

DeepLearning on FPGAs

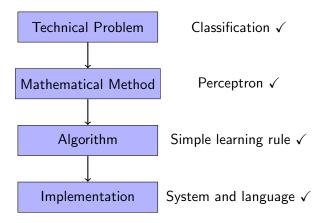
Introduction to Deep Learning

Sebastian Buschjäger

Technische Universität Dortmund - Fakultät Informatik - Lehrstuhl 8

October 21, 2017

Recap Computer Science Approach



Recap Data Mining

Important concepts:

- **Classification** is one data mining task
- **Training data** is used to define and solve the task
- A Method is a general approach / idea to solve a task
- A algorithm is a way to realise a method
- A model forms the extracted knowledge from data
- Accuracy measures the model quality given the data

Recap Perceptron classifier

A perceptron is a linear classifier $f \colon \mathbb{R}^d \to \{0,1\}$ with

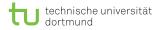
$$\widehat{f}(\vec{x}) = \begin{cases} +1 & \text{if } \sum_{i=1}^d w_i \cdot x_i \geq b \\ 0 & \text{else} \end{cases}$$

For learning

- 1: $\vec{w} = rand(1, \dots, d+1)$
- 2: while ERROR do
- 3: for $(\vec{x}_i, y_i) \in \mathcal{D}$ do

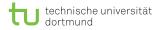
4:
$$\vec{w} = \vec{w} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}(\vec{x}_i))$$

- 5: end for
- 6: end while



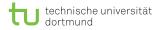
Homework

So Who did the homework?



Homework

So Who did the homework? **And** How good was your prediction?



Homework

So Who did the homework? **And** How good was your prediction?

Some of my results

- 0 vs 1: 99.9% accuracy
- 1 vs 2: 98.6% accuracy
- 3 vs 6: 98.8% accuracy
- 5 vs 6: 94.6% accuracy
- 8 vs 9: 97.4% accuracy

 $\label{eq:Runtime} \begin{array}{l} \textbf{Runtime} \sim 3s \text{ per model with } 100 \text{ runs over data} \\ \textbf{Machine Laptop with Intel i7-4600U @ 2.10GHz, 8GB RAM} \\ \textbf{Tip Compile with -03 -march -mnative} \end{array}$

Data Mining Features are important

Fact 1 State space grows exponentially with increasing dimension. Example $\mathcal{X}=\{1,2,\ldots,10\}$

For \mathcal{X}^1 , there are 10 different observations For \mathcal{X}^2 , there are $10^2 = 100$ different observations For \mathcal{X}^3 , there are $10^3 = 1000$ different observations ...

Data Mining Features are important

Fact 1 State space grows exponentially with increasing dimension. Example $\mathcal{X} = \{1, 2, \dots, 10\}$

For \mathcal{X}^1 , there are 10 different observations For \mathcal{X}^2 , there are $10^2 = 100$ different observations For \mathcal{X}^3 , there are $10^3 = 1000$ different observations ...

Fact 2 Training data is generated by a noisy real-world process We usually have no influence on the type of training data We usually cannot interfere with the real-world process

Data Mining Features are important

Fact 1 State space grows exponentially with increasing dimension. Example $\mathcal{X}=\{1,2,\ldots,10\}$

For \mathcal{X}^1 , there are 10 different observations For \mathcal{X}^2 , there are $10^2 = 100$ different observations For \mathcal{X}^3 , there are $10^3 = 1000$ different observations ...

Fact 2 Training data is generated by a noisy real-world process We usually have no influence on the type of training data We usually cannot interfere with the real-world process

Thus Training data should be considered incomplete and noisy

Data Mining Features are important (2)

Wolpert 1996 There is no free lunch Every method has is advantages and disadvantages Most methods are able to perfectly learn a given toy data set Problem occurs with noise, outlier and generalisation

Data Mining Features are important (2)

Wolpert 1996 There is no free lunch Every method has is advantages and disadvantages Most methods are able to perfectly learn a given toy data set Problem occurs with noise, outlier and generalisation

Conclusion All methods are equally good or bad **But** Some methods prefer certain representations

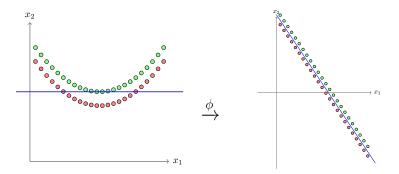
Data Mining Features are important (2)

Wolpert 1996 There is no free lunch Every method has is advantages and disadvantages Most methods are able to perfectly learn a given toy data set Problem occurs with noise, outlier and generalisation

Conclusion All methods are equally good or bad **But** Some methods prefer certain representations

Feature Engineering Finding the right representation for data Reduce dimension? Increase dimension? Add additional information? Regularities? Transform data completely?

Data Mining Features are important (3)



Raw data without transformation. Linear model is a bad choice. Parabolic model would be better. Data transformed with $\phi(x_1, x_2) = (x_1, x_2 - 0.3 \cdot x_1^2).$ Now linear model fits the problem.

Data Mining Features are important (4)

Conclusion: Good features are crucial for good results! **Question:** How to get good features?

Data Mining Features are important (4)

Conclusion: Good features are crucial for good results! **Question:** How to get good features?

- **By hand:** Domain experts and data miner examine the data and try different features based on common knowledge.
- **2 Semi supervised:** Data miner examines the data and tries different similarity functions and classes of methods
- **3 Unsupervised:** Data miner only encodes some assumptions about regularities into the method.

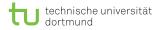
Data Mining Features are important (4)

Conclusion: Good features are crucial for good results! **Question:** How to get good features?

- **1** By hand: Domain experts and data miner examine the data and try different features based on common knowledge.
- **2 Semi supervised:** Data miner examines the data and tries different similarity functions and classes of methods
- **3 Unsupervised:** Data miner only encodes some assumptions about regularities into the method.
- **Note 1:** Hand-crafted features give us insight about the process **Note 2:** Semi/unsupervised features give us insight about the data **Our focus:** Unsupervised feature extraction.

Our Goal End-to-End learning

Our focus Unsupervised feature extraction \rightarrow "End-To-End learning"



Our Goal End-to-End learning

Our focus Unsupervised feature extraction \rightarrow "End-To-End learning"

So far Deep Learning seems to be the best method

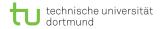
So... What is Deep Learning?

Deep Learning Basics

Well... its currently one of the big things in Al!

- **Since 2010:** DeepMind learns and plays old Atari games
- Since 2012: Google is able to find cats in youtube videos
- December 2014: Near real-time translation in Skype
- October 2015: AlphaGo beats the European Go champion
- October 2015: Tesla deploys Autopilot in their cars
- March 2016: AlphaGo beats the Go Worldchampion
- June 2016: Facebook introduces DeepText
- August 2017: Facebook uses neural-based translation

. . .



Deep Learning Example

Deep Learning Basics

Deep Learning is a branch of Machine Learning dealing with

- (Deep) Artificial Neural Networks (ANN)
- High Level Feature Processing
- Fast Implementations

Deep Learning Basics

Deep Learning is a branch of Machine Learning dealing with

- (Deep) Artificial Neural Networks (ANN)
- High Level Feature Processing
- Fast Implementations

ANNs are well known! So what's new about it?

