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ABSTRACT 

This paper presents results and lessons from KDD Cup 2001.  
KDD Cup 2001 focused on mining biological databases.  It 
involved three cutting-edge tasks related to drug design and 
genomics. 
Keywords 

Competition, biology, drug design, genomics 

1. INTRODUCTION 
Since its inception five years ago, the KDD Cup has become an 
event of international stature.  It is recognized widely not only 
within the community but among scientists from other fields as 
well.  While much attention surrounds winning the cup, its 
primary contribution still is to serve as a laboratory from which 
the community can learn many valuable lessons and identify key 
areas for further research.  Several important lessons can be 
gleaned from KDD Cup 2001.  They include the following, at 
least the first two of which will be surprising to many readers. 
 
• A Bayes net learner can outperform the leading classification 

algorithms on a pure classification task. 
• A feature-based learner can outperform relational learners on 

a multi-relational task, if the features are constructed by a 
clever “propositionalization” algorithm. 

• More research is needed on comprehensibility, human-
computer interaction, and performance evaluation.  

• While interest is booming in mining data on networks of 
interacting genes or proteins, interaction so far has not 

proven to be the most useful piece of information for 
predicting important protein or gene properties such as 
function and localization. 

  
This paper reviews KDD Cup 2001, describes the winning 
approaches, and concludes with a discussion of the 
aforementioned lessons.  Other more specific lessons also can be 
found at the conclusion of each section about the winning 
approach to a task. 
 
Because of the rapid growth of interest in mining biological 
databases, KDD Cup 2001 was focused on data from genomics 
and drug design.  Sufficient information was provided so that 
detailed domain knowledge was not a requirement for entry.  A 
total of 136 groups participated to produce a total of 200 
submitted predictions over the 3 tasks: 114 for Thrombin, 41 for 
Function, and 45 for Localization.  The remainder of this section 
discusses these three tasks and statistics of the entries.  The 
subsequent three sections describe the winning approaches to the 
three tasks and are written by the winners themselves.  
 
KDD Cup 2001 involved three tasks, based on two data sets, one 
of which was a little over half a gigabyte in size and the other a 
little over seven megabytes.  While the first consisted of a single 
relational table, or flat file, the second consisted of two relational 
tables that were produced from an original seven relational tables.  
A single flat file also was provided with the second data set, but 
users were warned that they might get better results by staying 
with the multiple relational tables or by doing their own 
conversion. Further details on the tasks along with the complete 
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datasets and answer keys and also copies of the presentations 
given by the cup organizers and the winning teams can be found 
at the KDD Cup 2001 web site (http://www.cs.wisc.edu/ 
~dpage/ kddcup2001/).  
 
 

1.1 Dataset 1: Prediction of Molecular 
Bioactivity for Drug Design – Binding to 
Thrombin 
 
Drugs are typically small organic molecules that achieve their 
desired activity by binding to a target site on a receptor. The first 
step in the discovery of a new drug is usually to identify and 
isolate the receptor to which it should bind, followed by testing 
many small molecules for their ability to bind to the target site. 
This leaves researchers with the task of determining what 
separates the active (binding) compounds from the inactive (non-
binding) ones.  Such a determination can then be used in the 
design of new compounds that not only bind, but also have all the 
other properties required for a drug (solubility, oral absorption, 
lack of side effects, appropriate duration of action, toxicity, etc.). 
 
The thrombin training data set consisted of 1909 compounds 
tested for their ability to bind to a target site on thrombin, a key 
receptor in blood clotting.1  Of these compounds, 42 are active 
(bind well) and the others are inactive. Each compound was 
described by a single feature vector comprised of a class value (A 
for active, I for inactive) and 139,351 binary features, which 
describe three-dimensional properties of the molecule. The 
definitions of the individual bits were not included -entrants were 
told only that they were generated in an internally consistent 
manner for all 1909 compounds. Biological activity in general, 
and receptor binding affinity in particular, correlate with various 
structural and physical properties of small organic molecules. The 
task was to determine which of these properties are critical in this 
case and to learn to accurately predict the class value. 

 
This task is exemplary of a large family of related tasks arising 
within both the pharmaceutical industry and university research 
laboratories.  In fact, in some cases the number of feature-to-
example ratio can be even greater than here.  To further simulate 
the real-world drug design environment, the test set contained 636 
additional compounds that were in fact generated based on the 
assay results recorded for the training set.  The goal was to see 
who (if anyone) could outperform the chemists who decided on 
this new set of 636 compounds to make and test.  If a data mining 
system could perform better, it could be used to help select the 
next round of compounds to synthesize and test for similar 
applications.  Because more compounds prove to be inactive than 
active, a predictor that always says “inactive” will achieve a 
relatively high accuracy even though it is completely useless.  
Therefore, in evaluating the accuracy for this task only, a 
differential cost model was used.  The simplest description of this 
model that we have found is as follows.  We compute the 

                                                                 
1 We thank DuPont Pharmaceuticals Research Laboratories for graciously 

providing this data set for the KDD Cup 2001 competition.  All 
publications referring to analysis of this data set should acknowledge 
DuPont Pharmaceuticals Research Laboratories and KDD Cup 2001. 

accuracy on true actives and the accuracy on true inactives and 
compute the (unweighted) average these two.  Hence it was just as 
important for entrants to minimize their error rate on the actives as 
to minimize their error rate on the inactives, 
 
This last point regarding evaluation is worth a bit more 
discussion.  Ideally, we would compare approaches using ROC 
curves (comparing areas under the curves).  But this was 
infeasible because participants submit their predictions, not their 
predictors; furthermore, some predictors are not easily modified to 
be more or less conservative, as is required to generate ROC 
curves. John Elder (private communication) proposed using ``lift.''  
Perhaps this should be considered for some future KDD Cup 
tasks, but it requires participants to rank-order their predictions 
(most likely active, second-most likely active, etc.), which some 
predictors are not easily modified to do.  
 

 

1.2 Dataset 2: Prediction of Gene/Protein 
Function and Localization 
 

The genomes of several organisms have now been sequenced, 
including the human genome.  Interest within bioinformatics 
therefore has shifted away from classical genomics mainly 
concerned with sequence assembly and gene identification, to 
functional genomics, i.e. learning about the genes encoded in the 
sequence.  Genes code for proteins, and these proteins tend to 
localize in various parts of cells and interact with one another, in 
order to perform crucial functions.  Although genes that encode 
for 6449 yeast proteins are already known, only 52% of these 
proteins have been characterized.  Of the remaining, only 4% 
show a strong similarity at the sequence level that can form a 
basis for inferring function.  It therefore becomes imperative to 
use information beyond sequence similarity to characterize the 
unknown genes.  Data set 2 consisted of a variety of gene-level 
and protein-level information from the yeast genome.2  Gene 
names were anonymized and a subset of the genes (about 1/3) 
were withheld for testing. 

 

Two tasks were associated with data set 2.  These two tasks were 
to predict the functions and localizations of the proteins encoded 
by the genes.  The functions actually are fifteen broad functional 
categories, while the locations are fifteen different parts of the 
cell.  A gene/protein can have more than one function, but rarely 
(in this data set) more than one localization.  The other 
information provided about the genome is described in the  
following two paragraphs. 

 

One relational table specified which genes (or their protein 
products) interact with which other genes.  An interaction may be 
physical, in which the protein for which one gene codes is known 
to bind in some way with the protein for which another gene 
codes.  Or an interaction may be genetic, in which the presence or 

                                                                 
2 We thank the team at MIPS (Munich Information Center for Protein 

Sequences) for making the protein interaction data available 
(http://mips.gsf.de/proj/yeast/CYGD/db/index.html)   
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absence of a protein affects the level of expression of the gene 
encoding for another.  Or an interaction may be both physical and 
genetic.  This relational table also presents the degree of 
correlation between the  expression levels of the two genes under 
a given experimental condition,  as measured by gene expression 
microarrays.3 

 

The other relational table specified a variety of properties of 
individual genes or proteins.  These included the chromosome on 
which the gene appears, whether organisms with a mutation in 
this gene can survive, phenotype (observable characteristics) of 
organisms with differences in this gene, structural category of the 
protein for which this gene codes (what general shape does the 
protein take), the existence of characteristic motifs in the amino 
acid sequence of the protein, and whether the expression of this 
gene complexes with others to form a larger protein.  It further 
would have been desirable to use sequence information about 
each gene. 

