
SIGKDD Explorations. Copyright 2002 ACM SIGKDD, January 2002. Volume 3, Issue 2 – page 1

KDD Cup 2001 Report

Jie Cheng
Global Analytics

Canadian Imperial Bank of Commerce

Jie.cheng@cibc.ca

Mark-A. Krogel
School of Computer Science
Otto von Guericke University

Magdeburg, Germany

krogel@iws.cs.uni-
magdeburg.de

Jun Sese

Dept. of Complexity Science and
Engineering

University of Tokyo

sesejun@gi.k.u-tokyo.ac.jp

Christos Hatzis
Silico Insights, Inc.

Woburn, MA

christos@silicoinsights.com

Shinichi Morishita
Dept. of Computer Science and Dept. of

Complexity Science and Engineering
University of Tokyo

moris@k.u-tokyo.ac.jp

Hisashi Hayashi
Department of Computer Science

University of Tokyo

hisashi@gi.k.u-tokyo.ac.jp

David Page
Dept. of Biostatistics and Medical

Informatics and Dept. of Computer
Sciences

University of Wisconsin

page@biostat.wisc.edu

ABSTRACT

This paper presents results and lessons from KDD Cup 2001.
KDD Cup 2001 focused on mining biological databases. It
involved three cutting-edge tasks related to drug design and
genomics.
Keywords

Competition, biology, drug design, genomics

1. INTRODUCTION
Since its inception five years ago, the KDD Cup has become an
event of international stature. It is recognized widely not only
within the community but among scientists from other fields as
well. While much attention surrounds winning the cup, its
primary contribution still is to serve as a laboratory from which
the community can learn many valuable lessons and identify key
areas for further research. Several important lessons can be
gleaned from KDD Cup 2001. They include the following, at
least the first two of which will be surprising to many readers.

• A Bayes net learner can outperform the leading classification

algorithms on a pure classification task.
• A feature-based learner can outperform relational learners on

a multi-relational task, if the features are constructed by a
clever “propositionalization” algorithm.

• More research is needed on comprehensibility, human-
computer interaction, and performance evaluation.

• While interest is booming in mining data on networks of
interacting genes or proteins, interaction so far has not

proven to be the most useful piece of information for
predicting important protein or gene properties such as
function and localization.

This paper reviews KDD Cup 2001, describes the winning
approaches, and concludes with a discussion of the
aforementioned lessons. Other more specific lessons also can be
found at the conclusion of each section about the winning
approach to a task.

Because of the rapid growth of interest in mining biological
databases, KDD Cup 2001 was focused on data from genomics
and drug design. Sufficient information was provided so that
detailed domain knowledge was not a requirement for entry. A
total of 136 groups participated to produce a total of 200
submitted predictions over the 3 tasks: 114 for Thrombin, 41 for
Function, and 45 for Localization. The remainder of this section
discusses these three tasks and statistics of the entries. The
subsequent three sections describe the winning approaches to the
three tasks and are written by the winners themselves.

KDD Cup 2001 involved three tasks, based on two data sets, one
of which was a little over half a gigabyte in size and the other a
little over seven megabytes. While the first consisted of a single
relational table, or flat file, the second consisted of two relational
tables that were produced from an original seven relational tables.
A single flat file also was provided with the second data set, but
users were warned that they might get better results by staying
with the multiple relational tables or by doing their own
conversion. Further details on the tasks along with the complete

SIGKDD Explorations. Copyright 2002 ACM SIGKDD, January 2002. Volume 3, Issue 2 – page 2

datasets and answer keys and also copies of the presentations
given by the cup organizers and the winning teams can be found
at the KDD Cup 2001 web site (http://www.cs.wisc.edu/
~dpage/ kddcup2001/).

1.1 Dataset 1: Prediction of Molecular
Bioactivity for Drug Design – Binding to
Thrombin

Drugs are typically small organic molecules that achieve their
desired activity by binding to a target site on a receptor. The first
step in the discovery of a new drug is usually to identify and
isolate the receptor to which it should bind, followed by testing
many small molecules for their ability to bind to the target site.
This leaves researchers with the task of determining what
separates the active (binding) compounds from the inactive (non-
binding) ones. Such a determination can then be used in the
design of new compounds that not only bind, but also have all the
other properties required for a drug (solubility, oral absorption,
lack of side effects, appropriate duration of action, toxicity, etc.).

The thrombin training data set consisted of 1909 compounds
tested for their ability to bind to a target site on thrombin, a key
receptor in blood clotting.1 Of these compounds, 42 are active
(bind well) and the others are inactive. Each compound was
described by a single feature vector comprised of a class value (A
for active, I for inactive) and 139,351 binary features, which
describe three-dimensional properties of the molecule. The
definitions of the individual bits were not included -entrants were
told only that they were generated in an internally consistent
manner for all 1909 compounds. Biological activity in general,
and receptor binding affinity in particular, correlate with various
structural and physical properties of small organic molecules. The
task was to determine which of these properties are critical in this
case and to learn to accurately predict the class value.

This task is exemplary of a large family of related tasks arising
within both the pharmaceutical industry and university research
laboratories. In fact, in some cases the number of feature-to-
example ratio can be even greater than here. To further simulate
the real-world drug design environment, the test set contained 636
additional compounds that were in fact generated based on the
assay results recorded for the training set. The goal was to see
who (if anyone) could outperform the chemists who decided on
this new set of 636 compounds to make and test. If a data mining
system could perform better, it could be used to help select the
next round of compounds to synthesize and test for similar
applications. Because more compounds prove to be inactive than
active, a predictor that always says “inactive” will achieve a
relatively high accuracy even though it is completely useless.
Therefore, in evaluating the accuracy for this task only, a
differential cost model was used. The simplest description of this
model that we have found is as follows. We compute the

1 We thank DuPont Pharmaceuticals Research Laboratories for graciously

providing this data set for the KDD Cup 2001 competition. All
publications referring to analysis of this data set should acknowledge
DuPont Pharmaceuticals Research Laboratories and KDD Cup 2001.

accuracy on true actives and the accuracy on true inactives and
compute the (unweighted) average these two. Hence it was just as
important for entrants to minimize their error rate on the actives as
to minimize their error rate on the inactives,

This last point regarding evaluation is worth a bit more
discussion. Ideally, we would compare approaches using ROC
curves (comparing areas under the curves). But this was
infeasible because participants submit their predictions, not their
predictors; furthermore, some predictors are not easily modified to
be more or less conservative, as is required to generate ROC
curves. John Elder (private communication) proposed using ``lift.''
Perhaps this should be considered for some future KDD Cup
tasks, but it requires participants to rank-order their predictions
(most likely active, second-most likely active, etc.), which some
predictors are not easily modified to do.

1.2 Dataset 2: Prediction of Gene/Protein
Function and Localization

The genomes of several organisms have now been sequenced,
including the human genome. Interest within bioinformatics
therefore has shifted away from classical genomics mainly
concerned with sequence assembly and gene identification, to
functional genomics, i.e. learning about the genes encoded in the
sequence. Genes code for proteins, and these proteins tend to
localize in various parts of cells and interact with one another, in
order to perform crucial functions. Although genes that encode
for 6449 yeast proteins are already known, only 52% of these
proteins have been characterized. Of the remaining, only 4%
show a strong similarity at the sequence level that can form a
basis for inferring function. It therefore becomes imperative to
use information beyond sequence similarity to characterize the
unknown genes. Data set 2 consisted of a variety of gene-level
and protein-level information from the yeast genome.2 Gene
names were anonymized and a subset of the genes (about 1/3)
were withheld for testing.