- We have more data and more computation power
- We have a better understanding of optimization
- We use a more engineering-style approach

Our focus now Artificial Neural Networks

Important We need some basics about optimization Recap

$$\vec{w} = \vec{w} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}(\vec{x}_i))$$

Important We need some basics about optimization **Recap**

$$\vec{w} = \vec{w} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}(\vec{x}_i))$$

So far We formulated an **optimization** algorithm to find perceptron weights that minimize classification **error**

Important We need some basics about optimization **Recap**

$$\vec{w} = \vec{w} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}(\vec{x}_i))$$

So far We formulated an **optimization** algorithm to find perceptron weights that minimize classification **error**

This is a common approach in Data Mining:

- Specify model family
- Specify optimization procedure
- Specify a cost / loss function

Important We need some basics about optimization **Recap**

$$\vec{w} = \vec{w} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}(\vec{x}_i))$$

So far We formulated an **optimization** algorithm to find perceptron weights that minimize classification **error**

This is a common approach in Data Mining:

- Specify model family
- Specify optimization procedure
- Specify a cost / loss function

Note: Loss function \neq Accuracy

- \rightarrow The loss function is minimized during learning
- \rightarrow Accuracy is used to measure the model's quality after learning

A loss function E, the model parameter $\vec{\theta},$ learning rate α_t

A loss function E , the model parameter $\vec{\theta_{\text{r}}}$ learning rate α_t

Framework

- 1: $\vec{\theta} = random()$
- 2: while ERROR do

3: choose random
$$(\vec{x}, y) \in \mathcal{D}$$

4:
$$\vec{\theta} = \vec{\theta} - \alpha_t \cdot \frac{\partial E(x,y)}{\partial \vec{\theta}}$$

5: end while

A loss function E , the model parameter $\vec{\theta_{\text{r}}}$ learning rate α_t

Framework

- 1: $\vec{\theta} = random()$ 2: while ERROR do 3: choose random $(\vec{x}, y) \in \mathcal{D}$ 4: $\vec{\theta} = \vec{\theta} - \alpha_t \cdot \frac{\partial E(x,y)}{\alpha \vec{x}}$
- 5: end while

e.g. $100~{\rm iterations}$ e.g. minimum change in θ

A loss function E , the model parameter $\vec{\theta_{\text{r}}}$ learning rate α_t

Framework

- 1: $\vec{\theta} = random()$
- 2: while ERROR do

3: choose random
$$(\vec{x}, y) \in \mathcal{D}$$

4:
$$\vec{\theta} = \vec{\theta} - \alpha_t \cdot \frac{\partial E(x,y)}{\partial \vec{\theta}}$$

5: end while

e.g. 100 iterations e.g. minimum change in θ

(estimated) gradient of loss depends on θ and (x, y)

Data Mining Perceptron Learning

Observation We implicitly did this for the perceptron

1:
$$\vec{w} = rand(1, \dots, d+1)$$

2: while ERROR do

3: for $(\vec{x}, y) \in \mathcal{D}$ do

4:
$$\vec{w} = \vec{w} + \alpha \cdot \vec{x} \cdot (y - \hat{f}(\vec{x}))$$

- 5: end for
- 6: end while

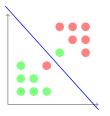
So The perceptron works well and follows a general framework

Data Mining The XOR Problem

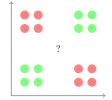
Question What happens if data is not linear separable?

Data Mining The XOR Problem

Question What happens if data is not linear separable?



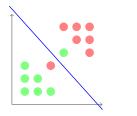
Data linear separable, but noisy

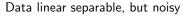


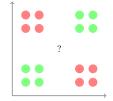
Data not linear separable

Data Mining The XOR Problem

Question What happens if data is not linear separable?







Data not linear separable

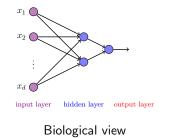
Answer Algorithm will never converge, thus

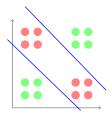
- Use fixed number of iterations
- Introduce some acceptable error margin

Data Mining Idea - use more perceptrons

Recap (Hand crafted) Feature transformation always possible **But** What about an automatic way? **Rosenblatt 1961**

Use multiple perceptrons \rightarrow Multi-Layer Perceptron (MLP)





Geometrical view

Goal We need to learn weights w / bias b for each perceptron **So far** We intuitively derived a learning algorithm

Goal We need to learn weights w / bias b for each perceptron **So far** We intuitively derived a learning algorithm **Now** Follow stochastic gradient descent algorithm **Loss function (MSE)**

$$\ell(\mathcal{D}, \widehat{w}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(y_i - \widehat{f}(\vec{x}_i) \right)^2}$$

Observation We need to take the derivative of the loss function

Goal We need to learn weights w / bias b for each perceptron **So far** We intuitively derived a learning algorithm **Now** Follow stochastic gradient descent algorithm **Loss function (MSE)**

$$\ell(\mathcal{D}, \widehat{w}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(y_i - \widehat{f}(\vec{x}_i) \right)^2}$$

Observation We need to take the derivative of the loss function **But** Loss functions looks complicated **Observation 1** Square-Root is monotone **Observation 2** Constant factor does not change optimization

New loss function

$$\ell(\mathcal{D}, \widehat{w}) = \frac{1}{2} \left(y_i - \widehat{f}(\vec{x}_i) \right)^2$$

$$\nabla_{\widehat{w}} \ell(\mathcal{D}, \widehat{w}) = \frac{1}{2} 2(y_i - \widehat{f}(\vec{x}_i)) \frac{\partial \widehat{f}(\vec{x}_i)}{\partial \widehat{w}}$$

New loss function

$$\ell(\mathcal{D}, \widehat{w}) = \frac{1}{2} \left(y_i - \widehat{f}(\vec{x}_i) \right)^2$$

$$\nabla_{\widehat{w}} \ell(\mathcal{D}, \widehat{w}) = \frac{1}{2} 2(y_i - \widehat{f}(\vec{x}_i)) \frac{\partial \widehat{f}(\vec{x}_i)}{\partial \widehat{w}}$$

Observation We need to compute derivative $\frac{\partial \widehat{f}(\vec{x}_i)}{\partial \widehat{w}}$

New loss function

$$\ell(\mathcal{D}, \widehat{w}) = \frac{1}{2} \left(y_i - \widehat{f}(\vec{x}_i) \right)^2$$

$$\nabla_{\widehat{w}} \ell(\mathcal{D}, \widehat{w}) = \frac{1}{2} 2(y_i - \widehat{f}(\vec{x}_i)) \frac{\partial \widehat{f}(\vec{x}_i)}{\partial \widehat{w}}$$

Observation We need to compute derivative $\frac{\partial \widehat{f}(\vec{x}_i)}{\partial \widehat{w}}$

$$\widehat{f}(\vec{x}) = \begin{cases} +1 & \text{if } \sum_{i=1}^{d} w_i \cdot x_i + b \ge 0\\ 0 & \text{else} \end{cases}$$

New loss function

$$\ell(\mathcal{D}, \widehat{w}) = \frac{1}{2} \left(y_i - \widehat{f}(\vec{x}_i) \right)^2$$

$$\nabla_{\widehat{w}} \ell(\mathcal{D}, \widehat{w}) = \frac{1}{2} 2(y_i - \widehat{f}(\vec{x}_i)) \frac{\partial \widehat{f}(\vec{x}_i)}{\partial \widehat{w}}$$

Observation We need to compute derivative $\frac{\partial \hat{f}(\vec{x}_i)}{\partial \hat{w}}$

$$\widehat{f}(\vec{x}) = \begin{cases} +1 & \text{if } \sum_{i=1}^{d} w_i \cdot x_i + b \ge 0\\ 0 & \text{else} \end{cases}$$

Observation f is not continuous in 0 (it makes a step) **Thus** Impossible to derive $\nabla_{\widehat{w}}\ell(\mathcal{D},w)$ in 0, because f is not differentiable in 0!