 

But in contrast to the Thrombin dataset, yeast genome data 
already was in the public domain.  Had we provided the sequence, 
it would have been too easy for anyone to identify each gene in 
the test set and “look up” its functions and localization.  Indeed, 
the cup co-chairs considered even anonymizing all the field names 
and values, to completely ensure the answers could not be found 
in this way.  But in the end the co-chairs decided this decision 
would take too much away from the interestingness of the data set 

and tasks. 

                                                                 
3 The gene expression profiles were from the diauxic study growth of 

 

An additional challenge with using protein interactions as a 
predictor of function is the fact that high-throughput approaches, 
such as the yeast two-hybrid system, that are used to screen 
physical interactions can generate many false-positive relations.   

 

For example, a protein might have the right sequence 
complementarity to interact with another protein, but the second 
protein is localized in a different compartment in the cell and 
therefore cannot interact under physiological conditions. 

 

A final challenge was that, because both function and localization 
had to be withheld in the test set, predictors for function could not 
use localization (even though it was present in the training set) 
and predictors for localization could not use function.  In actual 
practice, it is common to have localization information available 
when one is trying to predict function. 

 

Evaluation of localization was the simplest of the three tasks.  
Each entry was permitted to predict only one localization per 
gene.  If more than one localization was predicted, the first 
prediction was used.  The score of an entry was simply the 
fraction of genes for which the correct localization was predicted.  
Evaluation of function was slightly more complicated because a 
gene could have more than one function.  An entry could contain 
arbitrarily many function predictions per gene.  Our key consisted 

of all (gene,function) pairs where the gene was known to have the 

                                                                                                           

DeRisi et al. (1997) and are available at the Stanford Microarray 
Database (http://genome-www5.stanford.edu/MicroArray/SMD/) 
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Figure 1.  Number of participant groups and distribution of submissions by task and group affiliation.  
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function.  A (gene,function) pair was counted correct for an entry 
if it either (1) appeared in both our key and the prediction or (2) 
appeared in neither our key nor the prediction.  Otherwise it was 
counted incorrect.  The score of an entry was the number of 
correct pairs over the total number of (gene,function) pairs. 

 

 
1.3 Submission Statistics 
As shown in Fig. 1, a total of 136 groups participated to produce a 
total of 200 submitted predictions over the 3 tasks: 114 for 
Thrombin, 41 for Function, and 45 for Localization.  This 
represents a five-fold increase in participation over previous years 
with more than half of the entries being contributions from the 
commercial sector.  We believe that the increased level of 
participation could very likely represent a growing interest by the 
data mining community in bioinformatics-related knowledge 
discovery problems.  This is supported by the workshop and 
keynote talk on the same subject in this year’s conference.4 

 

We asked the participants to send a paragraph describing their 
approach in exchange of an email report of their performance 
along with the performance of everyone else.  We received 156 
responses and these provided the basis for the summary report on 
the approach and software used for the data mining tasks.  The 
breakdown by origin of data mining software used by the 
participants in the three tasks is shown in Figure 2.  About 60% of 
the competitors used custom software, i.e. software that they 
wrote.  It is interesting to note that, especially for the Thrombin 
task, only 5 out of 79 groups (6%) used commercial or proprietary 
software.  This reverses the trend observed over the previous 
competitions, where 77% of the participants in the KDD-Cup 
2000 used commercial software.5  The use of custom software in 
KDD-Cup 2001 was dictated by the nature of the problems, as 
most commercial software systems cannot handle the excessive 
number of features in the Thrombin dataset and the multi-class 
nature of the Function prediction task.  In contrast, for 
                                                                 
4 KDD-2001 Workshop: “Data Mining in Bioinformatics” organized by 

M.J. Zaki, H.T.T. Tiovonen and J.T.L. Wang.  Keynote talk: 
“Challenges for Knowledge Discovery in Biology” by Russ Altman. 

5 Kohavi et al. (2001) KDD-Cup 2000 Organizers’ Report: Peeling the 
Onion.  SIGKDD Explorations 2(2):86-98. 

Localization prediction, which lends itself better as a standard 
single-class classification task, 32% of the competitors used 
commercial data mining packages. These observations on 
software usage seems to indicate that although many mature 
commercial data mining packages are available, data from the 
bioinformatics-related domains pose unique challenges that 
commercial packages cannot address adequately.  

 

As mentioned, both the relational tables and a denormalized flat 
file were made available for the Function and Localization tasks.  
Of the 57 competitors who provided information on the dataset 
used, 33 used the fully-denormalized set, 21 used both the genes 
and interaction relational tables, and 3 used only the genes table.  
Most likely, this was due to lack of access to data transformation 
tools that can deal easily with relational data.  

Figure 3 summarizes the algorithmic approaches used in the data 
mining tasks by the competitors.  Not surprisingly, almost 70% of 
the competitors in the Thrombin task used feature selection in 
combination with some other algorithm, but only a very small 
number of them created new features for that dataset.  However, 
about 15% of the competitors in the Function and Localization 
tasks constructed new features mainly to capture the relational 
nature of the data.  Decision trees and ensemble classifiers based 
on more than one algorithms were by far the most popular for all 
three tasks, followed by Naïve Bayes and k-nearest neighbor 
classifiers.  The k-nearest neighbor classifiers offered certain 
advantages in dealing with the significant fraction of missing data 
in Dataset 2.  Surprisingly, only two groups used relational 
approaches, such as inductive logic programming (ILP), despite 
the fact that such techniques can deal “naturally” with relational 
data.  Finally, a relatively small number of competitors used 
cross-validation techniques in an iterative fashion to improve 
algorithm selection and tuning. 
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The remainder of the paper is organized as follows.  Section 2 is 
discusses the winning approach to Task 1: Thrombin and is 
written by Jie Cheng.  Section 3 discusses the winning approach 
to Task 2: Function and is written by Mark Krogel.  Section 4 
discusses the winning approach to Task 3: Localization and is 
written by Hisashi Hayashi, Shinichi Morishita, and Jun Sese.  
Section 5 discusses broad lessons from the competition; Sections 
1 and 5 are written by the co-chairs Christos Hatzis and David 
Page.  Before continuing, we would like to provide honorable 
mention to several teams that either came very close to the 
winning score for a task or provided particularly important 
insights.  These are: 

 

• Task 1: Tomi Silander, University of Helsinki. 

• Task 2: Christophe Lambert, Golden Helix; Jun Sese, 
Hisashi Hayashi, and Shinichi Morishita, University of 
Tokyo; David Vogel and Ramanujan Srinivasan, A.I. 
Insights; Sara Pocinki, Robert Wilkinson, and Patrick 
Gaffney, Lubrizol. 

• Task 3: Matthias Schonlau, William DuMouchel, Chris 
Volinsky, and Corina Cortes, RAND and AT&T; Brian 
Frasca, Zijian Zheng, Rajesh Parekh, and Ronny 
Kohavi, Blue Martini. 

 

2. THROMBIN RESULT 
2.1 Overview 
The aim of this task is to learn a classifier that can effectively 
predict whether an organic molecule can bind well to a target site 
on thrombin -- a key receptor in blood clotting, given the 
chemical structure of the compound.  

From the description of this task in Section 1.2, we can see that 
this is a highly challenging problem for three reasons. First, the 
training data set is extremely imbalanced and the number of 
positive examples is very small – only 42 compounds (2.2 percent 
of the total 1909) are active. This prevents us from using standard 
model evaluation and selection techniques such as creating 
separate validation set or using k-fold cross validation. Second, 
the feature vector contains 139,351 features, which is a lot more 
than most learning systems can handle. Therefore, having the 
proper techniques for effective dimension reduction is crucial 
here. Third, because the examples in the test set are not drawn 
from the same distribution as the training set, the distribution of 
test set is expected to be very different from that of the training 
set. This means that we do not have a properly defined 
misclassification cost function. As a result, finding the cut-point 
to separate the active compounds from the inactive compounds 
using their posterior probabilities can be quite tricky. 

