd×N Vector ~y ∈ YN

then: in short D = (X, ~y)
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Overall Computer Science Approach

Technical Problem

Mathematical Method

Algorithm

Implementation

Classification X

Theoretical method
to solve problem

Theoretical algorithm
implementing method

Actual implementation
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What is a good model function?

Observation
We need model function fθ

Maybe simplest model

f(~x) =

{
+1 if xi > c

−1 else

Thus θ = (i, c)
But Which feature is important?
Again simple Just use all
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Artificial Neural Networks: Single Neuron

Simple case: Let ~x ∈ Bd
Biology’s view:

...

Neuron . . .

input processing output

“Fire” if input signals reach
threshold:

f(~x) =

{
+1 if

∑d
i=1 xi ≥ b

0 else

Geometrical view:

x1

x2

Predict class depending on side
of line (count):

f(~x) =

{
+1 if

∑d
i=1 xi ≥ b

0 else
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Artificial Neural Networks: Single Neuron

Note: We basically count the number of positive inputs
1943: McCulloch-Pitts Neuron:

Simple linear model with binary input and output

Can model boolean OR with b = 1

Can model boolean AND with b = d

Simple extension also allows boolean NOT

Thus: A network of McCulloch-Pitts neurons can simulate every
boolean function (functional complete)

Remark: That does not help with classification, thus

Rosenblatt 1958: Use weights wi ∈ R for every input xi ∈ B
Minksy-Papert 1959: Allow real valued inputs xi ∈ R
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Artificial Neural Networks: Perceptron

A perceptron is a linear classifier f : Rd → {0, 1} with

f̂(~x) =

{
+1 if

∑d
i=1wi · xi ≥ b

0 else

Linear function in d = 2: y = mx+ b̃
Perceptron: w1 · x1 + w2 · x2 ≥ b⇔ x2 = b

w2
− w1

w2
x1

Obviously: A perceptron is a hyperplane in d dimensions

Note: ~w = (w1, . . . , wd, b)
T are the parameters of a perceptron

Notation: Given ~x we add a 1 to the end of it ~x = (x1, . . . , xd, 1)T

Then : f̂(~x) =

{
+1 if ~x · ~wT ≥ 0

0 else
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ANN: Perceptron Learning

Note: A perceptron assumes that the data is linear separable

Big Note: This is an assumption and not necessarily true!
But: In case of linear separability, there are many “good” ~w

Note: We are happy with one separative vector ~w
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Overall Computer Science Approach

Technical Problem

Mathematical Method

Algorithm

Implementation

Classification X

Perceptron X

Theoretical algorithm
implementing method

Actual implementation
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ANN: Perceptron Learning

Question: How do we get the weights ~w?

Observation: We look at ~x · ~wT ≥ 0

if output was 0 but should have been 1 increment weights

if output was 1 but should have been 0 decrement weights

if output was correct, don’t change weights

1: ~w = rand(1, . . . , d+ 1)
2: while ERROR do
3: for (~xi, yi) ∈ D do
4: ~w = ~w + α · ~xi · (yi − f̂(~xi))
5: end for
6: end while

Note: α ∈ R>0 is a stepsize / learning rate
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ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))

Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X
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f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X
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ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))

Correct classification: yi − f̂(~xi) = 0

~wnew = ~wold, thus ~w is unchanged X

Rosenblatt 1958 showed:

Algorithms converges if D is linear separable

Algorithm may have exponential runtime

Variation: Batch processing - Update ~w after testing all examples

~wnew = ~wold + α
∑

(~xi,yi)∈Dwrong

~xi · (yi − f̂old(~xi))

Usually: Faster convergence, but more memory needed
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Overall Computer Science Approach

Technical Problem

Mathematical Method

Algorithm

Implementation

Classification X

Linear classifier X

Perceptron learning X

Actual implementation
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Data Mining: Implementation of Perceptron
Learning

Obviously: Implementation also influences the runtime!

Fact: We need to take the underlying system into account

System: CPU, GPU, FPGA, . . .

Hardware: Word length, cache sizes, vectorization, . . .