DeepLearning on FPGAs

Another problem Combinations of linear functions are still linear

$$f(x) = 5x + 3$$

$$g(x) = 10x_1 - 5x_2$$

$$f(g(x)) = 5(10x_1 - 5x_2) + 3 = 50x_1 - 25x_2 + 3$$

Solution

We need to make f continuous We need to introduce some non-linearity

Another problem Combinations of linear functions are still linear

$$f(x) = 5x + 3$$

$$g(x) = 10x_1 - 5x_2$$

$$f(g(x)) = 5(10x_1 - 5x_2) + 3 = 50x_1 - 25x_2 + 3$$

Solution

We need to make f continuous We need to introduce some non-linearity

Observation

The input of a perceptron depends on the output of previous one

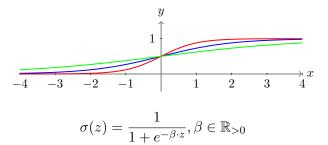
Thus

Apply non-linear $\ensuremath{\textit{activation}}$ function to perceptron output

DeepLearning on FPGAs

Bonus This seems to be a little closer to real neurons **Constraint** Activation should be easy to compute

Idea Use sigmoid function



Note β controls slope around 0

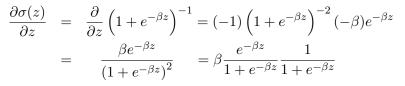
DeepLearning on FPGAs

Given $\sigma(z) = \frac{1}{1+e^{-\beta \cdot z}}, \beta \in \mathbb{R}_{>0}$

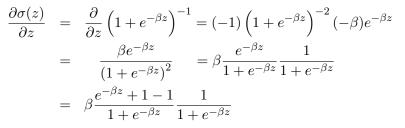
Given $\sigma(z) = \frac{1}{1+e^{-\beta \cdot z}}, \beta \in \mathbb{R}_{>0}$ Derivative

$$\frac{\partial \sigma(z)}{\partial z} = \frac{\partial}{\partial z} \left(1 + e^{-\beta z}\right)^{-1} = (-1) \left(1 + e^{-\beta z}\right)^{-2} (-\beta) e^{-\beta z}$$

Given $\sigma(z) = \frac{1}{1 + e^{-\beta \cdot z}}, \beta \in \mathbb{R}_{>0}$ Derivative



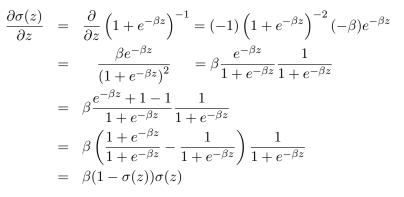
Given $\sigma(z) = \frac{1}{1+e^{-\beta \cdot z}}, \beta \in \mathbb{R}_{>0}$ Derivative



Given $\sigma(z) = \frac{1}{1+e^{-\beta \cdot z}}, \beta \in \mathbb{R}_{>0}$ Derivative

$$\begin{aligned} \frac{\partial \sigma(z)}{\partial z} &= \frac{\partial}{\partial z} \left(1 + e^{-\beta z} \right)^{-1} = (-1) \left(1 + e^{-\beta z} \right)^{-2} (-\beta) e^{-\beta z} \\ &= \frac{\beta e^{-\beta z}}{(1 + e^{-\beta z})^2} = \beta \frac{e^{-\beta z}}{1 + e^{-\beta z}} \frac{1}{1 + e^{-\beta z}} \\ &= \beta \frac{e^{-\beta z} + 1 - 1}{1 + e^{-\beta z}} \frac{1}{1 + e^{-\beta z}} \\ &= \beta \left(\frac{1 + e^{-\beta z}}{1 + e^{-\beta z}} - \frac{1}{1 + e^{-\beta z}} \right) \frac{1}{1 + e^{-\beta z}} \end{aligned}$$

Given $\sigma(z) = \frac{1}{1+e^{-\beta \cdot z}}, \beta \in \mathbb{R}_{>0}$ Derivative



DeepLearning on FPGAs

For inference We compute $\sigma(z)$ For training We compute $\beta\sigma(z)(1 - \sigma(z))$ Thus Store activation $\sigma(z)$ for fast computation

For inference We compute $\sigma(z)$ For training We compute $\beta\sigma(z)(1 - \sigma(z))$ Thus Store activation $\sigma(z)$ for fast computation

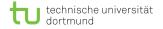
Note Binary classification assumes $\mathcal{Y} = \{0, +1\}$ Thus Output perceptron also needs sigmoid activation But For different labels (e.g. $\{-1, +1\}$) use another activation

For inference We compute $\sigma(z)$ For training We compute $\beta\sigma(z)(1 - \sigma(z))$ Thus Store activation $\sigma(z)$ for fast computation

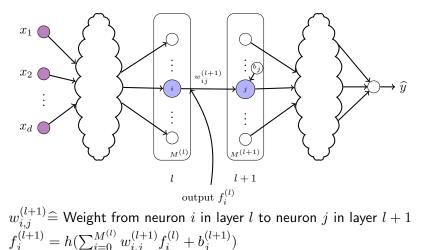
Note Binary classification assumes $\mathcal{Y} = \{0, +1\}$ Thus Output perceptron also needs sigmoid activation But For different labels (e.g. $\{-1, +1\}$) use another activation

Still

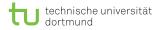
We need to compute $\frac{\partial E(x,y)}{\partial w_{i,j}^{(l)}}$ and $\frac{\partial E(x,y)}{\partial b_j^{(l)}}$ Thus We need a more notation



MLPs A more detailed view



DeepLearning on FPGAs



Goal We need to compute $\frac{\partial E(x,y)}{\partial w_{i,j}^{(l)}}$ and $\frac{\partial E(x,y)}{\partial b_j^{(l)}}$

Goal We need to compute $\frac{\partial E(x,y)}{\partial w_{i,j}^{(l)}}$ and $\frac{\partial E(x,y)}{\partial b_j^{(l)}}$ **Recap** Chain-Rule

$$\frac{\partial}{\partial x}(3x+5)^2 =$$

Goal

We need to compute $\frac{\partial E(x,y)}{\partial w_{i,j}^{(l)}}$ and $\frac{\partial E(x,y)}{\partial b_j^{(l)}}$ Recap Chain-Rule

$$\frac{\partial}{\partial x}(3x+5)^2 = 2 \cdot (3x+5) \cdot 3$$

Goal

We need to compute $\frac{\partial E(x,y)}{\partial w_{i,j}^{(l)}}$ and $\frac{\partial E(x,y)}{\partial b_j^{(l)}}$ Recap Chain-Rule

$$\frac{\partial}{\partial x}(3x+5)^2 = 2 \cdot (3x+5) \cdot 3 = 6(3x+5)$$

Goal

We need to compute $\frac{\partial E(x,y)}{\partial w_{i,j}^{(l)}}$ and $\frac{\partial E(x,y)}{\partial b_j^{(l)}}$ **Recap** Chain-Rule

$$\frac{\partial}{\partial x}(3x+5)^2 = 2 \cdot (3x+5) \cdot 3 = 6(3x+5)$$

More formally

Given two functions $f : \mathbb{R}^m \to \mathbb{R}$ and $g : \mathbb{R}^k \to \mathbb{R}^m$. Let $\vec{u} = g(\vec{x})$ and $\vec{x} \in \mathbb{R}^k$:

$$\frac{\partial f(g(\vec{x}))}{\partial x_i} = \frac{\partial f(\vec{u})}{\partial x_i} = \sum_{l=1}^m \frac{\partial f(\vec{u})}{\partial u_l} \cdot \frac{\partial u_l}{\partial x_i}$$

Goal We need to compute $\frac{\partial E(x,y)}{\partial w_{i,j}^{(l)}}$ and $\frac{\partial E(x,y)}{\partial b_j^{(l)}}$

Goal

We need to compute $\frac{\partial E(x,y)}{\partial w_{i,j}^{(l)}}$ and $\frac{\partial E(x,y)}{\partial b_j^{(l)}}$

Recall

$$y_j^{(l+1)} = \sum_{i=0}^{M^{(l)}} w_{i,j}^{(l+1)} f_i^{(l)} + b_j^{(l+1)} \text{ and } f_j^{(l+1)} = h\left(y_j^{(l+1)}\right)$$