Because we have a lot of experience in learning Bayesian network 
classifiers and our previous work showed that Bayesian networks 
can be excellent classifiers and have unique advantage in feature 
selection [4][5], we decided to apply Bayesian network learning 
techniques to this task. 
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2.2 Introduction to Bayesian Network 
A Bayesian network Θ= ,, ANB  is a directed acyclic graph 

(DAG) AN ,  where each node Nn ∈  represents a domain 

variable (eg, a dataset attribute), and each arc Aa ∈  between 
nodes represents a probabilistic dependency, quantified using a 
conditional probability distribution (CP table) Θ∈iθ for each 

node ni (see [16,17]).  A BN can be used to compute the 
conditional probability of one node, given values assigned to the 
other nodes; hence, a BN can be used as a classifier that gives the 
posterior probability distribution of the class node given the 
values of other attributes. A major advantage of BNs over many 
other types of predictive models, such as neural networks, is that 
the Bayesian network structure represents the inter-relationships 
among the dataset attributes (Fig. 4). Human experts can easily 
understand the network structures and if necessary modify them to 
obtain better predictive models.  

We will later use the idea of a Markov boundary of a node y in a 
BN, where y’s Markov boundary is a subset of nodes that 
“shields” n from being affected by any node outside the boundary. 
One of y’s Markov boundaries is its Markov blanket, which is the 
union of y’s parents, y’s children, and the parents of y’s children. 
When using a BN classifier on complete data, the Markov blanket 
of the classification node forms a natural feature subset, as all 
features outside the Markov blanket can be safely deleted from the 
BN. This can often produce a much smaller BN without 
compromising the classification accuracy. 

Figure 4 shows the structure of a Bayesian net classifier learned 
from the Adult data set, which is extracted from the census bureau 
database and commonly used as a benchmark dataset for learning 
models that predict whether a person’s salary is over 50K per 
year. The Adult data set contains 12 features and the class 
attribute (a.k.a. target variable) is “Salary”. In Figure 4, we 
ignored five attributes that are outside the Markov blanket of the 
target node since those attributes will not affect the outcome of 
the classification when there is no missing value. Here we can see 
that feature selection is a natural byproduct of the Bayesian net 
learning.  

Although the arrows in Bayesian network are commonly 
explained as causal links, in classifier learning, the class attribute 
is normally placed at the root of the structure in order to reduce 
the total number of parameters in the CP tables. For convenience, 
we can imagine that the actual class of a sample ‘causes’ the 
values of other attributes. Using the classifier in Figure 4, we 
achieved one of the best predictive accuracies ever reported on the 
Adult data set [5]. 

Salary 

A ge Capital_gain  

Capital_ loss 

Occupation Marital_status 

Education 

Relationship  

 

Figure 4.  Bayesian network structure of  ‘Adult’ data 
set. 

The two major tasks in learning a BN are: learning the graphical 
structure, and then learning the parameters (CP table entries) for 
that structure.  As it is trivial to learn the parameters for a given 
structure that are optimal for a given corpus of complete data – 
simply use the empirical conditional frequencies from the data – 
we will focus on learning the BN structure. 

There are two ways to view a BN, each suggesting a particular 
approach to learning. First, a BN is a structure that encodes the 
joint distribution of the attributes. This suggests that the best BN 
is the one that best fits the data, and leads to the scoring-based 
learning algorithms, that use heuristic search to seek a structure 
that maximizes the Bayesian, MDL or Kullback-Leibler (KL) 
entropy scoring function [7,11]. 

Second, the BN structure encodes a group of conditional 
independence relationships among the nodes, according to the 
concept of d-separation [17]. This suggests learning the BN 
structure by identifying the conditional independence 
relationships among the nodes. These algorithms are referred as 
CI-based algorithms or constraint-based algorithms [6,19].  

We developed a unique constraint-based three-phase dependency 
analysis algorithm, which is especially suitable for data mining in 
high dimensional data sets due to its efficiency. (The complexity 
is roughly O(N^2) where N is the number of features; see [6] for 
details.) In [4,5], we studied various aspects of learning Bayesian 
networks as classifiers. The empirical results on a set of standard 
benchmark datasets show that Bayesian networks are excellent 
classifiers. We have also developed two Bayesian network 
learning systems: BN PowerConstructor [2], which is used for 
general Bayesian network learning, and BN PowerPredictor [3], 
which is used for classifier learning. PowerPredictor is the tool 
that we use in this KDD CUP competition. 

2.3 Our Approach to Thrombin Data 
2.3.1 Data Pre-processing 
Because there are only 42 positive examples in the training data, it 
is quite obvious that the data cannot support a complex model that 
uses many features. Therefore, it is justified to apply dimension 
reduction techniques. The first thing we would like to do is 
feature filtering. The goal is to create a feature subset that is large 
enough to include all the important features and is small enough 
for our learning system to handle easily. At this stage, we are not 
trying to come up with the final feature subset but to exclude the 
features that are not strongly correlated with the target variable. 

To achieve this, we applied the standard information gain feature 
filtering. We computed the mutual information between each of 
the 139,351 features and the target variable (“Activity”) using 
Equation 1, and then sorted these features by their information 
gain from large to small. In Figure 5, we plotted the top 30,000 
features. It is easy to see that only a very small portion of the 
features on the top have strong correlation with the target variable. 
Based on this plot, we decided to filter out the features that have 
information gain less than 0.035. This left us with around 200 
features. 
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Figure 5.  The information gain of the top 30000 

features 

2.3.2 Learning and evaluating Bayesian Network 
models 
The BN PowerPredictor system allows users to control the 
complexity of the learned network by adjusting a threshold value. 
It can also use a wrapper to search for an optimal model based on 
the model’s performance on a validation set. The system allows 
users to choose from two commonly used performance measures: 
the prediction accuracy and the area under ROC curve (AUC) (see 
[10]). For this problem, the AUC measure is more appropriate 
since the cost function is actually unknown. 

Since there are only 42 positive examples in the training set, we 
cannot afford to use a part of the training set as the validation set 
to search for an optimal model. We cannot even afford to use 10- 
fold cross validation. Although leave-one-out cross validation 
might work, it is very expensive computationally and the time we 
could spend on the KDD Cup was very limited. Therefore, we 
decided to abandon the wrapper approach. Instead, we decided we 
would have to create several candidate models and pick the one 
that seemed most appropriate. 

Based on the above analysis, we generated five candidate models 
from the preprocessed training data set that had 200 features and 
1909 instances. Learning each model took about 8 minutes on a 
Pentium III PC. Although each model had many connections 
among the 200 features, we could safely ignore most of each 
network by only studying the sub-network that contained the class 
node and the features in the Markov blanket. Each of the five 
candidates had from two to twelve features. For each candidate, 
we used it to classify the whole training set and measured its AUC 
scores. Then we picked the simplest model that had a “decent” 
AUC score – a model with only four features. Because the 
performances were not measured using out-of-sample data, we 
could not simply pick the one with the highest score. In fact, all of 
the more complex candidates give slightly better scores. The 
chosen model is shown in Figure 6. 

 

 

 

 

 

Figure 6.  The Bayesian network classifier 

2.3.3 Classifying the testing set 
Using the chosen model, we created the posterior probabilities of 
each instance in the test data set. The next thing to do was to 
decide the cut point to classify the test cases into either active or 
inactive. If the test data were drawn from the same distribution as 
the training data, and the cost function were known, we could 
then calculate the optimal cut point from the ROC curve. 
However, this was not the case. Fortunately, when we examined 
the probabilities of the test cases, we could see that the model 
only gave nine distinct probability values due to its simplicity, 
which meant there were only eight possible cut points to choose 
from – we could either classify 32 tests cases as active, or 71 
cases, or 72, 74, 75, 215, 223, 550. Since we knew that there were 
still more inactive cases than active cases, we decided to classify 
223 cases as active. We did not want to classify a smaller number 
of cases as active because misclassifying a true active case cost 
more. 

2.3.4 Analyzing the result 
After the true labels of the test cases were released, we measured 
the performance of all the candidate models. We were glad to see 
that the model we chose was actually the best, which means the 
more complex models were overfitting models. Our final model 
gave classification accuracy 0.711 and weighted accuracy 0.684. 
Its ROC curve and confusion matrix are shown in Figure 7. 
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Figure 7.  The ROC curve and the confusion matrix of the 
chosen model 
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2.4 Discussion 
There are three things we have learned from working on the 
KDDCUP project: 

1. The combination of information gain based feature 
filtering and the Bayesian net based feature selection is 
a novel, effective approach for analyzing high-
dimensional data.  If the data had contained only the 
four features our model used, we believe many classifier 
learning techniques would have attained similar 
performance. 