Two tasks were associated with data set 2. These two tasks were
to predict the functions and localizations of the proteins encoded
by the genes. The functions actually are fifteen broad functional
categories, while the locations are fifteen different parts of the
cell. A gene/protein can have more than one function, but rarely
(in this data set) more than one localization. The other
information provided about the genome is described in the
following two paragraphs.

One relational table specified which genes (or their protein
products) interact with which other genes. An interaction may be
physical, in which the protein for which one gene codes is known
to bind in some way with the protein for which another gene
codes. Or an interaction may be genetic, in which the presence or

2 We thank the team at MIPS (Munich Information Center for Protein

Sequences) for making the protein interaction data available
(http://mips.gsf.de/proj/yeast/CYGD/db/index.html)

SIGKDD Explorations. Copyright 2002 ACM SIGKDD, January 2002. Volume 3, Issue 2 – page 3

absence of a protein affects the level of expression of the gene
encoding for another. Or an interaction may be both physical and
genetic. This relational table also presents the degree of
correlation between the expression levels of the two genes under
a given experimental condition, as measured by gene expression
microarrays.3

The other relational table specified a variety of properties of
individual genes or proteins. These included the chromosome on
which the gene appears, whether organisms with a mutation in
this gene can survive, phenotype (observable characteristics) of
organisms with differences in this gene, structural category of the
protein for which this gene codes (what general shape does the
protein take), the existence of characteristic motifs in the amino
acid sequence of the protein, and whether the expression of this
gene complexes with others to form a larger protein. It further
would have been desirable to use sequence information about
each gene.

But in contrast to the Thrombin dataset, yeast genome data
already was in the public domain. Had we provided the sequence,
it would have been too easy for anyone to identify each gene in
the test set and “look up” its functions and localization. Indeed,
the cup co-chairs considered even anonymizing all the field names
and values, to completely ensure the answers could not be found
in this way. But in the end the co-chairs decided this decision
would take too much away from the interestingness of the data set

and tasks.

3 The gene expression profiles were from the diauxic study growth of

An additional challenge with using protein interactions as a
predictor of function is the fact that high-throughput approaches,
such as the yeast two-hybrid system, that are used to screen
physical interactions can generate many false-positive relations.

For example, a protein might have the right sequence
complementarity to interact with another protein, but the second
protein is localized in a different compartment in the cell and
therefore cannot interact under physiological conditions.

A final challenge was that, because both function and localization
had to be withheld in the test set, predictors for function could not
use localization (even though it was present in the training set)
and predictors for localization could not use function. In actual
practice, it is common to have localization information available
when one is trying to predict function.

Evaluation of localization was the simplest of the three tasks.
Each entry was permitted to predict only one localization per
gene. If more than one localization was predicted, the first
prediction was used. The score of an entry was simply the
fraction of genes for which the correct localization was predicted.
Evaluation of function was slightly more complicated because a
gene could have more than one function. An entry could contain
arbitrarily many function predictions per gene. Our key consisted

of all (gene,function) pairs where the gene was known to have the

DeRisi et al. (1997) and are available at the Stanford Microarray
Database (http://genome-www5.stanford.edu/MicroArray/SMD/)

KDD Cup Participation

16 21 24
30

136

0

20

40

60

80

100

120

140

160

Cup 97 Cup 98 Cup 99 Cup 2000 Cup 2001

N
u

m
b

er
 o

f
P

ar
ti

ci
p

an
t

G
ro

u
p

s

���������	��
��� ��� � � ����� ���
���������� ����� ��� � ��� ���

 �!	"

"

#	#

$!

%�&	'

(�&�)

*�+�,)

-/.1032�4

�/�������	��
�/� ��5
���6�7���� ����� �	� � ��� �	�

 	 18

8�

869

: 0�4 &�'�; , +

<	=�+3> . , & +

? & >A@�B , C�@ . , & +

Figure 1. Number of participant groups and distribution of submissions by task and group affiliation.

SIGKDD Explorations. Copyright 2002 ACM SIGKDD, January 2002. Volume 3, Issue 2 – page 4

function. A (gene,function) pair was counted correct for an entry
if it either (1) appeared in both our key and the prediction or (2)
appeared in neither our key nor the prediction. Otherwise it was
counted incorrect. The score of an entry was the number of
correct pairs over the total number of (gene,function) pairs.

1.3 Submission Statistics
As shown in Fig. 1, a total of 136 groups participated to produce a
total of 200 submitted predictions over the 3 tasks: 114 for
Thrombin, 41 for Function, and 45 for Localization. This
represents a five-fold increase in participation over previous years
with more than half of the entries being contributions from the
commercial sector. We believe that the increased level of
participation could very likely represent a growing interest by the
data mining community in bioinformatics-related knowledge
discovery problems. This is supported by the workshop and
keynote talk on the same subject in this year’s conference.4

We asked the participants to send a paragraph describing their
approach in exchange of an email report of their performance
along with the performance of everyone else. We received 156
responses and these provided the basis for the summary report on
the approach and software used for the data mining tasks. The
breakdown by origin of data mining software used by the
participants in the three tasks is shown in Figure 2. About 60% of
the competitors used custom software, i.e. software that they
wrote. It is interesting to note that, especially for the Thrombin
task, only 5 out of 79 groups (6%) used commercial or proprietary
software. This reverses the trend observed over the previous
competitions, where 77% of the participants in the KDD-Cup
2000 used commercial software.5 The use of custom software in
KDD-Cup 2001 was dictated by the nature of the problems, as
most commercial software systems cannot handle the excessive
number of features in the Thrombin dataset and the multi-class
nature of the Function prediction task. In contrast, for

4 KDD-2001 Workshop: “Data Mining in Bioinformatics” organized by

M.J. Zaki, H.T.T. Tiovonen and J.T.L. Wang. Keynote talk:
“Challenges for Knowledge Discovery in Biology” by Russ Altman.

5 Kohavi et al. (2001) KDD-Cup 2000 Organizers’ Report: Peeling the
Onion. SIGKDD Explorations 2(2):86-98.

Localization prediction, which lends itself better as a standard
single-class classification task, 32% of the competitors used
commercial data mining packages. These observations on
software usage seems to indicate that although many mature
commercial data mining packages are available, data from the
bioinformatics-related domains pose unique challenges that
commercial packages cannot address adequately.

As mentioned, both the relational tables and a denormalized flat
file were made available for the Function and Localization tasks.
Of the 57 competitors who provided information on the dataset
used, 33 used the fully-denormalized set, 21 used both the genes
and interaction relational tables, and 3 used only the genes table.
Most likely, this was due to lack of access to data transformation
tools that can deal easily with relational data.

Figure 3 summarizes the algorithmic approaches used in the data
mining tasks by the competitors. Not surprisingly, almost 70% of
the competitors in the Thrombin task used feature selection in
combination with some other algorithm, but only a very small
number of them created new features for that dataset. However,
about 15% of the competitors in the Function and Localization
tasks constructed new features mainly to capture the relational
nature of the data. Decision trees and ensemble classifiers based
on more than one algorithms were by far the most popular for all
three tasks, followed by Naïve Bayes and k-nearest neighbor
classifiers. The k-nearest neighbor classifiers offered certain
advantages in dealing with the significant fraction of missing data
in Dataset 2. Surprisingly, only two groups used relational
approaches, such as inductive logic programming (ILP), despite
the fact that such techniques can deal “naturally” with relational
data. Finally, a relatively small number of competitors used
cross-validation techniques in an iterative fashion to improve
algorithm selection and tuning.

���������

�
	
�

��

���������

���

�

�

���������

���

�

���

���������

� �
��!

" �

#�$&%�' (�)

* $
+
, - .�/0(�)213- 4

#5(�)�)2637 .�- 13,

Figure 2. Origin of software used by the participants.