Goal

We need to compute $\frac{\partial E(x,y)}{\partial w_{i,j}^{(l)}}$ and $\frac{\partial E(x,y)}{\partial b_j^{(l)}}$

Recall

$$y_j^{(l+1)} = \sum_{i=0}^{M^{(l)}} w_{i,j}^{(l+1)} f_i^{(l)} + b_j^{(l+1)} \text{ and } f_j^{(l+1)} = h\left(y_j^{(l+1)}\right)$$

Observation

E depends on all f_i^L , which depends on f_i^{L-1} ...

$$\frac{\partial E}{\partial w_{i,j}^l} = \frac{\partial E}{\partial f_j^l} \cdot \frac{\partial f_j^l}{\partial y_j^l} \cdot \frac{\partial y_j^l}{\partial w_{i,j}^l}$$

Goal

We need to compute $\frac{\partial E(x,y)}{\partial w_{i,j}^{(l)}}$ and $\frac{\partial E(x,y)}{\partial b_j^{(l)}}$

Recall

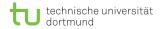
$$y_j^{(l+1)} = \sum_{i=0}^{M^{(l)}} w_{i,j}^{(l+1)} f_i^{(l)} + b_j^{(l+1)} \text{ and } f_j^{(l+1)} = h\left(y_j^{(l+1)}\right)$$

Observation

E depends on all f_i^L , which depends on f_i^{L-1} ...

$$\frac{\partial E}{\partial w_{i,j}^l} = \frac{\partial E}{\partial f_j^l} \cdot \frac{\partial f_j^l}{\partial y_j^l} \cdot \frac{\partial y_j^l}{\partial w_{i,j}^l}$$

Contains all derivatives from L to l



Backpropagation for $w_{i,j}^l$

Recall $y_j^{(l+1)} = \sum_{i=0}^{M^{(l)}} w_{i,j}^{(l+1)} f_i^{(l)} + b_j^{(l+1)}$ and $f_j^{(l+1)} = h\left(y_j^{(l+1)}\right)$

Backpropagation for $w_{i,j}^l$

Recall $y_j^{(l+1)} = \sum_{i=0}^{M^{(l)}} w_{i,j}^{(l+1)} f_i^{(l)} + b_j^{(l+1)} \text{ and } f_j^{(l+1)} = h\left(y_j^{(l+1)}\right)$

 $\frac{\partial E}{\partial w_{i,j}^l} =$

DeepLearning on FPGAs

Backpropagation for $w_{i,j}^l$ **Recall** $y_j^{(l+1)} = \sum_{i=0}^{M^{(l)}} w_{i,j}^{(l+1)} f_i^{(l)} + b_j^{(l+1)}$ and $f_j^{(l+1)} = h\left(y_j^{(l+1)}\right)$ $\frac{\partial E}{\partial w_{i,j}^l} = \frac{\partial E}{\partial f_j^l} \cdot \frac{\partial f_j^l}{\partial y_i^l} \cdot \frac{\partial y_j^l}{\partial w_{i,j}^l} =$

$$\begin{split} & \textbf{Backpropagation for } w_{i,j}^{l} \\ & \textbf{Recall } y_{j}^{(l+1)} = \sum_{i=0}^{M^{(l)}} w_{i,j}^{(l+1)} f_{i}^{(l)} + b_{j}^{(l+1)} \text{ and } f_{j}^{(l+1)} = h\left(y_{j}^{(l+1)}\right) \\ & \frac{\partial E}{\partial w_{i,j}^{l}} = \frac{\partial E}{\partial f_{j}^{l}} \cdot \frac{\partial f_{j}^{l}}{\partial y_{j}^{l}} \cdot \frac{\partial y_{j}^{l}}{\partial w_{i,j}^{l}} = \left(\sum_{i=0}^{M^{(l+1)}} \frac{\partial E}{\partial f_{i}^{(l+1)}} \cdot \frac{\partial f_{i}^{(l+1)}}{\partial y_{i}^{(l+1)}} \cdot \frac{\partial y_{i}^{(l+1)}}{\partial f_{j}^{l}}\right) \frac{\partial f_{j}^{l}}{\partial y_{j}^{l}} \cdot \frac{\partial y_{j}^{l}}{\partial w_{i,j}^{l}} \end{split}$$

$$\begin{split} & \textbf{Backpropagation for } w_{i,j}^{l} \\ & \textbf{Recall } y_{j}^{(l+1)} = \sum_{i=0}^{M^{(l)}} w_{i,j}^{(l+1)} f_{i}^{(l)} + b_{j}^{(l+1)} \text{ and } f_{j}^{(l+1)} = h\left(y_{j}^{(l+1)}\right) \\ & \frac{\partial E}{\partial w_{i,j}^{l}} = \frac{\partial E}{\partial f_{j}^{l}} \cdot \frac{\partial f_{j}^{l}}{\partial y_{j}^{l}} \cdot \frac{\partial y_{j}^{l}}{\partial w_{i,j}^{l}} = \left(\sum_{i=0}^{M^{(l+1)}} \frac{\partial E}{\partial f_{i}^{(l+1)}} \cdot \frac{\partial f_{i}^{(l+1)}}{\partial y_{i}^{(l+1)}} \cdot \frac{\partial y_{i}^{(l+1)}}{\partial f_{j}^{l}}\right) \frac{\partial f_{j}^{l}}{\partial y_{j}^{l}} \cdot \frac{\partial y_{j}^{l}}{\partial w_{i,j}^{l}} \\ & \overline{\text{recursion with } \delta_{i}^{(l+1)} = \frac{\partial E}{\partial f_{i}^{(l+1)}} \frac{\partial f_{i}^{(l+1)}}{\partial y_{i}^{(l+1)}}} \end{split}$$

Backpropagation for $w_{i,i}^l$ **Recall** $y_i^{(l+1)} = \sum_{i=0}^{M^{(l)}} w_{i,i}^{(l+1)} f_i^{(l)} + b_i^{(l+1)}$ and $f_i^{(l+1)} = h\left(y_i^{(l+1)}\right)$ $\frac{\partial E}{\partial w_{i,j}^l} = \frac{\partial E}{\partial f_j^l} \cdot \frac{\partial f_j^l}{\partial y_j^l} \cdot \frac{\partial y_j^l}{\partial w_{i,j}^l} = \left(\sum_{i=0}^{M^{(l+1)}} \frac{\partial E}{\partial f_i^{(l+1)}} \cdot \frac{\partial f_i^{(l+1)}}{\partial y_i^{(l+1)}} \cdot \frac{\partial y_i^{(l+1)}}{\partial f_j^l}\right) \frac{\partial f_j^l}{\partial y_j^l} \cdot \frac{\partial y_j^l}{\partial w_{i,j}^l}$ recursion with $\delta_i^{(l+1)} = \frac{\partial E}{\partial f_i^{(l+1)}} \frac{\partial f_i^{(l+1)}}{\partial y_i^{(l+1)}}$ $= \left(\sum_{i=0}^{M^{(l+1)}} \delta_i^{(l+1)} \cdot \frac{\partial y_i^{(l+1)}}{\partial f_i^l}\right) \frac{\partial f_j^l}{\partial y_i^l} \cdot \frac{\partial y_j^l}{\partial w_{i,j}^l}$