2. We gained awareness of the overfitting problem when 
out-of-sample validation is impossible, especially when 
the sample size is small. 

3. One should carefully choose performance measures that 
are cost function independent when a well-defined cost 
function is not available, such as the AUC. 

 

3. PREDICTING FUNCTION 
 
This section presents a description of an approach to KDD-Cup 
2001 tasks 2 and 3, prediction of gene/protein function and 
localization. The approach includes the application of the 
software system RELAGGS, which was developed at Magdeburg 
University.  Due to this system, we were able to win the Cup for 
task 2, which forms the focus of this section.   
 
 

3.1  Motivation 
 
The main objective for our participation in KDD-Cup 2001 was to 
evaluate our approach to data analysis RELAGGS, which was first 
presented in more detail shortly after KDD-2001 [13]. We were 
especially interested in the opportunity to compare our approach 
to others and their results.  
 
RELAGGS is intended to deal with relational data, i.e. data spread 
over multiple tables as is usually the case in a relational database. 
The data for tasks 2 and 3 were announced as relational data, so 
our attention was drawn here. 
 
Before the Cup, our approach had been tested on several learning 
tasks concerning relational datasets from financial domains. 
Although these data had been used in data mining competitions in 
previous years, there was limited information about the results of 
their participants, so we were lacking chances for comparisons 
with our results. 
 
Moreover, the data from the Cup’s domain of biology offered a 
new challenge compared to those from insurance companies and 
banks. These biological data were more complex in terms of 
recursive structures introduced by interactions of proteins. 
Furthermore, we had only dealt with concept learning so far, not 
yet with multi-class problems. 
 

3.2  Preprocessing with SQL 
 

Tasks 2 and 3 asked for models to predict among 15 functions and 
15 localizations of proteins, respectively. Two variants of the data 
were provided: firstly, a single table with single lines per example 
and almost 3.000 columns, and secondly, two tables as a 
relational dataset with less than 10 attributes each. Because of our 
interest in relational data mining, we focused on the latter variant 
of the data. The two tables given were named genes_relation and 
interactions_relation, cf. Figure 8 on the left.  
 

 
 
Figure 8.  Renormalization of the original data (rectangles: 
tables, arrows between tables: foreign links, t/t: separate 
tables for training and test genes). 
 
The genes_relation contained 862 training examples, the 
corresponding relation for testing included 381 test examples. 
There could be more than one line in the tables describing each 
gene. Genes could be identified with the help of a key attribute 
gene_id. RELAGGS takes as input a dataset in normal form (NF), 
especially demanding for single lines per example in the target 
table. This is why the original data had to be transformed with the 
help of SQL view definitions into a different representation, cf. 
Figure 8 on the right. Note that renormalization should be 
unnecessary in many practical applications, since databases are 
usually in normal form.  
 
The data from the original table genes_relation was now 
represented in tables gene, class, complex, phenotype, and motif. 
Moreover, the original function and localization attributes in the 
gene table were split into a number of attributes: one for each 
function and one for each localization, with possible values 0 
(false) and 1 (true) for training examples, and ? (unknown) for test 
examples. This was another prerequisite for the application of 
RELAGGS and SVMlight. Now, there is a one-to-many 
relationship between table gene and each of the other four tables. 
This is indicated by so-called foreign links, which correspond to 
foreign key relationships but differ from those wrt. the definition 
of direction [20]. 
 
Note that a natural join of gene, class, complex, phenotype, and 
motif on gene_id reproduces the original genes_relation, apart 
from differences due to the new representation of the target 
attributes for functions and localizations. Note also that a 
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universal join like this is problematic in the general case because 
of the dangers of exponential explosions or losing data. 
 
Concerning the interactions_relation, we first tried to find out 
what kind of relation was established here, i.e. properties such as 
reflexivity, symmetry, and transitivity. We sent our questions 
concerning the former two properties to the Cup organizers and 
received a prompt and helpful reply, which also appeared in the 
Questions & Answers section of the Cup Web site. The property 
of reflexivity was not valid for the interactions relation, but 
symmetry was.  
 
Since RELAGGS cannot (yet) deal with background knowledge 
in the form of general rules, e.g. a rule for establishing symmetry, 
this feature of interactions had to be made explicit. For each pair 
of genes (gene1, gene2) included in interactions_relation, we also 
inserted the pair (gene2, gene1) into our interaction table, if it was 
not already there. 
 
The issue of transitivity became relevant to us only after the first 
question period of the Cup was over. We did not want to consider 
only direct “neighbors,” i.e. genes/proteins interacting according 
to the orignal table interactions_relation (plus symmetry). 
However, RELAGGS cannot (yet) deal with cycles in the graph of 
tables and foreign links as contained in the original data. In this 
situation, we decided to take the following measures: 
 

1. We tried to find a way to also have “neighbors of 
neighbors,” etc. explicit in our interaction table. For 
non-direct neighbors, we computed the product of the 
correlation values of the corresponding interactions. An 
example: with (gene1, gene2) and (gene2, gene3) 
already in the interaction table, (gene1, gene3) and the 
product of the correlations of the original two 
interactions could be also inserted into the interaction 
table.  

 
2. In order to avoid a very large interaction table, we 

concentrated on those interactions for which high 
correlation values were given or computed (> 0.5) and 
which did not exceed four levels of neighborhood. 

 
3. We created an extra table geneN that included all genes 

which where “neighbors” of others according to our 
interaction table.  

 
In this context, we introduced foreign links to the tables for class, 
complex, phenotype, and motif, in a special way. They would 
have had their origin in the table geneN, analogous to foreign 
links from the gene table. However, we had them originate 
directly from the interaction table. This “flattening” of the 
database schema made the computation of joins in the later steps 
of the KDD process more efficient.  
 
Finally, after the test data had been provided, we integrated 
training and test data such that properties such as class 
information for test genes, which were neighbors of training 
examples, could be of influence on the models to be found. We 
just kept separate gene tables for training and testing because this 
simplified procedures like 10-fold cross-validation at later stages. 
 

3.3 Preprocessing with RELAGGS 
 
The name of our approach hints at the form of the input data to 
the system, viz. relations, and the application of aggregate 
functions to this input. (Occasionally, we now translate it into 
“rely on aggregation, sometimes.”) 
 
So, what does RELAGGS do? It takes as input a description of the 
tables including their names and numbers of attributes, the names 
and types of attributes, lists of possible values for categorical 
attributes, and furthermore, a description of the foreign links and 
the target attribute. Finally, the contents of the tables also forms 
part of the input. 
 
RELAGGS uses the foreign link information to compute join 
definitions, e.g. for a join of the tables gene and class, gene and 
complex, etc. Then, these joins are computed and SQL standard 
aggregation functions are applied (count for relations and 
categorical values; avg, max, min, and sum for numeric attributes) 
to collapse the joins into one line per gene. In the example, this 
means just counting the possible values for class, complex, etc. 
Unknown values are handled by simply not counting them. 
Finally, the target attribute (here localization) is concatenated with 
all the single lines per gene originating from the different joins. 
 
The RELAGGS output consists of a single table, optionally 
formatted as input for C4.5 or SVMlight, cf. Figure 9. In inductive 
logic programming, the transformation of multiple tables into a 
single table is called propositionalization. For the final training 
and testing, a run of RELAGGS took about a minute, and the 
output table contained 938 columns. 
 
 

Figure 9.  Propositionalization. 
 
 

3.4 Data Mining with SVMlight 
 
As mentioned above, RELAGGS can output files for C4.5 [12] 
and SVMlight [18]. In our earlier experiments, we had used these 
learners with their default parameter settings [13].  We used these 
settings here as well. 
 
Actually, the first focus for optimizations was not on function 
prediction but on localization prediction, and especially on the 
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most frequent class nucleus (42.5% of all localizations). A series 
of more than 50 10-fold cross-validation experiments showed that  
 
 

1. SVMlight performed better then both C4.5 and C4.5rules 
here (10.1% ± 2.6% vs. 14.9% ± 4.0% / 14.1% ± 3.9%), 
which was different from our earlier experiments with 
financial data, and with differences being statistically 
significant according to paired t-tests at 0.05 level. 

 
2. SVMlight standard parameters performed well; among 

other findings was that a change from the default linear 
kernel to quadratic or kubic ones resulted in overfitting. 

 
3. Other representations of the input data, such as a variant 

without interaction data, did not perform as well as the 
representation described above, although differences 
were usually small and statistically significant for some 
variants only. 