SIGKDD Explorations. Copyright 2002 ACM SIGKDD, January 2002. Volume 3, Issue 2 – page 5

The remainder of the paper is organized as follows. Section 2 is
discusses the winning approach to Task 1: Thrombin and is
written by Jie Cheng. Section 3 discusses the winning approach
to Task 2: Function and is written by Mark Krogel. Section 4
discusses the winning approach to Task 3: Localization and is
written by Hisashi Hayashi, Shinichi Morishita, and Jun Sese.
Section 5 discusses broad lessons from the competition; Sections
1 and 5 are written by the co-chairs Christos Hatzis and David
Page. Before continuing, we would like to provide honorable
mention to several teams that either came very close to the
winning score for a task or provided particularly important
insights. These are:

• Task 1: Tomi Silander, University of Helsinki.

• Task 2: Christophe Lambert, Golden Helix; Jun Sese,
Hisashi Hayashi, and Shinichi Morishita, University of
Tokyo; David Vogel and Ramanujan Srinivasan, A.I.
Insights; Sara Pocinki, Robert Wilkinson, and Patrick
Gaffney, Lubrizol.

• Task 3: Matthias Schonlau, William DuMouchel, Chris
Volinsky, and Corina Cortes, RAND and AT&T; Brian
Frasca, Zijian Zheng, Rajesh Parekh, and Ronny
Kohavi, Blue Martini.

2. THROMBIN RESULT
2.1 Overview
The aim of this task is to learn a classifier that can effectively
predict whether an organic molecule can bind well to a target site
on thrombin -- a key receptor in blood clotting, given the
chemical structure of the compound.

From the description of this task in Section 1.2, we can see that
this is a highly challenging problem for three reasons. First, the
training data set is extremely imbalanced and the number of
positive examples is very small – only 42 compounds (2.2 percent
of the total 1909) are active. This prevents us from using standard
model evaluation and selection techniques such as creating
separate validation set or using k-fold cross validation. Second,
the feature vector contains 139,351 features, which is a lot more
than most learning systems can handle. Therefore, having the
proper techniques for effective dimension reduction is crucial
here. Third, because the examples in the test set are not drawn
from the same distribution as the training set, the distribution of
test set is expected to be very different from that of the training
set. This means that we do not have a properly defined
misclassification cost function. As a result, finding the cut-point
to separate the active compounds from the inactive compounds
using their posterior probabilities can be quite tricky.

Because we have a lot of experience in learning Bayesian network
classifiers and our previous work showed that Bayesian networks
can be excellent classifiers and have unique advantage in feature
selection [4][5], we decided to apply Bayesian network learning
techniques to this task.

�

���

���

���

���

���

���

���

� �
�� �
��
� �
� �
��	

�

� �
�� �
��
�

�
� ��
��	

�

� �
�	
	

�
� ��
�

� �
�
��
� �
��
�
	� 	
�
�

� �
� ��
� � �
�

���
� �
� ��

�
� �
	 �
��

�

�

�	
��

� � �
��
�
� �
�

�

�	
��	

�
� �
� � �

!

� ��
�
	 ��

�� �

� �
�	
��

� �
��	
�	
��
�

"
�
	
�	
�
� ��
��
	

�

� � �
�
	 �
�
� �
�

�
��
�	
�
$ �

�
��
�
�	
��

� �
�	
	

�
� �
�� �

"	
��
� �
� ��
��
	

�

% "
�$ &"

$

� �

�� 	
' �
�	

�

)
UD

F
WL

R
Q

�R
I�

(
Q

WU
LH

V
�E

\
�7

D
V

N

(*),+.-0/
(*),+.-21
(*),+.-43

Figure 3. Algorithmic approaches used in the three tasks.

SIGKDD Explorations. Copyright 2002 ACM SIGKDD, January 2002. Volume 3, Issue 2 – page 6

2.2 Introduction to Bayesian Network
A Bayesian network Θ= ,, ANB is a directed acyclic graph

(DAG) AN , where each node Nn ∈ represents a domain

variable (eg, a dataset attribute), and each arc Aa ∈ between
nodes represents a probabilistic dependency, quantified using a
conditional probability distribution (CP table) Θ∈iθ for each

node ni (see [16,17]). A BN can be used to compute the
conditional probability of one node, given values assigned to the
other nodes; hence, a BN can be used as a classifier that gives the
posterior probability distribution of the class node given the
values of other attributes. A major advantage of BNs over many
other types of predictive models, such as neural networks, is that
the Bayesian network structure represents the inter-relationships
among the dataset attributes (Fig. 4). Human experts can easily
understand the network structures and if necessary modify them to
obtain better predictive models.

We will later use the idea of a Markov boundary of a node y in a
BN, where y’s Markov boundary is a subset of nodes that
“shields” n from being affected by any node outside the boundary.
One of y’s Markov boundaries is its Markov blanket, which is the
union of y’s parents, y’s children, and the parents of y’s children.
When using a BN classifier on complete data, the Markov blanket
of the classification node forms a natural feature subset, as all
features outside the Markov blanket can be safely deleted from the
BN. This can often produce a much smaller BN without
compromising the classification accuracy.

Figure 4 shows the structure of a Bayesian net classifier learned
from the Adult data set, which is extracted from the census bureau
database and commonly used as a benchmark dataset for learning
models that predict whether a person’s salary is over 50K per
year. The Adult data set contains 12 features and the class
attribute (a.k.a. target variable) is “Salary”. In Figure 4, we
ignored five attributes that are outside the Markov blanket of the
target node since those attributes will not affect the outcome of
the classification when there is no missing value. Here we can see
that feature selection is a natural byproduct of the Bayesian net
learning.

Although the arrows in Bayesian network are commonly
explained as causal links, in classifier learning, the class attribute
is normally placed at the root of the structure in order to reduce
the total number of parameters in the CP tables. For convenience,
we can imagine that the actual class of a sample ‘causes’ the
values of other attributes. Using the classifier in Figure 4, we
achieved one of the best predictive accuracies ever reported on the
Adult data set [5].

Salary

A ge Capital_gain

Capital_ loss

Occupation Marital_status

Education

Relationship

Figure 4. Bayesian network structure of ‘Adult’ data
set.

The two major tasks in learning a BN are: learning the graphical
structure, and then learning the parameters (CP table entries) for
that structure. As it is trivial to learn the parameters for a given
structure that are optimal for a given corpus of complete data –
simply use the empirical conditional frequencies from the data –
we will focus on learning the BN structure.

There are two ways to view a BN, each suggesting a particular
approach to learning. First, a BN is a structure that encodes the
joint distribution of the attributes. This suggests that the best BN
is the one that best fits the data, and leads to the scoring-based
learning algorithms, that use heuristic search to seek a structure
that maximizes the Bayesian, MDL or Kullback-Leibler (KL)
entropy scoring function [7,11].

Second, the BN structure encodes a group of conditional
independence relationships among the nodes, according to the
concept of d-separation [17]. This suggests learning the BN
structure by identifying the conditional independence
relationships among the nodes. These algorithms are referred as
CI-based algorithms or constraint-based algorithms [6,19].

We developed a unique constraint-based three-phase dependency
analysis algorithm, which is especially suitable for data mining in
high dimensional data sets due to its efficiency. (The complexity
is roughly O(N^2) where N is the number of features; see [6] for
details.) In [4,5], we studied various aspects of learning Bayesian
networks as classifiers. The empirical results on a set of standard
benchmark datasets show that Bayesian networks are excellent
classifiers. We have also developed two Bayesian network
learning systems: BN PowerConstructor [2], which is used for
general Bayesian network learning, and BN PowerPredictor [3],
which is used for classifier learning. PowerPredictor is the tool
that we use in this KDD CUP competition.