DeepLearning on FPGAs

Backpropagation for w_{i}^{l} **Recall** $y_i^{(l+1)} = \sum_{i=0}^{M^{(l)}} w_{i,i}^{(l+1)} f_i^{(l)} + b_i^{(l+1)}$ and $f_i^{(l+1)} = h\left(y_i^{(l+1)}\right)$ $\frac{\partial E}{\partial w_{i,j}^l} = \frac{\partial E}{\partial f_j^l} \cdot \frac{\partial f_j^l}{\partial y_j^l} \cdot \frac{\partial y_j^l}{\partial w_{i,j}^l} = \left(\sum_{i=0}^{M^{(l+1)}} \frac{\partial E}{\partial f_i^{(l+1)}} \cdot \frac{\partial f_i^{(l+1)}}{\partial y_i^{(l+1)}} \cdot \frac{\partial y_i^{(l+1)}}{\partial f_j^l} \cdot \frac{\partial y_j^l}{\partial y_j^l} \cdot \frac{\partial y_j^l}{\partial w_{i,j}^l} \right)$ $= \begin{pmatrix} M^{(l+1)} \\ \sum_{i=0}^{M^{(l+1)}} \delta_i^{(l+1)} \cdot w_{i,j}^{(l+1)} \end{pmatrix} \frac{\partial f_j^l}{\partial y_i^l} \cdot \frac{\partial y_j^l}{\partial w_{i,j}^l}$

technische universität dortmund

Backpropagation for w_{i}^{l} **Recall** $y_i^{(l+1)} = \sum_{i=0}^{M^{(l)}} w_{i,i}^{(l+1)} f_i^{(l)} + b_i^{(l+1)}$ and $f_i^{(l+1)} = h\left(y_i^{(l+1)}\right)$ $\frac{\partial E}{\partial w_{i,j}^l} = \frac{\partial E}{\partial f_j^l} \cdot \frac{\partial f_j^l}{\partial y_j^l} \cdot \frac{\partial y_j^l}{\partial w_{i,j}^l} = \left(\sum_{i=0}^{M^{(l+1)}} \frac{\partial E}{\partial f_i^{(l+1)}} \cdot \frac{\partial f_i^{(l+1)}}{\partial y_i^{(l+1)}} \cdot \frac{\partial y_i^{(l+1)}}{\partial f_j^l} \cdot \frac{\partial y_j^l}{\partial y_j^l} \cdot \frac{\partial y_j^l}{\partial w_{i,j}^l} \right)$ $= \left(\sum_{i=0}^{M^{(l+1)}} \delta_i^{(l+1)} \cdot w_{i,j}^{(l+1)}\right) \frac{\partial f_i^{l}}{\partial y_j^l} \cdot f_i^{(l-1)}$

technische universität dortmund

Backpropagation for w_{i}^{l} **Recall** $y_i^{(l+1)} = \sum_{i=0}^{M^{(l)}} w_{i,i}^{(l+1)} f_i^{(l)} + b_i^{(l+1)}$ and $f_i^{(l+1)} = h\left(y_i^{(l+1)}\right)$ $\frac{\partial E}{\partial w_{i,j}^l} = \frac{\partial E}{\partial f_j^l} \cdot \frac{\partial f_j^l}{\partial y_j^l} \cdot \frac{\partial y_j^l}{\partial w_{i,j}^l} = \left(\sum_{i=0}^{M^{(l+1)}} \frac{\partial E}{\partial f_i^{(l+1)}} \cdot \frac{\partial f_i^{(l+1)}}{\partial y_i^{(l+1)}} \cdot \frac{\partial y_i^{(l+1)}}{\partial f_j^l} \cdot \frac{\partial y_j^l}{\partial y_j^l} \cdot \frac{\partial y_j^l}{\partial w_{i,j}^l} \right)$ $= \left(\sum_{i=0}^{M^{(l+1)}} \delta_i^{(l+1)} \cdot w_{i,j}^{(l+1)}\right) \frac{\partial f_i^l}{\partial y_j^l} \cdot f_i^{(l-1)} = \delta_j^{(l)} \cdot f_i^{(l-1)}$ with $\delta_j^{(l)} = \left(\sum_{i=0}^{M^{(l+1)}} \delta_i^{(l+1)} \cdot w_{i,j}^{(l+1)}\right) \cdot \frac{\partial f_j^i}{\partial u^l}$

Backpropagation for b_i^l **Recall** $y_i^{(l+1)} = \sum_{i=0}^{M^{(l)}} w_{i,i}^{(l+1)} f_i^{(l)} + b_i^{(l+1)}$ and $f_i^{(l+1)} = h\left(y_i^{(l+1)}\right)$ $\frac{\partial E}{\partial b_j^l} = \frac{\partial E}{\partial f_j^l} \cdot \frac{\partial f_j^l}{\partial y_j^l} \cdot \frac{\partial y_j^l}{\partial b_j^l} = \left(\sum_{i=0}^{M^{(l+1)}} \frac{\partial E}{\partial f_i^{(l+1)}} \cdot \frac{\partial f_i^{(l+1)}}{\partial y_i^{(l+1)}} \cdot \frac{\partial y_i^{(l+1)}}{\partial f_i^l} \right) \frac{\partial f_j^l}{\partial y_i^l} \cdot \frac{\partial y_j^l}{\partial b_i^l}$ recursion with $\delta_i^{(l+1)} = \frac{\partial E}{\partial f_i^{(l+1)}} \frac{\partial f_i^{(l+1)}}{\partial y_{\scriptscriptstyle z}^{(l+1)}}$ $= \left(\sum_{i=0}^{M^{(l+1)}} \delta_i^{(l+1)} \cdot w_{i,j}^{(l+1)}\right) \frac{\partial f_j^l}{\partial y_j^l} \cdot 1 = \delta_j^{(l)} \cdot 1$ with $\delta_j^{(l)} = \left(\sum_{i=0}^{M^{(l+1)}} \delta_i^{(l+1)} \cdot w_{i,j}^{(l+1)}\right) \cdot \frac{\partial f_j^i}{\partial u^l}$

Backpropagation for activation h / loss E

Gradient step

$$\begin{split} w_{i,j}^{(l)} &= w_{i,j}^{(l)} - \alpha \cdot \delta_j^{(l)} f_i^{(l-1)} \\ b_j^{(l)} &= b_j^{(l)} - \alpha \cdot \delta_j^{(l)} \end{split}$$

Recursion

$$\begin{split} \delta_{j}^{(l-1)} &=& \frac{\partial h(y_{i}^{(l-1)})}{\partial y_{i}^{(l-1)}} \sum_{k=1}^{M^{(l)}} \delta_{k}^{(l)} w_{j,k}^{(l)} \\ \delta_{j}^{(L)} &=& \frac{\partial E(f_{j}^{(L)})}{\partial f_{j}^{(L)}} \cdot \frac{\partial h(y_{j}^{(L)})}{\partial y_{j}^{(L)}} \end{split}$$

Note Assume *L* layers in total

Notation We used scalar notation so far **Fact** Same results can be derived using matrix-vector notation \rightarrow Notation depends on your preferences and background

Notation We used scalar notation so far **Fact** Same results can be derived using matrix-vector notation \rightarrow Notation depends on your preferences and background

For us We want to implement backprop. from scratch, thus scalar notation is closer to our implementation **But** Literature usually use matrix-vector notation for compactness

Notation We used scalar notation so far **Fact** Same results can be derived using matrix-vector notation \rightarrow Notation depends on your preferences and background

For us We want to implement backprop. from scratch, thus scalar notation is closer to our implementation **But** Literature usually use matrix-vector notation for compactness

$$\begin{split} \delta^{(l-1)} &= \left(W^{(l)} \right)^T \delta^{(l)} \odot \frac{\partial h(y^{(l-1)})}{\partial y^{(l-1)}} \\ \delta^{(L)} &= \nabla_{y^{(L)}} \ell(y^{(L)}) \odot \frac{\partial h(y^{(L)})}{\partial y^{(L)}} \end{split}$$

Notation We used scalar notation so far **Fact** Same results can be derived using matrix-vector notation \rightarrow Notation depends on your preferences and background

For us We want to implement backprop. from scratch, thus scalar notation is closer to our implementation

But Literature usually use matrix-vector notation for compactness

$$\begin{split} \delta^{(l-1)} &= \left(W^{(l)} \right)^T \delta^{(l)} \odot \frac{\partial h(y^{(l-1)})}{\partial y^{(l-1)}} \\ \delta^{(L)} &= \nabla_{y^{(L)}} \ell(y^{(L)}) \odot \frac{\partial h(y^{(L)})}{\partial y^{(L)}} \end{split}$$