 
An SVMlight run on the RELAGGS output took a few seconds and 
resulted in model files from the training genes and in prediction 
files for the test genes as depicted in Figure 10. Predictions are 
either above zero for positive cases or below zero for negative 
cases. The real-valued differences from zero express a degree of 
confidence in the predictions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Application of SVMlight 

 

 
3.5 Postprocessing with SQL 
 
The predictions for single functions and localizations had to be 
integrated into a final solution. There was a simple opportunity for 
localization prediction: we chose the value for localization with 
the highest confidence value provided by SVMlight, regardless if 
positive or negative. 
 
In the context of function prediction, we made the observation 
that the table for test genes included several identical lines per 
example after class, complex, etc. information had been extracted 
to different tables. We interpreted this circumstance as an 
information about the number of functions to be predicted per 
gene/protein.  
 

When it came to function prediction, we at first chose those 
functions with a confidence higher than zero. In a next step, we 
tried to also include the function with a negative confidence 
closest to zero, if we had not yet as many functions predicted as 
indicated by the number of the identical lines in the gene table 
mentioned above. If we had too many functions predicted already, 
we removed the one with the smallest confidence. Based on 10-
fold cross-validation, we found out that only the latter  step of 
prediction removals improved prediction accuracy. So, we did 
only this for the construction of the final predictions, cf. also 
Figure 11.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Construction of the final predictions. 
 

 
3.6. Results, discussion, conclusion 
 
From 10-fold cross-validation, we received an estimate of 92.9% 
accuracy for function prediction and 72.5% accuracy for 
localization prediction. From the Cup organizers, we received the 
actual results of 93.6% accuracy for function prediction and 
69.8% accuracy for localization prediction. While the former 
made us the winner on task 2, the latter meant rank 4 on task 3.  
 
It seems that it was a good strategy here to include all the 
information we could get about the genes/proteins, including the 
integration of training and test data and the usage of assumptions 
about the number of functions to be predicted. 
 
Overall, we invested about 160 hours of work into this knowledge 
discovery project. Considering the fact that much of this time was 
devoted to things like replacing international decimal points by 
German decimal commas in order to get the data from one tool the 
other without sacrificing semantics, we consider it useful to 
integrate our tools in a database environment as a homogeneous 
platform. This should also be of advantage for handling larger 
datasets.  
 
During the project, we learned that RELAGGS has some potential 
for further improvements such as support for multi-class 
problems. However, even the first version of RELAGGS was fast 
and simple to apply due to the opportunity to work immediatly 
with multiple tables and the easy specification of foreign links, 
and it was competitive on tasks 2 and 3 of the KDD-Cup 2001. 
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4. TASK 3: LOCALIZATION 
 
Dataset 2, which was prepared for the KDD Cup 2001, has three 
interesting features:  (1) the dataset contains many missing values; 
(2) the domain of the objective attribute contains fifteen non-
ordered values; and (3) the dataset is a mixture of two types of 
data:  one table correlates the features of individual genes and the 
other represents a binary relation that describes interactions 
between the genes. Although these are typical features of 
biological data, it is difficult to manipulate the data to achieve 
highly accurate predictions. In order to solve this problem, we 
used traditional approaches, such as decision trees, AdaBoost, and 
nearest neighbor methods. The nearest neighbor method 
represented the most promising approach because majority voting 
to predict multiple classes, and space reduction to handle missing 
values appeared to be straightforward, although the selection of 
optimal distances from the data required serious investigation. To 
overcome this problem, we calculated an "optimal" neighborhood, 
thereby maximizing the prediction accuracy against a test dataset 
(a subset of the given training dataset). Although this optimization 
problem is computationally intractable, we propose an efficient 
solution that involves a branch-and-bound searching strategy. 
This method was used successfully to generate the most accurate 
predictor in the KDD Cup 2001 Task 3 competition.  In this 
section, we discuss the advantages of this method in terms of 
predictive accuracy and computational performance.  

 

4.1  Task Overview 
 

First, we give a brief overview of Task 3. The task was to predict 
the location in a cell where a given gene is active (where the 
protein for which the gene codes is located).  The goal was to 
select one of the fifteen candidate locations within a cell, i.e., cell 
wall, cytoplasm, cytoskeleton, endosome, ER, extracellular 
milieu, Golgi, integral membrane, lipid particle, mitochondrion, 
nucleus, peroxisome, plasma membrane, transport vesicle, and 
vacuole. The experiment included 862 training genes and 381 test 
genes. 

Each gene was assigned values for six attributes:  Essential, 
Class, Complex, Phenotype, Motif, and Chromosome.  The 
‘Chromosome’ parameter corresponded to one of 16 chromosome 
numbers. The domains of the other five attributes were multiple 
sets. For instance, the value of ‘Class’ was a subset of 24 protein 
categories, such as ‘Cyclins’ and ‘Transcription Factors’. 
However, 70% of the Class values were empty sets {}, and thus 
the values were missing.  The ‘Complex’ attribute indicates 
members of the 56 protein complexes that are encoded by 
individual genes.  ‘Phenotype’ and ‘Motif’ assign a gene to one of 
the 11 phenotypes or 351 types, respectively. An example from 
dataset 2 is shown below. 

 

Gene    G234064  
Essential  {Essential}  
Class    {"GTP/GDP-exchange factors"}  
Complex    {"Translation complexes"}  
Phenotype    {}  

 Motif    {PS00824, PS00825}  
Chromosome    1  
Function    {"CELLULAR ORGANIZATION",  

“PROTEIN SYNTHESIS”} 

Localization    cytoplasm  
 

The dataset describes interactions between all of the 1243 gene 
pairs, which consist of 862 training genes and 381 test genes. The 
interactions between gene pairs can be classified as ‘Physical’, 
‘Genetic’, ‘Genetic-Physical’ or ‘No’. In the first three types of 
interactions, the strengths of the interactions are associated. It 
would be interesting to see if the type and strength of the observed 
interactions could be applied to increasing prediction accuracy. 
However, the total number of interactions was not sufficient to 
perform such a precise analysis, since information on most of the 
interactions between the genes is missing.  Therefore, we decided 
to simplify the analysis by treating Physical, Genetic and Genetic-
Physical as indicative of an observed interaction, and No as 
indicative of a failure to observe the interaction.  We did not take 
into account the strength of each interaction. In this way, we 
generated binary pairs that described the interactions between 
genes, and we called this the binary interaction relationship. 

 

4.1.1 Coping with Missing Values 
 

We developed an approach for handling missing values, thereby 
allowing more accurate predictions.  First, we observed that the 
Class, Complex, and Motif attributes were highly related to 
localization, while the other three, Essential, Phenotype, and 
Chromosome Number, did not correlate strongly with the 
objective attribute.  Furthermore, with regard to the binary 
interaction relationship, we observed that genes that interacted 
with the focusing gene were usually located in the same part of 
the cell.  This is a further indication that the binary interaction 
relationship is useful in predicting localization. 

We also noted that although many attribute values for the 862 
training genes were missing, at least one of the three attributes 
(Class, Complex, or Motif) was usually defined.  Indeed, among 
the 381 test genes, 367 had one of these three values or interacted 
with other genes. Therefore, we decided to compensate for the 
missing information by using information on the three attributes 
and the binary interaction relationship. 

 

4.1.2 Different Test Approaches 
 

Once the four features had been selected, we applied three 
independent approaches to the data analysis. In [15], we have 
previously developed an efficient method of mining correlated 
association rules that have strong relevance to the objective 
attribute, such as localization.  We tested the usefulness of this 
approach in tackling this particular problem. 

First, we generated a decision tree [18] that was labeled with 
correlated association rules [1,15]. This approach made a good 
score in the Task 2, and our prediction was ranked third.  Second, 
we made combinations of several correlated association rules 
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using the AdaBoost strategy [14,15] in order to boost the overall 
prediction accuracy. Third, we used the nearest neighbor strategy 

[9]. Of these three approaches, the nearest neighbor method 
worked best for the training dataset.  Finally, we applied the 
nearest neighbor method to the test dataset. 

 

4.2 Nearest Neighbor Analysis 
 

4.2.1 Attribute Agreement of Records 
 

Let R be a relation that is a set of records with which certain 
attributes (features) f1,f2,...,fk are associated. We assume here that 

R has two attributes of special. One is the key attribute used for 
the unique identification of each record. The other is the objective 
attribute of a classification problem. Let Di be the domain of fi. 