2.3 Our Approach to Thrombin Data
2.3.1 Data Pre-processing
Because there are only 42 positive examples in the training data, it
is quite obvious that the data cannot support a complex model that
uses many features. Therefore, it is justified to apply dimension
reduction techniques. The first thing we would like to do is
feature filtering. The goal is to create a feature subset that is large
enough to include all the important features and is small enough
for our learning system to handle easily. At this stage, we are not
trying to come up with the final feature subset but to exclude the
features that are not strongly correlated with the target variable.

To achieve this, we applied the standard information gain feature
filtering. We computed the mutual information between each of
the 139,351 features and the target variable (“Activity”) using
Equation 1, and then sorted these features by their information
gain from large to small. In Figure 5, we plotted the top 30,000
features. It is easy to see that only a very small portion of the
features on the top have strong correlation with the target variable.
Based on this plot, we decided to filter out the features that have
information gain less than 0.035. This left us with around 200
features.

SIGKDD Explorations. Copyright 2002 ACM SIGKDD, January 2002. Volume 3, Issue 2 – page 7

∑=
ba bPaP

baP
baPBAI

,)()(

),(
log),(),((1)

Figure 5. The information gain of the top 30000

features

2.3.2 Learning and evaluating Bayesian Network
models
The BN PowerPredictor system allows users to control the
complexity of the learned network by adjusting a threshold value.
It can also use a wrapper to search for an optimal model based on
the model’s performance on a validation set. The system allows
users to choose from two commonly used performance measures:
the prediction accuracy and the area under ROC curve (AUC) (see
[10]). For this problem, the AUC measure is more appropriate
since the cost function is actually unknown.

Since there are only 42 positive examples in the training set, we
cannot afford to use a part of the training set as the validation set
to search for an optimal model. We cannot even afford to use 10-
fold cross validation. Although leave-one-out cross validation
might work, it is very expensive computationally and the time we
could spend on the KDD Cup was very limited. Therefore, we
decided to abandon the wrapper approach. Instead, we decided we
would have to create several candidate models and pick the one
that seemed most appropriate.

Based on the above analysis, we generated five candidate models
from the preprocessed training data set that had 200 features and
1909 instances. Learning each model took about 8 minutes on a
Pentium III PC. Although each model had many connections
among the 200 features, we could safely ignore most of each
network by only studying the sub-network that contained the class
node and the features in the Markov blanket. Each of the five
candidates had from two to twelve features. For each candidate,
we used it to classify the whole training set and measured its AUC
scores. Then we picked the simplest model that had a “decent”
AUC score – a model with only four features. Because the
performances were not measured using out-of-sample data, we
could not simply pick the one with the highest score. In fact, all of
the more complex candidates give slightly better scores. The
chosen model is shown in Figure 6.

Figure 6. The Bayesian network classifier

2.3.3 Classifying the testing set
Using the chosen model, we created the posterior probabilities of
each instance in the test data set. The next thing to do was to
decide the cut point to classify the test cases into either active or
inactive. If the test data were drawn from the same distribution as
the training data, and the cost function were known, we could
then calculate the optimal cut point from the ROC curve.
However, this was not the case. Fortunately, when we examined
the probabilities of the test cases, we could see that the model
only gave nine distinct probability values due to its simplicity,
which meant there were only eight possible cut points to choose
from – we could either classify 32 tests cases as active, or 71
cases, or 72, 74, 75, 215, 223, 550. Since we knew that there were
still more inactive cases than active cases, we decided to classify
223 cases as active. We did not want to classify a smaller number
of cases as active because misclassifying a true active case cost
more.

2.3.4 Analyzing the result
After the true labels of the test cases were released, we measured
the performance of all the candidate models. We were glad to see
that the model we chose was actually the best, which means the
more complex models were overfitting models. Our final model
gave classification accuracy 0.711 and weighted accuracy 0.684.
Its ROC curve and confusion matrix are shown in Figure 7.

0

0.2

0.4

0.6

0.8

1

 Predicted Positive Predicted Negative

Actual Positive 95 55

Actual Negative 128 356

Figure 7. The ROC curve and the confusion matrix of the
chosen model

Activity

10695

79651

91839

16794

SIGKDD Explorations. Copyright 2002 ACM SIGKDD, January 2002. Volume 3, Issue 2 – page 8

2.4 Discussion
There are three things we have learned from working on the
KDDCUP project:

1. The combination of information gain based feature
filtering and the Bayesian net based feature selection is
a novel, effective approach for analyzing high-
dimensional data. If the data had contained only the
four features our model used, we believe many classifier
learning techniques would have attained similar
performance.

2. We gained awareness of the overfitting problem when
out-of-sample validation is impossible, especially when
the sample size is small.

3. One should carefully choose performance measures that
are cost function independent when a well-defined cost
function is not available, such as the AUC.

3. PREDICTING FUNCTION

This section presents a description of an approach to KDD-Cup
2001 tasks 2 and 3, prediction of gene/protein function and
localization. The approach includes the application of the
software system RELAGGS, which was developed at Magdeburg
University. Due to this system, we were able to win the Cup for
task 2, which forms the focus of this section.

3.1 Motivation

The main objective for our participation in KDD-Cup 2001 was to
evaluate our approach to data analysis RELAGGS, which was first
presented in more detail shortly after KDD-2001 [13]. We were
especially interested in the opportunity to compare our approach
to others and their results.

RELAGGS is intended to deal with relational data, i.e. data spread
over multiple tables as is usually the case in a relational database.
The data for tasks 2 and 3 were announced as relational data, so
our attention was drawn here.

Before the Cup, our approach had been tested on several learning
tasks concerning relational datasets from financial domains.
Although these data had been used in data mining competitions in
previous years, there was limited information about the results of
their participants, so we were lacking chances for comparisons
with our results.

Moreover, the data from the Cup’s domain of biology offered a
new challenge compared to those from insurance companies and
banks. These biological data were more complex in terms of
recursive structures introduced by interactions of proteins.
Furthermore, we had only dealt with concept learning so far, not
yet with multi-class problems.

3.2 Preprocessing with SQL

Tasks 2 and 3 asked for models to predict among 15 functions and
15 localizations of proteins, respectively. Two variants of the data
were provided: firstly, a single table with single lines per example
and almost 3.000 columns, and secondly, two tables as a
relational dataset with less than 10 attributes each. Because of our
interest in relational data mining, we focused on the latter variant
of the data. The two tables given were named genes_relation and
interactions_relation, cf. Figure 8 on the left.

Figure 8. Renormalization of the original data (rectangles:
tables, arrows between tables: foreign links, t/t: separate
tables for training and test genes).

The genes_relation contained 862 training examples, the
corresponding relation for testing included 381 test examples.
There could be more than one line in the tables describing each
gene. Genes could be identified with the help of a key attribute
gene_id. RELAGGS takes as input a dataset in normal form (NF),
especially demanding for single lines per example in the target
table. This is why the original data had to be transformed with the
help of SQL view definitions into a different representation, cf.
Figure 8 on the right. Note that renormalization should be
unnecessary in many practical applications, since databases are
usually in normal form.

The data from the original table genes_relation was now
represented in tables gene, class, complex, phenotype, and motif.
Moreover, the original function and localization attributes in the
gene table were split into a number of attributes: one for each
function and one for each localization, with possible values 0
(false) and 1 (true) for training examples, and ? (unknown) for test
examples. This was another prerequisite for the application of
RELAGGS and SVMlight. Now, there is a one-to-many
relationship between table gene and each of the other four tables.
This is indicated by so-called foreign links, which correspond to
foreign key relationships but differ from those wrt. the definition
of direction [20].