Backpropagation Some remarks

Observation Backpropagation is a recursive algorithm **Use** Dynamic programming for implementation \rightarrow Start with output layer and the go back

Backpropagation Some remarks

Observation Backpropagation is a recursive algorithm **Use** Dynamic programming for implementation \rightarrow Start with output layer and the go back

 $\begin{array}{l} \textbf{Remark 1} \text{ We use SGD to optimize a loss function} \\ \rightarrow \text{ This requires gradient information} \end{array}$

Remark 2 We use backpropagation to compute this gradient

Backpropagation Some remarks

Observation Backpropagation is a recursive algorithm **Use** Dynamic programming for implementation \rightarrow Start with output layer and the go back

 $\begin{array}{l} \textbf{Remark 1} \text{ We use SGD to optimize a loss function} \\ \rightarrow \text{ This requires gradient information} \end{array}$

Remark 2 We use backpropagation to compute this gradient

Important note

SGD is a general optimization approach Backpropagation is a general way to compute gradients in directed acyclic graphs

Remark 3 With Neural Networks we combine both

Backpropagation Some implementation ideas

Observation: Backprop. is independent from activation h and loss ℓ

Backpropagation Some implementation ideas

Observation: Backprop. is independent from activation h and loss ℓ **Thus** Implement neural networks layer-wise

- Each layer has activation function
- Each layer has derivative of activation function
- Each layer has weight matrix (either for input or output)
- Each layer implements delta computation
- Output-layer implements delta computation with loss function
- Layers are either connected to each other and recursively call backprop. or some "control" function performs backprop.

Backpropagation Some implementation ideas

Observation: Backprop. is independent from activation h and loss ℓ **Thus** Implement neural networks layer-wise

- Each layer has activation function
- Each layer has derivative of activation function
- Each layer has weight matrix (either for input or output)
- Each layer implements delta computation
- Output-layer implements delta computation with loss function
- Layers are either connected to each other and recursively call backprop. or some "control" function performs backprop.

Thus Arbitrary network architectures can be realised without changing learning algorithm

MLP Some ideas about architectures **Question** So what is a good architecture?

MLP Some ideas about architectures

Question So what is a good architecture? **Answer** Depends on the problem. Usually, architectures for new problems are published in scientific papers or even as PHD thesis.

MLP Some ideas about architectures

Question So what is a good architecture? **Answer** Depends on the problem. Usually, architectures for new problems are published in scientific papers or even as PHD thesis.

Some general ideas

- Non-linear activation A network should contain at least one layer with non-linear activation function for better learning
- **Sparse activation** To prevent over-fitting, only a few neurons of the network should be active at the same time
- Fast convergence The loss function / activation function should allow a fast convergence in the first few epochs
- Feature extraction Combining multiple layers in deeper networks usually allows (higher) level feature extraction

Observation

- **1 perceptron** Separates space into two sets
- Many perceptrons in 1 layer Identifies convex sets
- Many perceptrons in 2 layer Identifies arbitrary sets

Observation

- **1 perceptron** Separates space into two sets
- Many perceptrons in 1 layer Identifies convex sets
- Many perceptrons in 2 layer Identifies arbitrary sets

Hornik et. al 1989 MLP is a universal approximator \rightarrow Given enough hidden units, a MLP is able to represent any "well-conditioned" function **perfectly**

Observation

- **1 perceptron** Separates space into two sets
- Many perceptrons in 1 layer Identifies convex sets
- Many perceptrons in 2 layer Identifies arbitrary sets

Hornik et. al 1989 MLP is a universal approximator

 \rightarrow Given enough hidden units, a MLP is able to represent any "well-conditioned" function perfectly

Barron 1993 Worst case needs exponential number of hidden units

Observation

- **1 perceptron** Separates space into two sets
- Many perceptrons in 1 layer Identifies convex sets
- Many perceptrons in 2 layer Identifies arbitrary sets

Hornik et. al 1989 MLP is a universal approximator

 \rightarrow Given enough hidden units, a MLP is able to represent any "well-conditioned" function perfectly

Barron 1993 Worst case needs exponential number of hidden units

But That does not necessarily mean, that we will find it!

- Usually we cannot afford exponentially large networks
- Learning of \vec{w} might fail due to data or numerical reasons

Deep Learning From MLP to Deep Learning

So... How did Deep Learning become so popular?

Deep Learning From MLP to Deep Learning

So... How did Deep Learning become so popular?

Krizhevsky et. al 2012

Trade width for depth

 \rightarrow Extract features and combine them in later layers

Deep Learning From MLP to Deep Learning

So... How did Deep Learning become so popular?

Krizhevsky et. al 2012

Trade width for depth

 \rightarrow Extract features and combine them in later layers

Zhang et. al 2017

 $\mathcal{O}(N+d)$ weights are enough for sample of size N in d dimensions \rightarrow "One" neuron per sample

But This introduces new challenges

Deep Learning Vanishing gradients

Observation 1 $\sigma(z) = \frac{1}{1+e^{-\beta \cdot z}} \in [0,1]$ **Observation 2** $\frac{\partial \sigma(z)}{\partial z} = \sigma(z) \cdot (1 - \sigma(z)) \in [0, 0.25\beta]$ **Observation 3** Errors are multiplied from the next layer

Deep Learning Vanishing gradients

Observation 1 $\sigma(z) = \frac{1}{1+e^{-\beta \cdot z}} \in [0,1]$ **Observation 2** $\frac{\partial \sigma(z)}{\partial z} = \sigma(z) \cdot (1 - \sigma(z)) \in [0, 0.25\beta]$ **Observation 3** Errors are multiplied from the next layer

Thus The error tends to become very small after a few layers **Hochreiter et. al 2001** Vanishing gradients

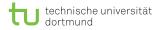
Deep Learning Vanishing gradients

Observation 1 $\sigma(z) = \frac{1}{1+e^{-\beta \cdot z}} \in [0,1]$ **Observation 2** $\frac{\partial \sigma(z)}{\partial z} = \sigma(z) \cdot (1 - \sigma(z)) \in [0, 0.25\beta]$ **Observation 3** Errors are multiplied from the next layer

Thus The error tends to become very small after a few layers **Hochreiter et. al 2001** Vanishing gradients

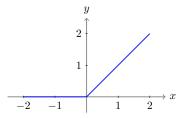
So far No fundamental solution found, but a few suggestions

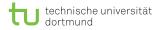
- Change activation function
- Exploit different optimization methods
- Use more data / carefully adjust stepsizes
- Reduce number of parameters / depth of network



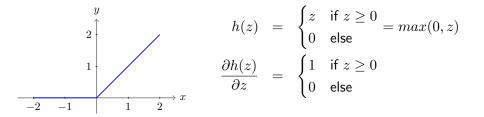
Deep Learning ReLu activation

Rectified Linear (ReLu)

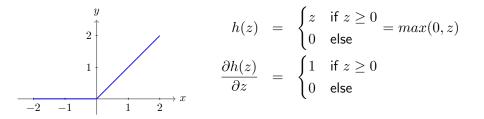




Deep Learning ReLu activation Rectified Linear (ReLu)

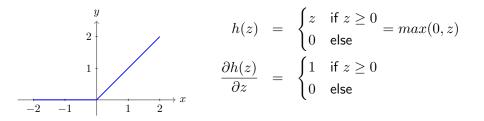


Deep Learning ReLu activation Rectified Linear (ReLu)



Note ReLu is not differentiable in z = 0!