Let r be a record in R. We then denote the fi’s value in r by 

r[fi]∈Di. Without loss of generality, we assume that r[fi] is a set of 

values.  In the case where the fj’s value of r is a single value c, we 

formally regard it as the singleton set {c}, but we simply describe 
the set as c for readability. r1 and r2 in R are called to agree on fi 

if r1[fi] and r2[fi] share some common elements; namely, 

r1[fi]∩r2[fi]≠φ. 

For example, consider the four records in Table 1, in which the 
key attribute is Gene and the objective is Localization. The four 
records in the table are members of dataset 2. Observe that 
G234126 agrees with G235065 with respect to the Essential, 
Class, and Complex attributes, because  

           G234126[Class]∩G235065[Class]={GTP-binding} 

G234126 also agrees with G235357 in terms of Essential, 
Complex, and Motif attributes. 

One might consider defining the degree of agreement, because the 
interaction of r1[fi] and r2[fi] possibly involves more than one 

element, and the number of common elements would be expected 
to indicate the strength of agreement of r1 and r2 on fi. However, 

the number of shared elements in dataset 2 is typically no greater 
than two, and therefore we cannot define the strength of 
agreement. Nevertheless, it is interesting to see whether the use of 

agreement strength contributes to improvements in prediction 

accuracy. 

Binary interactions between pairs of genes are also represented by 
a relationship. Table 2 illustrates a binary interaction relation; 
that is, a set of binary pairs of genes and the strengths of their 
associated interactions. These interactions are also from dataset 2. 
Two genes are deemed to agree with a binary interaction relation 
if the pair is listed in the relation. For instance, G234064 and 
G234126 agree with Table 2. 

 

4.2.2 Neighbors 
 

We are now in a position to define neighborhoods among the 
records. We focus on G234126 in Table 1 and define its 
neighbors. We see that the top three genes (G234126, G235065, 
and G234064) in the table are located in the cytoplasm. In order  

to define the neighborhood of the focusing gene G234126, we 
utilize the notion of attribute agreement between two genes; that 
is, two records are neighbors if they agree with respect to certain 
attributes. It is then possible to select attributes that are useful in 
the prediction of localization. 

 The selection of Chromosome in Table 1 is not effective, 
because none of the other three genes match G234126 with regard 
to this parameter, and therefore it is impossible to infer the 
localization of G234126. By choosing Motif, the bottom gene 
G235357 becomes the neighbor, but it is located in mitochondria. 
The choice of Complex designates all three genes as neighbors of 
G234126, and most of these are located in the cytoplasm. One can 
also consider the binary interaction relation in Table 2. G234064, 
which is located in cytoplasm, corresponds only to the focusing 
attribute G234126 in this table. The choice of Class appears to be 
appropriate, since G235065, which is located in the cytoplasm, 
becomes the neighbor of the focusing gene.   

 

4.2.3 Nearest Neighbor Assignment by 
Prioritizing Attributes 
 

In practice, there are many missing values, such as those seen in 
dataset 2, and thus the use of only a single attribute may not be 
sufficient for accurate prediction. Therefore, in order to assign 
neighborhoods that are based on agreement we need to examine 
more than one attribute.  For instance, in Table 1, one can 
combine Class, Complex, and Motif attributes together with the 
binary interactions in Table 2. We see that the bottom three genes 
can be treated as neighbors since they agree with G234126 with 
regard to Class, Complex and Motif. 

Gene    Essential    Class    Complex    Motif    Chromosome   Localization 

G234126    {Non-Essential}    {GTP-binding}    {Translation}    {PS00017}    2    cytoplasm  

G235065    {Non-Essential}    {GTP-binding}    {Translation}    {PS00301}    16    cytoplasm  

G234064    {Essential}    {GTP/GDP-exchange}    {Translation}    {PS00824, PS00825}    1    cytoplasm  

G235357    {Non-Essential}    {}    {Translation}    {PS00017, PS00190}    7    mitochondria  

Table 1.  Example of genes. 

Gene    Gene    Type    Strength  

G234064    G234126    Genetic-Physical    0.914095071  

G234064    G235065    Genetic-Physical    0.751584888  

G235357    G239653    Genetic    0.891039915  

Table 2.  Binary interaction relation between pairs of genes. 
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In cases where the number of neighbors is large, we perform a 
further selection among the neighbors.  In order to achieve this, 
we prioritize the attributes. As an example, we choose Complex as 
the primary attribute and extract all the genes that agree with 
G234126 on Complex; that is, all of the bottom three genes. We 
then select Class as the secondary attribute, and we extract the 
genes that agree with G234126 with regard to Class, thus 
revealing G235065, which is located in the cytoplasm. 

We now present a formal description of the method used to 
restrict neighbors.  Suppose that we select some features from f1, 

f2, ..., fk, and prioritize them to yield a sequence of features 

[g1,...,gm] that is ordered from left to right (we denote order by 

enclosing a sequence within square brackets). Let r∈R be a test 
record, and let Ni denote a set of neighbors of r. As a training 

dataset, let us select a non-empty set Rtrain⊆R, such that r is not a 
member of Rtrain. In the initial step, we assign Rtrain to N0, and 

we continue to restrict Ni by using the priority list [g1,...,gm], as 

illustrated in Figure 12. 

 

 N0:=Rtrain;  

for each i = 1,2,...,m begin  

     Ni:={x∈Ni-1 | x and r agree on gi}; 

     if Ni=φ then Ni:=Ni-1;  

end  

return Nm;  

 

Figure 12:  Computing the nearest neighborhood  

for a priority list 

 

In each step, we compute the elements in Ni-1 that agree with r 

on the next attribute gi, and we assign the set to Ni. The new set 

Ni may be empty due to many missing attribute values. In order to 

avoid losing all the neighbors of r when Ni is empty, we continue 

the calculation by re-assigning the previous non-empty Ni-1 to Ni. 

We repeat these steps until i=m. The final set, Nm, contains 

neighbors that have survived agreement tests on attributes through 
as many higher priorities as possible. Therefore, we call the 
members of Nm the nearest neighbors of r with respect to the 

initial training dataset Rtrain and the priority list [g1,...,gm]. We 

denote the final answer Nm as:  NN(r, Rtrain, [g1,...,gm]). 

 

4.2.4 Classification by Nearest Neighborhood 
Analysis 
 

Let obj be an objective attribute, such as Localization, and let 
Dobj be its domain. We calculate the objective value of r, r[obj] 

from the majority of objective values of nearest neighbors in 
NN(r,Rtrain, [g1,...,gm]) using the formula:   

arg maxd∈Dobj| { x∈NN(r, Rtrain, [g1,...,gm]) | x[obj]=d } |, 

which is denoted by predict(r, Rtrain, [g1,...,gm]). 

Let Rtest be a test dataset, such that Rtest⊆R, and Rtest is disjoint 
from the training dataset Rtrain; that is, Rtest∩Rtrain=φ. The 
prediction accuracy of our classification method using the test 
dataset Rtest is  

                 | { r∈Rtest | r[obj]=predict(r, Rtrain, [g  1,…,g  m]) } | 

                                             |Rtest| 

which is referred to as accuracy(Rtest, Rtrain, [g1,...,gm]) in the 

following discussion. 

So far we have assumed that a priority list [g1,...,gm] is 

provided for the definition of nearest neighborhoods. In fact, the 
choice of priority list significantly affects the prediction accuracy 
by selecting an optimal priority list that maximizes accuracy. 
Generally, this optimization problem is NP-hard. 

Theorem:  It is NP-hard to compute [g1,...,gm] that optimizes 

accuracy(Rtest, Rtrain, [g1,...,gm]). 

The proof of this theorem is given at the end of this section. 

 

4.3  Computing Optimal Priority 
 

In this section, we present an efficient branch-and-bound search 
technique for solving the optimization problem. 

First, it is noteworthy that if the objective value of any record 
x∈NN(r, Rtrain, [g1,...,gm]) does not coincide with r[obj] 

(x[obj]≠r[obj]), it is impossible to predict r[obj] correctly. In this 
case, r is classified unpredictable using the nearest neighborhood 
technique.  The ratio of unpredictable records allows us to bound 
the prediction accuracy:    

acuracy(Rtest, Rtrain, [g1,...,gm]) 

≤       1- 
|{x∈Rtest | x is unpredictable.}|

|Rtest|
.         (2) 

The upper bound in the right-hand side is denoted by 
ub([g1,...,gm]). 