Note that a natural join of gene, class, complex, phenotype, and
motif on gene_id reproduces the original genes_relation, apart
from differences due to the new representation of the target
attributes for functions and localizations. Note also that a

genes_
relation

interactions_
relation

gene
t/t

class

geneN

motif

phenotype

complex
x

interaction

SQL

SIGKDD Explorations. Copyright 2002 ACM SIGKDD, January 2002. Volume 3, Issue 2 – page 9

universal join like this is problematic in the general case because
of the dangers of exponential explosions or losing data.

Concerning the interactions_relation, we first tried to find out
what kind of relation was established here, i.e. properties such as
reflexivity, symmetry, and transitivity. We sent our questions
concerning the former two properties to the Cup organizers and
received a prompt and helpful reply, which also appeared in the
Questions & Answers section of the Cup Web site. The property
of reflexivity was not valid for the interactions relation, but
symmetry was.

Since RELAGGS cannot (yet) deal with background knowledge
in the form of general rules, e.g. a rule for establishing symmetry,
this feature of interactions had to be made explicit. For each pair
of genes (gene1, gene2) included in interactions_relation, we also
inserted the pair (gene2, gene1) into our interaction table, if it was
not already there.

The issue of transitivity became relevant to us only after the first
question period of the Cup was over. We did not want to consider
only direct “neighbors,” i.e. genes/proteins interacting according
to the orignal table interactions_relation (plus symmetry).
However, RELAGGS cannot (yet) deal with cycles in the graph of
tables and foreign links as contained in the original data. In this
situation, we decided to take the following measures:

1. We tried to find a way to also have “neighbors of
neighbors,” etc. explicit in our interaction table. For
non-direct neighbors, we computed the product of the
correlation values of the corresponding interactions. An
example: with (gene1, gene2) and (gene2, gene3)
already in the interaction table, (gene1, gene3) and the
product of the correlations of the original two
interactions could be also inserted into the interaction
table.

2. In order to avoid a very large interaction table, we

concentrated on those interactions for which high
correlation values were given or computed (> 0.5) and
which did not exceed four levels of neighborhood.

3. We created an extra table geneN that included all genes

which where “neighbors” of others according to our
interaction table.

In this context, we introduced foreign links to the tables for class,
complex, phenotype, and motif, in a special way. They would
have had their origin in the table geneN, analogous to foreign
links from the gene table. However, we had them originate
directly from the interaction table. This “flattening” of the
database schema made the computation of joins in the later steps
of the KDD process more efficient.

Finally, after the test data had been provided, we integrated
training and test data such that properties such as class
information for test genes, which were neighbors of training
examples, could be of influence on the models to be found. We
just kept separate gene tables for training and testing because this
simplified procedures like 10-fold cross-validation at later stages.

3.3 Preprocessing with RELAGGS

The name of our approach hints at the form of the input data to
the system, viz. relations, and the application of aggregate
functions to this input. (Occasionally, we now translate it into
“rely on aggregation, sometimes.”)

So, what does RELAGGS do? It takes as input a description of the
tables including their names and numbers of attributes, the names
and types of attributes, lists of possible values for categorical
attributes, and furthermore, a description of the foreign links and
the target attribute. Finally, the contents of the tables also forms
part of the input.

RELAGGS uses the foreign link information to compute join
definitions, e.g. for a join of the tables gene and class, gene and
complex, etc. Then, these joins are computed and SQL standard
aggregation functions are applied (count for relations and
categorical values; avg, max, min, and sum for numeric attributes)
to collapse the joins into one line per gene. In the example, this
means just counting the possible values for class, complex, etc.
Unknown values are handled by simply not counting them.
Finally, the target attribute (here localization) is concatenated with
all the single lines per gene originating from the different joins.

The RELAGGS output consists of a single table, optionally
formatted as input for C4.5 or SVMlight, cf. Figure 9. In inductive
logic programming, the transformation of multiple tables into a
single table is called propositionalization. For the final training
and testing, a run of RELAGGS took about a minute, and the
output table contained 938 columns.

Figure 9. Propositionalization.

3.4 Data Mining with SVMlight

As mentioned above, RELAGGS can output files for C4.5 [12]
and SVMlight [18]. In our earlier experiments, we had used these
learners with their default parameter settings [13]. We used these
settings here as well.

Actually, the first focus for optimizations was not on function
prediction but on localization prediction, and especially on the

gene t/t class

geneN

motif

phenotype

complex

interaction

gene_for_

analysis
t/t

RELAGGS

SIGKDD Explorations. Copyright 2002 ACM SIGKDD, January 2002. Volume 3, Issue 2 – page 10

most frequent class nucleus (42.5% of all localizations). A series
of more than 50 10-fold cross-validation experiments showed that

1. SVMlight performed better then both C4.5 and C4.5rules
here (10.1% ± 2.6% vs. 14.9% ± 4.0% / 14.1% ± 3.9%),
which was different from our earlier experiments with
financial data, and with differences being statistically
significant according to paired t-tests at 0.05 level.

2. SVMlight standard parameters performed well; among

other findings was that a change from the default linear
kernel to quadratic or kubic ones resulted in overfitting.

3. Other representations of the input data, such as a variant

without interaction data, did not perform as well as the
representation described above, although differences
were usually small and statistically significant for some
variants only.

An SVMlight run on the RELAGGS output took a few seconds and
resulted in model files from the training genes and in prediction
files for the test genes as depicted in Figure 10. Predictions are
either above zero for positive cases or below zero for negative
cases. The real-valued differences from zero express a degree of
confidence in the predictions.

Figure 10. Application of SVMlight

3.5 Postprocessing with SQL

The predictions for single functions and localizations had to be
integrated into a final solution. There was a simple opportunity for
localization prediction: we chose the value for localization with
the highest confidence value provided by SVMlight, regardless if
positive or negative.

In the context of function prediction, we made the observation
that the table for test genes included several identical lines per
example after class, complex, etc. information had been extracted
to different tables. We interpreted this circumstance as an
information about the number of functions to be predicted per
gene/protein.

When it came to function prediction, we at first chose those
functions with a confidence higher than zero. In a next step, we
tried to also include the function with a negative confidence
closest to zero, if we had not yet as many functions predicted as
indicated by the number of the identical lines in the gene table
mentioned above. If we had too many functions predicted already,
we removed the one with the smallest confidence. Based on 10-
fold cross-validation, we found out that only the latter step of
prediction removals improved prediction accuracy. So, we did
only this for the construction of the final predictions, cf. also
Figure 11.

Figure 11. Construction of the final predictions.

3.6. Results, discussion, conclusion

From 10-fold cross-validation, we received an estimate of 92.9%
accuracy for function prediction and 72.5% accuracy for
localization prediction. From the Cup organizers, we received the
actual results of 93.6% accuracy for function prediction and
69.8% accuracy for localization prediction. While the former
made us the winner on task 2, the latter meant rank 4 on task 3.

It seems that it was a good strategy here to include all the
information we could get about the genes/proteins, including the
integration of training and test data and the usage of assumptions
about the number of functions to be predicted.

Overall, we invested about 160 hours of work into this knowledge
discovery project. Considering the fact that much of this time was
devoted to things like replacing international decimal points by
German decimal commas in order to get the data from one tool the
other without sacrificing semantics, we consider it useful to
integrate our tools in a database environment as a homogeneous
platform. This should also be of advantage for handling larger
datasets.