Software: Paging in OS, (Multi-) Threading, Swapping, . . .

Language: C vs. Java vs. Haskell . . .

Usually: Use language and system we know
But: Some systems / hardware is better at certain tasks
→ e.g. graphics cards are built to do matrix-vector multiplication

Thus: Choose method and algorithm depending on system
Our focus: Mostly methods and algorithms, later implementation
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Overall Computer Science Approach

Technical Problem

Mathematical Method

Algorithm

Implementation

Classification X

Perceptron X

Simple learning rule X

System and language X
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Data Mining: Measure Model quality

Fact 1: Prediction quality also depends on the algorithm, the
implementation and the data
→ Integer operations are fast, but less accurate than floating point

Fact 2: There are many different models, even more algorithms
and even more implementations
→ Learning Rule, Gradient Descent, Evolutionary Optimization . . .

Bottom line: Comparing specific methods is difficult
Thus: Compare performance of computed model

Important: There is no free lunch (Wolpert, 1996)
→ Some methods work better on some problems, but no method
works well on all problems
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Data Mining: Measure Model quality (2)

Question: So, what is model quality?

1 how well explains the model training data?

2 can we give any guarantees for new predictions?

3 how well generalises the model to new and unseen data?

So far Linear model assumption
No guarantees at all, especially if linear assumption does not hold
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Data Mining: Measure Model quality (3)

Fact: In binary classification we have two choices: predict 0 or 1
→ 2 possible wrong predictions and 2 possible correct predictions

Visualization: Confusion matrix

Predicted value

True positive
(TP)

False negative
(FN)

True
value

False positive
(FP)

True negative
(TN)

Accuracy: Acc = TP+TN
N

Big Remark: The accuracy only tells us something about the data
D we know! There are no guarantees for new data
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Data Mining: Measure Model quality (4)

Obviously: The best model has Acc = 1, the worst has Acc = 0
Observation: If we store all the data for look-up, then Acc = 1

Question: Is that what we want?
Clear: This is just memorizing the training data, no real learning!
Question: How well deals our model with new, yet unseen data?

Idea: Split data into training DTrain and test data DTest
Then: DTest is new to the model f

θ̂
Question: How to split D ?
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Data Mining: Measure Model quality (5)

1) Test/Train: Split D by size, e.g. 80% training and 20% test data

→ Fast and easy to compute, but sensitive for “bad” splits.
→ Model quality might be over- or under-estimated

2) Leave-One-Out: Use every example once for testing and train
model on the remaining data. Average results.
→ N models are computed, but insensitive for “bad” splits.
→ Usually impractical

3) K-fold cross validation: Split data into k buckets. Use every
bucket once for testing / train model on the rest. Average results.
→ Insensitive for “bad” splits and practical. Usually k = 10.
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Summary

Important concepts:

Classification is one data mining task

Training data is used to define and solve the task

A Method is a general approach / idea to solve a task

A algorithm is a way to realise a method

A model forms the extracted knowledge from data

Accuracy measures the model quality given the data

Note: Runtime and model quality depend on method, algorithm
and implementation
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Some administration stuff

Requirements to pass this course

Plan an approach to solve kaggle competition including

Data pre-processing
Implementation of Neural Network learning
Incorperate FPGA design

Give a small presentation / review about your approach

Thus: After the lecture phase you are free to do what you want
until the end of the semester → you work in self-organizing groups

Question: When will we meet again for lectures?
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Homwork Data
For development Use smaller data set

32× 32 pixel grayscaled images of numbers 0− 9 (10 labels)
already pre-processed in CSV format
test/train split plus a smaller sample for development
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Homework

Homework I give simple homeworks to get you started more easily
But I will not check the homework, your choice to do it.

Homework until next meeting

Implement a simple CSV-Reader

First column contains the label (0− 9)
Remaining 784 columns contain grayscale value (0− 255)

Implement perceptron learning algorithm for two numbers

Implement accuracy computation for Test/Train split

Note 1: We will later use C, so please use C or a C-like language
Note 2: Use the smaller split for development and the complete
data set for testing → What’s your accuracy?
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