Second, the above upper bound decreases monotonically for 
any extension [g1,...,gm,...,gn] of [g1,...,gm]; that is,  

                   ub([g1,...,gm,...,gn]) ≤ ub([g1,...,gm]).       (3)   

By using the procedure for computing the nearest neighborhood 
(shown in Figure 11), it is easy to see that the nearest 
neighborhood shrinks for extensions:   

NN(r, Rtrain, [g1,...,gm,...,gn]) ⊆ NN(r, Rtrain, [g1,...,gm]) 

It immediately follows that if r is unpredictable when using 
NN(r,Rtrain,[g1,...,gm]), then r is unpredictable when using 

NN(r,Rtrain,[g1,...,gm,...,gn]). Thus the number of unpredictable 
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records increases monotonously if a priority list is extended by 
adding attributes, which lends proof to (3) above. 

Finally, suppose that we find a priority list P, such that  

                   ub(Q) ≤ accuracy(Rtest, Rtrain, P) 

From Equations (1) and (2), for any extension Q’ of Q  

           accuracy(Rtest, Rtrain, Q’) ≤ accuracy(Rtest, Rtrain, P). 

This property motivates us to develop a branch-and-bound 
searching algorithm that can be used to compute the optimal 
priority list, and thereby maximize the prediction accuracy. 
Consider a search tree of priority lists in which the root is the 
empty list [], and any child priority list corresponds to its parent 
list with one new attribute added at the tail. Starting at the root 
empty list [], we gradually expand the ensemble of candidate lists 
and maintain the priority list, say Pmax, which temporarily 

maximizes the prediction accuracy. In each step, we select a 
frontier node in the ensemble, and we investigate its children (in 
this instance Q). If ub(Q) ≤ accuracy(Rtest,Rtrain,Pmax), we can 

safely prune the subtree rooted at Q without fear of losing the 
optimal solution. 

One may wonder if this branch-and-bound heuristic is effective, 
especially in cases where the objective attribute is Boolean. 
However, in the case of dataset 2, the number of values in the 
objective attribute is fifteen, and thus there are many opportunities 
to determine whether the records are unpredictable, in which case 
the upper bound is sharply lowered. Actually, our branch-and-
bound search technique investigates about 10% of all the possible 
orders of the seven attributes in dataset 2. 

 

4.4  Experimental Results 
 

4.4.1 Predictive Accuracy 
 

Let Strain and Stest denote the training data and the test data, 
respectively, of dataset 2, which was provided by the KDD Cup 
2001. We generated the optimal priority list of attributes by 
treating Strain as both the training dataset and the test dataset, and 
found that the priority list [Complex, Class, Interaction, Motif] 
(=Pmax) maximized the prediction accuracy at 79%; that is,  

accuracy(Strain,Strain,Pmax) = 79%. 

A prediction that used [Complex, Class, Interaction, Motif] also 
achieved 72% accuracy against the test dataset Stest;  

accuracy(Stest,Strain,Pmax) = 72%. 

Since the prediction accuracy decreased by 7%, the optimal 
priority list slightly overfitted the training data. The priority list 
indicates that incorporation of the other three attributes, Essential, 
Phenotype, and Chromosome, into the list does not lead to 
improvements in the prediction accuracy. 

Since all the values of Localization were available, we 
performed additional experiments. The second column of Table 3 
includes the prediction accuracy of the singleton set of each 
attribute. In order to show that the prediction accuracy improves 
when attributes are appended to each singleton set, the third 
column shows the optimal priority list, starting with each attribute 
listed in the first column, and the fourth column lists their 
prediction accuracies. Figure 13 also illustrates how the prediction 
accuracy improves step-by-step until the optimal priority list in 
Table 3 is generated. 

 

 

Figure 13: Accuracy improvement by increasing the number 
of attributes. 

 

After considering all the possible priority lists, we decided that 
the priority list [Complex, Class, Interaction, Motif] was optimal 
for the given training dataset. Although it is worth considering 
whether another priority list might out-perform this priority list 
with respect to prediction accuracy against the test dataset, Table 
3 indicates that this is not the case. We further investigated 
whether permutations of [Complex, Class, Interaction, Motif] 
might make good markers, and the results are shown in Table 4. 

 Singleton List Acc1(%)  Multiple List   Acc2(%) 
[es]   45.7  [es,co,in,mo]   69.0 
[cl]   48.8  [cl,in,co,es,ph,ch]   69.7 
[co]   62.5  [co,cl,in,mo]   72.2 
[ph]   47.0  [ph,co,in,es,cl]   69.6 
[mo]   49.1  [mo,co,in,cl,ph]   70.2 
[ch]   44.9  [ch,co,in]   59.6 
[in]   65.1  [in,mo,co,cl,es]   69.7 
 

Table 3:  Accuracy improvement for optimal priority list.
Acc1 = accuracy(Stest, Strain, "Singleton List"). Acc2 = 
accuracy(Stest, Strain, "Multiple List"). es=Essential, cl=Class, 
co=Complex, ph=Phenotype, mo=Motif, ch=Chromosome, 
in=Interaction. 
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We implemented the branch-and-bound strategy in C++. We 
implemented the entire system and evaluated its performance on a 
Dell Inspiron 5000e containing a Pentium-III processor with a 
clock rate of 750 MHz and memory capacity of 384 MB. It took 
about 6 seconds to compute the optimal priority and to output the 
prediction for Task 3 against dataset 2, which comprised 862 
training records and 381 test records. 

 

4.5  Discussion and Technical Proof 
 

From the biological viewpoint, proteins interact and work 
together to achieve certain functions at a specific location in the 
cell.  Thus, the binary interaction relation and the Complex 
attribute should correlate with localization, though it is rather 
surprising to see that the binary interaction is less important than 
Complex and Class in terms of prediction accuracy improvement. 
On the other hand, it has been observed that eucaryotic genes with 
similar functions are not necessarily coded on the same 
chromosome. Even in the absence of this knowledge, our data 
mining method automatically selects biologically important 
features to ensure better predictions.   

 

We close this section with a proof of the result mentioned earlier. 

Theorem It is NP-hard to compute [g1,...,gm] that optimizes 

accuracy(Rtest, Rtrain, [g1,...,gm]). 

Proof   We present transformation from the minimum cover 
problem. Let E be a collection of subsets of a finite set V. A cover 
is a subset of E such that any element in V belongs to at least one 
member of the cover. Deciding whether or not there exists a cover 
of size K for a given positive integer K≤|E| is NP-complete.  We 
show that an algorithm for computing the priority list P 
minimizing accuracy(Rtest, Rtrain, P) is also able to calculate the 
minimum cover. 

We first define test records. We call a record positive 
(respectively, negative) if its objective value is 1 (0). We regard 
all the records in V as positive test records, while from each e∈E, 
we create a unique negative test record nege; that is,  v[obj]={1} if 

v∈V,  and v[obj]={0} if v=nege for e∈E. 

Let Rtest denote the set of test records, V∪{nege|e∈E}. We then 

regard e∈E as an attribute that assigns {1} to members in e and 
nege but assigns the empty set to the others, for the purpose of 

distinguishing members of e and nege from the others; that is, 

v[obj]={1} if v∈e or v=nege,  and v[obj]={}, otherwise. 

We next define the set of training records. We first generate |E| 
positive training records ae (ae[obj]=1) for e∈E such that any test 

record v∈e and nege become the neighbors of ae; that is, 

ae[f]={1} if e=f, and ae[f]={}, otherwise. 

Next, we create (|E|+1) negative records bi (bi[obj]=0, i=1,..., 

|E|+1) that do not agree with any training record on any attribute 
(that is, bi[e]={} for e∈E). Now the majority of the training 

records is negative. Let Rtrain denote the set of all the training 
records, {ae | e∈E}∪{bi | i=1,...,|E|+1}. 

Predicting whether v∈Rtest is either positive or negative is 
performed as follows:   

• If v∈e or v=nege for some e∈P, v agrees with ae∈Rtrain on 

e, and hence predict(v, Rtrain, P)=1.  

• Otherwise, the whole training set Rtrain becomes the 
neighborhood of v. Because negative records are major in 
Rtrain, predict(v, Rtrain, P)=0.  