During the project, we learned that RELAGGS has some potential
for further improvements such as support for multi-class
problems. However, even the first version of RELAGGS was fast
and simple to apply due to the opportunity to work immediatly
with multiple tables and the easy specification of foreign links,
and it was competitive on tasks 2 and 3 of the KDD-Cup 2001.

gene_
for_analysis
t/t

SVMlight

...
model/
prediction

function02
model/
prediction

function01
model/
prediction

function_
prediction

SQL

...
model/
prediction

function0
2
model/
prediction

function0
1
prediction

SIGKDD Explorations. Copyright 2002 ACM SIGKDD, January 2002. Volume 3, Issue 2 – page 11

4. TASK 3: LOCALIZATION

Dataset 2, which was prepared for the KDD Cup 2001, has three
interesting features: (1) the dataset contains many missing values;
(2) the domain of the objective attribute contains fifteen non-
ordered values; and (3) the dataset is a mixture of two types of
data: one table correlates the features of individual genes and the
other represents a binary relation that describes interactions
between the genes. Although these are typical features of
biological data, it is difficult to manipulate the data to achieve
highly accurate predictions. In order to solve this problem, we
used traditional approaches, such as decision trees, AdaBoost, and
nearest neighbor methods. The nearest neighbor method
represented the most promising approach because majority voting
to predict multiple classes, and space reduction to handle missing
values appeared to be straightforward, although the selection of
optimal distances from the data required serious investigation. To
overcome this problem, we calculated an "optimal" neighborhood,
thereby maximizing the prediction accuracy against a test dataset
(a subset of the given training dataset). Although this optimization
problem is computationally intractable, we propose an efficient
solution that involves a branch-and-bound searching strategy.
This method was used successfully to generate the most accurate
predictor in the KDD Cup 2001 Task 3 competition. In this
section, we discuss the advantages of this method in terms of
predictive accuracy and computational performance.

4.1 Task Overview

First, we give a brief overview of Task 3. The task was to predict
the location in a cell where a given gene is active (where the
protein for which the gene codes is located). The goal was to
select one of the fifteen candidate locations within a cell, i.e., cell
wall, cytoplasm, cytoskeleton, endosome, ER, extracellular
milieu, Golgi, integral membrane, lipid particle, mitochondrion,
nucleus, peroxisome, plasma membrane, transport vesicle, and
vacuole. The experiment included 862 training genes and 381 test
genes.

Each gene was assigned values for six attributes: Essential,
Class, Complex, Phenotype, Motif, and Chromosome. The
‘Chromosome’ parameter corresponded to one of 16 chromosome
numbers. The domains of the other five attributes were multiple
sets. For instance, the value of ‘Class’ was a subset of 24 protein
categories, such as ‘Cyclins’ and ‘Transcription Factors’.
However, 70% of the Class values were empty sets {}, and thus
the values were missing. The ‘Complex’ attribute indicates
members of the 56 protein complexes that are encoded by
individual genes. ‘Phenotype’ and ‘Motif’ assign a gene to one of
the 11 phenotypes or 351 types, respectively. An example from
dataset 2 is shown below.

Gene G234064
Essential {Essential}
Class {"GTP/GDP-exchange factors"}
Complex {"Translation complexes"}
Phenotype {}

 Motif {PS00824, PS00825}
Chromosome 1
Function {"CELLULAR ORGANIZATION",

“PROTEIN SYNTHESIS”}

Localization cytoplasm

The dataset describes interactions between all of the 1243 gene
pairs, which consist of 862 training genes and 381 test genes. The
interactions between gene pairs can be classified as ‘Physical’,
‘Genetic’, ‘Genetic-Physical’ or ‘No’. In the first three types of
interactions, the strengths of the interactions are associated. It
would be interesting to see if the type and strength of the observed
interactions could be applied to increasing prediction accuracy.
However, the total number of interactions was not sufficient to
perform such a precise analysis, since information on most of the
interactions between the genes is missing. Therefore, we decided
to simplify the analysis by treating Physical, Genetic and Genetic-
Physical as indicative of an observed interaction, and No as
indicative of a failure to observe the interaction. We did not take
into account the strength of each interaction. In this way, we
generated binary pairs that described the interactions between
genes, and we called this the binary interaction relationship.

4.1.1 Coping with Missing Values

We developed an approach for handling missing values, thereby
allowing more accurate predictions. First, we observed that the
Class, Complex, and Motif attributes were highly related to
localization, while the other three, Essential, Phenotype, and
Chromosome Number, did not correlate strongly with the
objective attribute. Furthermore, with regard to the binary
interaction relationship, we observed that genes that interacted
with the focusing gene were usually located in the same part of
the cell. This is a further indication that the binary interaction
relationship is useful in predicting localization.

We also noted that although many attribute values for the 862
training genes were missing, at least one of the three attributes
(Class, Complex, or Motif) was usually defined. Indeed, among
the 381 test genes, 367 had one of these three values or interacted
with other genes. Therefore, we decided to compensate for the
missing information by using information on the three attributes
and the binary interaction relationship.

4.1.2 Different Test Approaches

Once the four features had been selected, we applied three
independent approaches to the data analysis. In [15], we have
previously developed an efficient method of mining correlated
association rules that have strong relevance to the objective
attribute, such as localization. We tested the usefulness of this
approach in tackling this particular problem.

First, we generated a decision tree [18] that was labeled with
correlated association rules [1,15]. This approach made a good
score in the Task 2, and our prediction was ranked third. Second,
we made combinations of several correlated association rules

SIGKDD Explorations. Copyright 2002 ACM SIGKDD, January 2002. Volume 3, Issue 2 – page 12

using the AdaBoost strategy [14,15] in order to boost the overall
prediction accuracy. Third, we used the nearest neighbor strategy

[9]. Of these three approaches, the nearest neighbor method
worked best for the training dataset. Finally, we applied the
nearest neighbor method to the test dataset.

4.2 Nearest Neighbor Analysis

4.2.1 Attribute Agreement of Records

Let R be a relation that is a set of records with which certain
attributes (features) f1,f2,...,fk are associated. We assume here that

R has two attributes of special. One is the key attribute used for
the unique identification of each record. The other is the objective
attribute of a classification problem. Let Di be the domain of fi.

Let r be a record in R. We then denote the fi’s value in r by

r[fi]∈Di. Without loss of generality, we assume that r[fi] is a set of

values. In the case where the fj’s value of r is a single value c, we

formally regard it as the singleton set {c}, but we simply describe
the set as c for readability. r1 and r2 in R are called to agree on fi

if r1[fi] and r2[fi] share some common elements; namely,

r1[fi]∩r2[fi]≠φ.

For example, consider the four records in Table 1, in which the
key attribute is Gene and the objective is Localization. The four
records in the table are members of dataset 2. Observe that
G234126 agrees with G235065 with respect to the Essential,
Class, and Complex attributes, because

 G234126[Class]∩G235065[Class]={GTP-binding}

G234126 also agrees with G235357 in terms of Essential,
Complex, and Motif attributes.

One might consider defining the degree of agreement, because the
interaction of r1[fi] and r2[fi] possibly involves more than one

element, and the number of common elements would be expected
to indicate the strength of agreement of r1 and r2 on fi. However,

the number of shared elements in dataset 2 is typically no greater
than two, and therefore we cannot define the strength of
agreement. Nevertheless, it is interesting to see whether the use of

agreement strength contributes to improvements in prediction

accuracy.

Binary interactions between pairs of genes are also represented by
a relationship. Table 2 illustrates a binary interaction relation;
that is, a set of binary pairs of genes and the strengths of their
associated interactions. These interactions are also from dataset 2.
Two genes are deemed to agree with a binary interaction relation
if the pair is listed in the relation. For instance, G234064 and
G234126 agree with Table 2.

4.2.2 Neighbors

We are now in a position to define neighborhoods among the
records. We focus on G234126 in Table 1 and define its
neighbors. We see that the top three genes (G234126, G235065,
and G234064) in the table are located in the cytoplasm. In order

to define the neighborhood of the focusing gene G234126, we
utilize the notion of attribute agreement between two genes; that
is, two records are neighbors if they agree with respect to certain
attributes. It is then possible to select attributes that are useful in
the prediction of localization.