Deep Learning ReLu activation Rectified Linear (ReLu)



Note ReLu is not differentiable in z = 0! **But** Usually that is not a problem

- **Practical** z = 0 is pretty rare, just use 0 there. It works well
- Mathematical There exists a subgradient of h(z) at 0

Deep Learning ReLu activation (2)

 $\ensuremath{\textbf{Subgradients}}\xspace$ A gradient shows the direct of the steepest descent

- \Rightarrow If a function is not differentiable, it has no steepest descent
- \Rightarrow There might be multiple (equally) "steepest descents"

Deep Learning ReLu activation (2)

Subgradients A gradient shows the direct of the steepest descent \Rightarrow If a function is not differentiable, it has no steepest descent \Rightarrow There might be multiple (equally) "steepest descents"

For ReLu We can choose $\frac{\partial h(z)}{\partial z}\Big|_{z=0}$ from [0,1]Big Note Using a subgradient does not guarantee that our loss function decreases! We might change weights to the worse!

Deep Learning ReLu activation (2)

Subgradients A gradient shows the direct of the steepest descent \Rightarrow If a function is not differentiable, it has no steepest descent \Rightarrow There might be multiple (equally) "steepest descents"

For ReLu We can choose $\frac{\partial h(z)}{\partial z}\Big|_{z=0}$ from [0,1]Big Note Using a subgradient does not guarantee that our loss function decreases! We might change weights to the worse!

Nice properties of ReLu

- Super-easy forward, backward and derivative computation
- Either activates or deactivates a neuron (sparsity)
- No vanishing gradients, since error is multiplied by 0 or 1
- Still gives network non-linear activation

Deep Learning Loss function

Usually Squared error

$$E = \frac{1}{2} \left(y - f^{(L)} \right)^2 \Rightarrow \frac{\partial E}{\partial f^{(L)}} = - \left(y - f^{(L)} \right)$$

Deep Learning Loss function

Usually Squared error

$$E = \frac{1}{2} \left(y - f^{(L)} \right)^2 \Rightarrow \frac{\partial E}{\partial f^{(L)}} = - \left(y - f^{(L)} \right)$$

Recall

$$\frac{\partial h(z)}{\partial z} = h(z) \cdot (1 - h(z)), \delta^{(L)} = \frac{\partial E(f^{(L)})}{\partial f^{(L)}} \cdot \frac{\partial h(y^{(L)})}{\partial y^{(L)}}$$

Usually Squared error

$$E = \frac{1}{2} \left(y - f^{(L)} \right)^2 \Rightarrow \frac{\partial E}{\partial f^{(L)}} = - \left(y - f^{(L)} \right)$$

Recall

$$\frac{\partial h(z)}{\partial z} = h(z) \cdot (1 - h(z)), \\ \delta^{(L)} = \frac{\partial E(f^{(L)})}{\partial f^{(L)}} \cdot \frac{\partial h(y^{(L)})}{\partial y^{(L)}}$$

Thus

$$\delta_j^{(L)} = -\left(y - f^{(L)}
ight) \cdot rac{\partial h(y^{(L)}))}{\partial y^{(L)}} o ext{ small for sigmoid}$$

DeepLearning on FPGAs

 $\begin{array}{l} \textbf{Recall} \\ \frac{\partial h(z)}{\partial z} = h(z) \cdot (1 - h(z)), \\ \delta^{(L)} = \frac{\partial E(f^{(L)})}{\partial f^{(L)}} \cdot \frac{\partial h(y^{(L)})}{\partial y^{(L)}} \end{array}$

Recall $\frac{\partial h(z)}{\partial z} = h(z) \cdot (1 - h(z)), \delta^{(L)} = \frac{\partial E(f^{(L)})}{\partial f^{(L)}} \cdot \frac{\partial h(y^{(L)})}{\partial y^{(L)}}$

Mohamed et. al 2009

Cross-entropy $E = -\left(y\ln\left(f^{(L)}\right) + (1-y)\ln\left(1-f^{(L)}\right)\right) \Rightarrow \frac{\partial E}{\partial f^{(L)}} = \frac{f^{(L)}-y}{(1-f^{(L)})f^{(L)}}$

Recall $\frac{\partial h(z)}{\partial z} = h(z) \cdot (1 - h(z)), \delta^{(L)} = \frac{\partial E(f^{(L)})}{\partial f^{(L)}} \cdot \frac{\partial h(y^{(L)})}{\partial y^{(L)}}$

Mohamed et. al 2009

Cross-entropy $E = -\left(y\ln\left(f^{(L)}\right) + (1-y)\ln\left(1-f^{(L)}\right)\right) \Rightarrow \frac{\partial E}{\partial f^{(L)}} = \frac{f^{(L)}-y}{(1-f^{(L)})f^{(L)}}$ Idea View y and \hat{y} as categorical distribution Then Minimize distance between both distributions

Nice bonus

 $\delta_j^{(L)} = \frac{f^{(L)} - y}{(1 - f^{(L)})f^{(L)}} \cdot \frac{\partial h(y^{(L)}))}{\partial y^{(L)}} = f^{(L)} - y \text{ cancels small sigmoids}$

Recall $\frac{\partial h(z)}{\partial z} = h(z) \cdot (1 - h(z)), \delta^{(L)} = \frac{\partial E(f^{(L)})}{\partial f^{(L)}} \cdot \frac{\partial h(y^{(L)})}{\partial y^{(L)}}$

Mohamed et. al 2009

Cross-entropy $E = -\left(y\ln\left(f^{(L)}\right) + (1-y)\ln\left(1-f^{(L)}\right)\right) \Rightarrow \frac{\partial E}{\partial f^{(L)}} = \frac{f^{(L)}-y}{(1-f^{(L)})f^{(L)}}$ Idea View y and \widehat{y} as categorical distribution Then Minimize distance between both distributions

Nice bonus

 $\delta_j^{(L)} = \frac{f^{(L)} - y}{(1 - f^{(L)})f^{(L)}} \cdot \frac{\partial h(y^{(L)}))}{\partial y^{(L)}} = f^{(L)} - y \text{ cancels small sigmoids}$

Important

Make sure that $\sum f^L = 1 \rightarrow {\rm This}$ is called softmax layer

Data Mining Convergence of SGD

$\ensuremath{\textbf{Recall}}$ We use the SGD framework

- 1: $\vec{\theta} = random()$
- 2: while ERROR do

3: choose random
$$(\vec{x}, y) \in \mathcal{D}$$

4:
$$\vec{\theta} = \vec{\theta} - \alpha_t \cdot \frac{\partial E(x,y)}{\partial \vec{\theta}}$$

5: end while

Data Mining Convergence of SGD

Recall We use the SGD framework

1: $\vec{\theta} = random()$

2: while ERROR do

3: choose random
$$(\vec{x}, y) \in \mathcal{D}$$

4:
$$\vec{\theta} = \vec{\theta} - \alpha_t \cdot \frac{\partial E(x,y)}{\partial \vec{\theta}}$$

5: end while

Bottou etal. 2017 SGD converges if

1) $\frac{\partial E(x,y)}{\partial \vec{\theta}} = \nabla_{\theta} \mathbb{E}[\nabla_{\theta} E(\mathcal{D})]$ is unbiased estimator of true gradient 2) $\alpha_t \to 0$, if E is not convex

Note If E is non-convex we may find a local minima

SGD Stepsize

What about the stepsize?

- If its to small, you will learn slow (\rightarrow more data required)
- If its to big, you might miss the optimum (ightarrow bad results)

SGD Stepsize

What about the stepsize?

- If its to small, you will learn slow (→ more data required)
- If its to big, you might miss the optimum (\rightarrow bad results)

Thus usually Small $\alpha = 0.001 - 0.1$ with a lot of data Note We can always reuse our data (multiple passes over dataset) But Stepsize is problem specific as always!

SGD Stepsize

What about the stepsize?

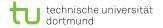
- If its to small, you will learn slow (→ more data required)
- If its to big, you might miss the optimum (\rightarrow bad results)

Thus usually Small $\alpha = 0.001 - 0.1$ with a lot of data Note We can always reuse our data (multiple passes over dataset) But Stepsize is problem specific as always!