If P is empty, according to the latter case, the prediction is 
incorrect for positive test records but is correct for negative test 
records. In order to improve the prediction accuracy, one may 
include e into P to reverse the prediction for v∈e and nege, which 

makes the prediction correct for v∈e but incorrect for nege. 

Inclusion of e increases the prediction accuracy if the number of 
elements in e is more than one. To ensure this improvement, let us 
make one copy v' of v∈V so that v∈e if and only if v'∈e. 

Suppose that ∪{f | f∈P} fails to include V. To improve the 
prediction accuracy, for each v∈V - ∪{f∈P}, we ought to find e 
such that v∈e and add e into P. Since inclusion of e mis-predicts 
the value of nege, to achieve the best prediction accuracy, we must 

cover V using the minimum number of elements in E, which is 
equivalent to compute the minimum cover.   Q.E.D 

Permutation Accuracy(%) 
cl co mo in 69.4 
cl co in mo 69.5 
cl mo co in 68.6 
cl mo in co 67.6 
cl in mo co 68.9 
cl in co mo 69.2 
co cl mo in 71.0 
co cl in mo 72.2 
co mo cl in 70.5 
co mo in cl 70.3 
co in mo cl 71.0 
co in cl mo 71.0 
mo cl co in 67.4 
mo cl in co 66.3 
mo co cl in 67.9 
mo co in cl 70.0 
mo in co cl 67.9 
mo in cl co 67.9 
in cl co mo 68.7 
in cl mo co 69.2 
in co cl mo 68.9 
in co mo cl 68.9 
in mo co cl 69.5 
in mo cl co 69.2 

 

Table 4:  Accuracies of permutations of the optimal priority 
list [Complex, Class, Interaction, Motif]. 
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5. CONCLUSIONS 
 

The biological community has seen numerous technological 
breakthroughs in the last decade.  These include (but are not 
limited to) fast genome sequencing techniques, high-throughput 
screening robots for testing large libraries of small molecules for 
binding to target proteins, and gene expression microarrays to 
measure gene transcription.  Still more breakthroughs are on the 
horizon in areas such as proteomics, where the amount of protein 
made from a gene can be measured directly, rather than merely 
measuring the amount of mRNA as in current microarrays.  All 
these technologies are providing vast amounts of data, of a wide 
variety of forms.  In addition, much domain knowledge already 
exists, such as information about some metabolic pathways.  It 
may even be said that biology is both data rich and knowledge 
rich, with the challenge being to synthesize these to produce still 
more knowledge.  As a result, biology is not only a major user of 
data mining tools, but also a driving force for the development of 
future data mining algorithms.  For this reason KDD Cup 2001 
focused on biological applications of data mining.  This section 
concludes by summarizing lessons for mining biological databases 
in particular, followed by general lessons for data mining, that 
have been touched on in this paper. 

 

5.1 Lessons for mining biological databases 
 

The expression of one gene frequently regulates the expression 
of other genes, resulting in a network of various regulatory 
pathways.  In addition, one protein may interact with a number of 
other proteins in metabolic or signaling pathways.  Therefore, 
there is widespread belief in biology that as we learn more about 
pathways, this new knowledge will help us determine the 
functions of many genes.  Such is the motivation, for example, for 
predicting regulatory pathways from gene expression microarray 
experiments.  Hence, it is very surprising that protein interaction 
information was not more useful in Tasks 2 and 3.  Section 3 
notes that interaction information was of some value for the 
winning approach to Task 2 but not particularly great value.  And 
while interaction information was one of four items of information 
used in the winning approach to Task 3, interaction was the least 
important of these four.  It might be perhaps that we still are 
missing too much interaction information for it to be highly 
useful.  But that would be a disappointing conclusion given that 
the organism we were studying, yeast, has far more interaction 
information available than does any other organism.  Or perhaps 
still better techniques are needed for using this information.  For 
example, perhaps a Bayesian approach could be taken to 
predicting pathways, with associated probabilities, and these 
predicted pathways could be used to help with function 
prediction.  The question of whether we can get more out of the 
available interaction information is of major importance. 

A second lesson for mining biological databases is the issue of 
interacting with the laboratory.  For Task 1, the test set was drawn 
from a very different distribution than the training set.  This is 
because the chemists selected the molecules to make in the second 

round of experiments based on the results of the first round; they 
chose to synthesize molecules in the second round that “looked” 
like the active molecules from the first round.  It has been the Cup 
co-chairs’ experience that when collaborating with biologists and 
chemists, data often comes in “waves,” and the selection of data 
points in the next “wave” is dependent on the results (labels of the 
data) in the previous wave.  Because data mining tools tacitly 
assume training and test data are drawn from the same 
distribution, they often perform worse on the new wave than 
cross-validation on the previous wave would predict.  But this 
iterative process also is a great opportunity for data mining to 
influence experimentation.  This influence is not according to the 
simple “membership query” model that many adopt, where the 
system gets to ask the label of one data point at a time.  And the 
experimenter is not simply at the service of the data mining 
system but instead may need to be told why an experiment is 
useful, e.g., why certain molecules should be made and tested.  
Real-world experience into such interaction between machine and 
scientist is a key area for data mining research, particularly with 
respect to biological applications. 

 

5.2 General lessons for data mining 
 

The co-chairs’ intention for KDD Cup 2001 was that biological 
knowledge would not be a prerequisite for entry into the 
competition.  It appears from the diversity of backgrounds of 
entrants and winners that we succeeded in that regard.  But an 
equally important intention was that lessons would arise that 
would be of value to data mining outside of biological 
applications.  We now consider several such lessons. 

 

First, conventional wisdom holds that while Bayes nets are 
good for modeling the distribution from which data are drawn, for 
a pure classification task it is hard to beat modeling approaches 
designed specifically for classification, such as decision trees, 
SVMs, or ensembles.   For example, we use Bayes nets to model 
gene expression data when we want to identify clusters of genes 
that appear highly interrelated.  But if we want to distinguish 
between two types of patients (e.g., cancer vs. non-cancer), we 
turn to classification algorithms.  In light of this conventional 
wisdom, it is quite surprising that of 114 entries for Task 1 (a pure 
2-valued classification task) the winning approach was a Bayes 
net.   The lesson is that Bayes nets should not be rejected out of 
hand for pure classification tasks.  Indeed, as a direct consequence 
of this result one of the co-chairs (Page) is now employing Bayes 
net learning in a study of gene expression data for a classification 
task dealing with multiple myeloma, a blood cancer.  The end of 
Section 3 provides several insightful comments about why the 
application of Bayes nets to Task 1 was successful. 

 

The second lesson is one that has been recognized before within 
the inductive logic programming (ILP) community but is little 
known outside it.  This is that propositionalization often is a good 
approach to a relational learning task.  Tasks 2 and 3 are classic 
relational learning tasks, in which the information about a data 
point (gene) includes not only features of that data point itself but 
also how it relates to other data points.  Many data mining tasks in 
relational databases have a similar nature; one needs only to have 
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a many-many relationship between entities of interest in the 
database to have a true relational task.  Even though Task 2 and 
Task 3 are relational, the winning approach to Task 2 used an 
SVM and the winning approach to Task 3 used a neighborhood 
strategy.  The key in Task 2 was a good algorithm for feature 
construction from relations.  The key in Task 3 was to change the 
typical definition of distance.  Ordinarily, distance is a measure of 
how similar two feature vectors are.  The modification made was 
to incorporate the interaction relation into the distance measure, 
by making two data points nearer to each other if they were 
known to interact. 

 

Finally, in Subsection 5.1 we noted challenges raised by 
interacting with an experimental laboratory.  These include the 
need for improved human-computer interaction (e.g., in proposing 
and motivating a new round of experiments) and the question of 
how to handle a changing distribution over data.  Note that this 
latter point seems related to “concept drift” but is different.  The 
concept does not change, e.g., there is no change in what makes a 
molecule bind to thrombin.  This issue of changing distributions 
raises questions about performance evaluation.   If the change 
merely affects the ratio of one class to another then AUC, or area 
under a (ROC) curve, addresses the problems one would have if 
using only accuracy.6   But what if the changes for example “focus 
in” on one area of the space, making some potential data points 
much more probable?  This is what happened in Task 1.  Is there a 
single measure, such as AUC, that can tell us one model or 
modeling approach will be more robust to these changes than 
another, or is better over some space of possible changes? 
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