 The selection of Chromosome in Table 1 is not effective,
because none of the other three genes match G234126 with regard
to this parameter, and therefore it is impossible to infer the
localization of G234126. By choosing Motif, the bottom gene
G235357 becomes the neighbor, but it is located in mitochondria.
The choice of Complex designates all three genes as neighbors of
G234126, and most of these are located in the cytoplasm. One can
also consider the binary interaction relation in Table 2. G234064,
which is located in cytoplasm, corresponds only to the focusing
attribute G234126 in this table. The choice of Class appears to be
appropriate, since G235065, which is located in the cytoplasm,
becomes the neighbor of the focusing gene.

4.2.3 Nearest Neighbor Assignment by
Prioritizing Attributes

In practice, there are many missing values, such as those seen in
dataset 2, and thus the use of only a single attribute may not be
sufficient for accurate prediction. Therefore, in order to assign
neighborhoods that are based on agreement we need to examine
more than one attribute. For instance, in Table 1, one can
combine Class, Complex, and Motif attributes together with the
binary interactions in Table 2. We see that the bottom three genes
can be treated as neighbors since they agree with G234126 with
regard to Class, Complex and Motif.

Gene Essential Class Complex Motif Chromosome Localization

G234126 {Non-Essential} {GTP-binding} {Translation} {PS00017} 2 cytoplasm

G235065 {Non-Essential} {GTP-binding} {Translation} {PS00301} 16 cytoplasm

G234064 {Essential} {GTP/GDP-exchange} {Translation} {PS00824, PS00825} 1 cytoplasm

G235357 {Non-Essential} {} {Translation} {PS00017, PS00190} 7 mitochondria

Table 1. Example of genes.

Gene Gene Type Strength

G234064 G234126 Genetic-Physical 0.914095071

G234064 G235065 Genetic-Physical 0.751584888

G235357 G239653 Genetic 0.891039915

Table 2. Binary interaction relation between pairs of genes.

SIGKDD Explorations. Copyright 2002 ACM SIGKDD, January 2002. Volume 3, Issue 2 – page 13

In cases where the number of neighbors is large, we perform a
further selection among the neighbors. In order to achieve this,
we prioritize the attributes. As an example, we choose Complex as
the primary attribute and extract all the genes that agree with
G234126 on Complex; that is, all of the bottom three genes. We
then select Class as the secondary attribute, and we extract the
genes that agree with G234126 with regard to Class, thus
revealing G235065, which is located in the cytoplasm.

We now present a formal description of the method used to
restrict neighbors. Suppose that we select some features from f1,

f2, ..., fk, and prioritize them to yield a sequence of features

[g1,...,gm] that is ordered from left to right (we denote order by

enclosing a sequence within square brackets). Let r∈R be a test
record, and let Ni denote a set of neighbors of r. As a training

dataset, let us select a non-empty set Rtrain⊆R, such that r is not a
member of Rtrain. In the initial step, we assign Rtrain to N0, and

we continue to restrict Ni by using the priority list [g1,...,gm], as

illustrated in Figure 12.

 N0:=Rtrain;

for each i = 1,2,...,m begin

 Ni:={x∈Ni-1 | x and r agree on gi};

 if Ni=φ then Ni:=Ni-1;

end

return Nm;

Figure 12: Computing the nearest neighborhood

for a priority list

In each step, we compute the elements in Ni-1 that agree with r

on the next attribute gi, and we assign the set to Ni. The new set

Ni may be empty due to many missing attribute values. In order to

avoid losing all the neighbors of r when Ni is empty, we continue

the calculation by re-assigning the previous non-empty Ni-1 to Ni.

We repeat these steps until i=m. The final set, Nm, contains

neighbors that have survived agreement tests on attributes through
as many higher priorities as possible. Therefore, we call the
members of Nm the nearest neighbors of r with respect to the

initial training dataset Rtrain and the priority list [g1,...,gm]. We

denote the final answer Nm as: NN(r, Rtrain, [g1,...,gm]).

4.2.4 Classification by Nearest Neighborhood
Analysis

Let obj be an objective attribute, such as Localization, and let
Dobj be its domain. We calculate the objective value of r, r[obj]

from the majority of objective values of nearest neighbors in
NN(r,Rtrain, [g1,...,gm]) using the formula:

arg maxd∈Dobj| { x∈NN(r, Rtrain, [g1,...,gm]) | x[obj]=d } |,

which is denoted by predict(r, Rtrain, [g1,...,gm]).

Let Rtest be a test dataset, such that Rtest⊆R, and Rtest is disjoint
from the training dataset Rtrain; that is, Rtest∩Rtrain=φ. The
prediction accuracy of our classification method using the test
dataset Rtest is

 | { r∈Rtest | r[obj]=predict(r, Rtrain, [g 1,…,g m]) } |

 |Rtest|

which is referred to as accuracy(Rtest, Rtrain, [g1,...,gm]) in the

following discussion.

So far we have assumed that a priority list [g1,...,gm] is

provided for the definition of nearest neighborhoods. In fact, the
choice of priority list significantly affects the prediction accuracy
by selecting an optimal priority list that maximizes accuracy.
Generally, this optimization problem is NP-hard.

Theorem: It is NP-hard to compute [g1,...,gm] that optimizes

accuracy(Rtest, Rtrain, [g1,...,gm]).

The proof of this theorem is given at the end of this section.

4.3 Computing Optimal Priority

In this section, we present an efficient branch-and-bound search
technique for solving the optimization problem.

First, it is noteworthy that if the objective value of any record
x∈NN(r, Rtrain, [g1,...,gm]) does not coincide with r[obj]

(x[obj]≠r[obj]), it is impossible to predict r[obj] correctly. In this
case, r is classified unpredictable using the nearest neighborhood
technique. The ratio of unpredictable records allows us to bound
the prediction accuracy:

acuracy(Rtest, Rtrain, [g1,...,gm])

≤ 1-
|{x∈Rtest | x is unpredictable.}|

|Rtest|
. (2)

The upper bound in the right-hand side is denoted by
ub([g1,...,gm]).

Second, the above upper bound decreases monotonically for
any extension [g1,...,gm,...,gn] of [g1,...,gm]; that is,

 ub([g1,...,gm,...,gn]) ≤ ub([g1,...,gm]). (3)

By using the procedure for computing the nearest neighborhood
(shown in Figure 11), it is easy to see that the nearest
neighborhood shrinks for extensions:

NN(r, Rtrain, [g1,...,gm,...,gn]) ⊆ NN(r, Rtrain, [g1,...,gm])

It immediately follows that if r is unpredictable when using
NN(r,Rtrain,[g1,...,gm]), then r is unpredictable when using

NN(r,Rtrain,[g1,...,gm,...,gn]). Thus the number of unpredictable

SIGKDD Explorations. Copyright 2002 ACM SIGKDD, January 2002. Volume 3, Issue 2 – page 14

records increases monotonously if a priority list is extended by
adding attributes, which lends proof to (3) above.

Finally, suppose that we find a priority list P, such that

 ub(Q) ≤ accuracy(Rtest, Rtrain, P)

From Equations (1) and (2), for any extension Q’ of Q

 accuracy(Rtest, Rtrain, Q’) ≤ accuracy(Rtest, Rtrain, P).