Practical suggestion Simple heuristic

- Try out different stepsizes on small subsample of data
- Pick that one that most reduces the loss
- Use it for on the full dataset

Sidenote Changing the stepsize while training also possible



SGD Momentum

$$\begin{aligned} \Delta \widehat{\theta}^{old} &= \alpha_1 \cdot \nabla_{\theta} E(\mathcal{D}, \widehat{\theta}^{old}) + \alpha_2 \Delta \widehat{\theta}^{old} \\ \widehat{\theta}^{new} &= \widehat{\theta}^{old} - \Delta \widehat{\theta}^{old} \end{aligned}$$

technische universität dortmund

SGD Momentum

$$\begin{aligned} \Delta \widehat{\theta}^{old} &= \alpha_1 \cdot \nabla_{\theta} E(\mathcal{D}, \widehat{\theta}^{old}) + \alpha_2 \Delta \widehat{\theta}^{old} \\ \widehat{\theta}^{new} &= \widehat{\theta}^{old} - \Delta \widehat{\theta}^{old} \end{aligned}$$

Theoretically more sound

- Nesterov 1983 / Sutskever et. al 2013 Nesterov momentum
- **Tielman et al. 2012** / Graves 2013 RMSProp
- Kingma and Lei Ba 2015 Momentum tuned for SGD: ADAM
- ...and many more AdaGrad, AdaMax, AdaDelta, ...

Bonus Methods often give heuristic for step-size

SGD Utilize parallelism

(Mini-)Batch

Compute derivatives on batch and average direction \rightarrow parallel computation + only 1 parameter update

$$\widehat{\theta}^{new} = \widehat{\theta}^{old} - \alpha \cdot \frac{1}{K} \sum_{i=0}^{K} \nabla_{\theta} E(\vec{x}_i, \widehat{\theta}^{old})$$

Note That works particularly well on GPUs or FPGAs

SGD Initial solution

For SGD Need initial solution θ

Common in practice

Bias
$$b = 0$$
, weights $w_{ij}^l \sim \mathcal{N}(0, 0.05)$
Bias $b = 0$, weights $w_{ij}^l \sim \mathcal{U}(-0.05, 0.05)$

SGD Initial solution

For SGD Need initial solution θ

Common in practice Bias b = 0, weights $w_{ij}^l \sim \mathcal{N}(0, 0.05)$ Bias b = 0, weights $w_{ij}^l \sim \mathcal{U}(-0.05, 0.05)$

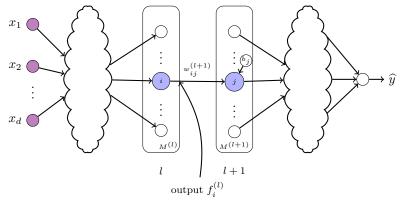
Why care?

$$\begin{split} \delta^{(L)} &= \ \frac{\partial E(f^{(L)})}{\partial f^{(L)}} \cdot \frac{\partial h(y^{(L)})}{\partial y^{(L)}} = -(y_i - f_j^L) f_j^L (1 - f_j^L) \\ \delta^{(L)} &= \ 0 \text{ if } f_j^L = 0 \text{ or } f_j^L = 1 \end{split}$$

Thus We stuck in local minima if we have a bad initialization

DeepLearning on FPGAs

Deep Learning Slow learning rate



Recall

Input of neuron depends on output of previous neurons

DeepLearning on FPGAs

Deep Learning Slow learning rate (2)

Observation During training, activations change over time **Thus** Input distribution for neurons also change over time

Deep Learning Slow learning rate (2)

Observation During training, activations change over time **Thus** Input distribution for neurons also change over time

Note This is what we want! But This prevents us from using larger step-sizes

Deep Learning Slow learning rate (2)

Observation During training, activations change over time **Thus** Input distribution for neurons also change over time

Note This is what we want! But This prevents us from using larger step-sizes

loffe and Szegedy 2015 Internal covariate shift of activations

Idea

Normalize neuron inputs to be zero mean / unit variance

Deep Learning Slow learning rate (3)

During training

Given mini batch $\mathcal{B} = \{(y_j^l)_i\}_{\{i=1,\dots,K\}}$, compute

$$\begin{aligned} \overline{y}_{j}^{l} &= \frac{1}{K} \sum_{i=0}^{K} (y_{j}^{l})_{i} \\ (y_{j}^{l})_{i} &= \frac{(y_{j}^{l})_{i} - \overline{y}_{j}^{l}}{\sqrt{\sigma_{\mathcal{B}} + \varepsilon}} \end{aligned}$$

Deep Learning Slow learning rate (3)

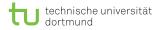
During training

Given mini batch $\mathcal{B} = \{(y_j^l)_i\}_{\{i=1,\dots,K\}}$, compute

$$\begin{aligned} \overline{y}_j^l &= \frac{1}{K} \sum_{i=0}^K (y_j^l)_i \\ (y_j^l)_i &= \frac{(y_j^l)_i - \overline{y}_j^l}{\sqrt{\sigma_{\mathcal{B}} + \varepsilon}} \end{aligned}$$

Note

During inference there is usually no mini batch **Thus** Estimate y_i^l over all training data while training



Common intuition 1

Large models tend to memorize data \rightarrow no generalization

Common intuition 1

Large models tend to memorize data \rightarrow no generalization

Han et. al 2016 $\sim 1.2-140$ Million parameters in ≥ 8 layers

Common intuition 1

Large models tend to memorize data \rightarrow no generalization

Han et. al 2016 $\sim 1.2-140$ Million parameters in ≥ 8 layers

Common intuition 2

Training error always decreases, but test error may increase again

Common intuition 1

Large models tend to memorize data \rightarrow no generalization

Han et. al 2016 $\sim 1.2-140$ Million parameters in ≥ 8 layers

Common intuition 2

Training error always decreases, but test error may increase again

Bishop '95 / Sjörborg & Lijung '95 Limit SGD to volume around initial solution

Common intuition 1

Large models tend to memorize data \rightarrow no generalization

Han et. al 2016 $\sim 1.2-140$ Million parameters in ≥ 8 layers

Common intuition 2

Training error always decreases, but test error may increase again

Bishop '95 / Sjörborg & Lijung '95 Limit SGD to volume around initial solution

Common practice Early stopping \rightarrow Use fixed number of iterations or timesteps

Deep Learning Force redundancy

Hinton et al. 2013 / Srivastava et al. 2014 DropOut Ignore neuron with probability p during forward-pass in training \rightarrow sometimes $f_i^l = 0$ during training

Deep Learning Force redundancy

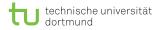
Hinton et al. 2013 / Srivastava et al. 2014 DropOut Ignore neuron with probability p during forward-pass in training \rightarrow sometimes $f_i^l = 0$ during training

Wan et al. 2014: DropConnect Ignore weight with probability p during forward-pass in training \rightarrow sometimes $w_{i,i}^l = 0$ during training

Summary

Important concepts

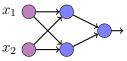
- **For parameter optimization** we define a loss function
- For parameter optimization we use gradient descent
- Neurons have activation functions to ensure non-linearity and differentiability
- Backpropagation is an algorithm to compute the gradient
- **Deep Learning** requires new activation functions
- Deep Learning requires new loss functions
- Deep Learning sometimes require a lot fine-tuning



Homework

Homework until next meeting

Implement the following network to solve the XOR problem



- Implement backpropagation for this network
 - Try a simple solution first: Hardcode one activation / one loss function with fixed access to data structures
- If you feel comfortable, add new activation / loss functions

Tip 1: Verify that the proposed network uses 9 parameters **Tip 2:** Start with $\alpha = 1.0$ and 10000 training examples **Note:** We will later use C, so please use C or a C-like language **Question:** How many iterations do you need until convergence?