This property motivates us to develop a branch-and-bound
searching algorithm that can be used to compute the optimal
priority list, and thereby maximize the prediction accuracy.
Consider a search tree of priority lists in which the root is the
empty list [], and any child priority list corresponds to its parent
list with one new attribute added at the tail. Starting at the root
empty list [], we gradually expand the ensemble of candidate lists
and maintain the priority list, say Pmax, which temporarily

maximizes the prediction accuracy. In each step, we select a
frontier node in the ensemble, and we investigate its children (in
this instance Q). If ub(Q) ≤ accuracy(Rtest,Rtrain,Pmax), we can

safely prune the subtree rooted at Q without fear of losing the
optimal solution.

One may wonder if this branch-and-bound heuristic is effective,
especially in cases where the objective attribute is Boolean.
However, in the case of dataset 2, the number of values in the
objective attribute is fifteen, and thus there are many opportunities
to determine whether the records are unpredictable, in which case
the upper bound is sharply lowered. Actually, our branch-and-
bound search technique investigates about 10% of all the possible
orders of the seven attributes in dataset 2.

4.4 Experimental Results

4.4.1 Predictive Accuracy

Let Strain and Stest denote the training data and the test data,
respectively, of dataset 2, which was provided by the KDD Cup
2001. We generated the optimal priority list of attributes by
treating Strain as both the training dataset and the test dataset, and
found that the priority list [Complex, Class, Interaction, Motif]
(=Pmax) maximized the prediction accuracy at 79%; that is,

accuracy(Strain,Strain,Pmax) = 79%.

A prediction that used [Complex, Class, Interaction, Motif] also
achieved 72% accuracy against the test dataset Stest;

accuracy(Stest,Strain,Pmax) = 72%.

Since the prediction accuracy decreased by 7%, the optimal
priority list slightly overfitted the training data. The priority list
indicates that incorporation of the other three attributes, Essential,
Phenotype, and Chromosome, into the list does not lead to
improvements in the prediction accuracy.

Since all the values of Localization were available, we
performed additional experiments. The second column of Table 3
includes the prediction accuracy of the singleton set of each
attribute. In order to show that the prediction accuracy improves
when attributes are appended to each singleton set, the third
column shows the optimal priority list, starting with each attribute
listed in the first column, and the fourth column lists their
prediction accuracies. Figure 13 also illustrates how the prediction
accuracy improves step-by-step until the optimal priority list in
Table 3 is generated.

Figure 13: Accuracy improvement by increasing the number
of attributes.

After considering all the possible priority lists, we decided that
the priority list [Complex, Class, Interaction, Motif] was optimal
for the given training dataset. Although it is worth considering
whether another priority list might out-perform this priority list
with respect to prediction accuracy against the test dataset, Table
3 indicates that this is not the case. We further investigated
whether permutations of [Complex, Class, Interaction, Motif]
might make good markers, and the results are shown in Table 4.

 Singleton List Acc1(%) Multiple List Acc2(%)
[es] 45.7 [es,co,in,mo] 69.0
[cl] 48.8 [cl,in,co,es,ph,ch] 69.7
[co] 62.5 [co,cl,in,mo] 72.2
[ph] 47.0 [ph,co,in,es,cl] 69.6
[mo] 49.1 [mo,co,in,cl,ph] 70.2
[ch] 44.9 [ch,co,in] 59.6
[in] 65.1 [in,mo,co,cl,es] 69.7

Table 3: Accuracy improvement for optimal priority list.
Acc1 = accuracy(Stest, Strain, "Singleton List"). Acc2 =
accuracy(Stest, Strain, "Multiple List"). es=Essential, cl=Class,
co=Complex, ph=Phenotype, mo=Motif, ch=Chromosome,
in=Interaction.

SIGKDD Explorations. Copyright 2002 ACM SIGKDD, January 2002. Volume 3, Issue 2 – page 15

We implemented the branch-and-bound strategy in C++. We
implemented the entire system and evaluated its performance on a
Dell Inspiron 5000e containing a Pentium-III processor with a
clock rate of 750 MHz and memory capacity of 384 MB. It took
about 6 seconds to compute the optimal priority and to output the
prediction for Task 3 against dataset 2, which comprised 862
training records and 381 test records.

4.5 Discussion and Technical Proof

From the biological viewpoint, proteins interact and work
together to achieve certain functions at a specific location in the
cell. Thus, the binary interaction relation and the Complex
attribute should correlate with localization, though it is rather
surprising to see that the binary interaction is less important than
Complex and Class in terms of prediction accuracy improvement.
On the other hand, it has been observed that eucaryotic genes with
similar functions are not necessarily coded on the same
chromosome. Even in the absence of this knowledge, our data
mining method automatically selects biologically important
features to ensure better predictions.

We close this section with a proof of the result mentioned earlier.

Theorem It is NP-hard to compute [g1,...,gm] that optimizes

accuracy(Rtest, Rtrain, [g1,...,gm]).

Proof We present transformation from the minimum cover
problem. Let E be a collection of subsets of a finite set V. A cover
is a subset of E such that any element in V belongs to at least one
member of the cover. Deciding whether or not there exists a cover
of size K for a given positive integer K≤|E| is NP-complete. We
show that an algorithm for computing the priority list P
minimizing accuracy(Rtest, Rtrain, P) is also able to calculate the
minimum cover.

We first define test records. We call a record positive
(respectively, negative) if its objective value is 1 (0). We regard
all the records in V as positive test records, while from each e∈E,
we create a unique negative test record nege; that is, v[obj]={1} if

v∈V, and v[obj]={0} if v=nege for e∈E.

Let Rtest denote the set of test records, V∪{nege|e∈E}. We then

regard e∈E as an attribute that assigns {1} to members in e and
nege but assigns the empty set to the others, for the purpose of

distinguishing members of e and nege from the others; that is,

v[obj]={1} if v∈e or v=nege, and v[obj]={}, otherwise.

We next define the set of training records. We first generate |E|
positive training records ae (ae[obj]=1) for e∈E such that any test

record v∈e and nege become the neighbors of ae; that is,

ae[f]={1} if e=f, and ae[f]={}, otherwise.

Next, we create (|E|+1) negative records bi (bi[obj]=0, i=1,...,

|E|+1) that do not agree with any training record on any attribute
(that is, bi[e]={} for e∈E). Now the majority of the training

records is negative. Let Rtrain denote the set of all the training
records, {ae | e∈E}∪{bi | i=1,...,|E|+1}.

Predicting whether v∈Rtest is either positive or negative is
performed as follows:

• If v∈e or v=nege for some e∈P, v agrees with ae∈Rtrain on

e, and hence predict(v, Rtrain, P)=1.

• Otherwise, the whole training set Rtrain becomes the
neighborhood of v. Because negative records are major in
Rtrain, predict(v, Rtrain, P)=0.

If P is empty, according to the latter case, the prediction is
incorrect for positive test records but is correct for negative test
records. In order to improve the prediction accuracy, one may
include e into P to reverse the prediction for v∈e and nege, which

makes the prediction correct for v∈e but incorrect for nege.

Inclusion of e increases the prediction accuracy if the number of
elements in e is more than one. To ensure this improvement, let us
make one copy v' of v∈V so that v∈e if and only if v'∈e.

Suppose that ∪{f | f∈P} fails to include V. To improve the
prediction accuracy, for each v∈V - ∪{f∈P}, we ought to find e
such that v∈e and add e into P. Since inclusion of e mis-predicts
the value of nege, to achieve the best prediction accuracy, we must

cover V using the minimum number of elements in E, which is
equivalent to compute the minimum cover. Q.E.D

Permutation Accuracy(%)
cl co mo in 69.4
cl co in mo 69.5
cl mo co in 68.6
cl mo in co 67.6
cl in mo co 68.9
cl in co mo 69.2
co cl mo in 71.0
co cl in mo 72.2
co mo cl in 70.5
co mo in cl 70.3
co in mo cl 71.0
co in cl mo 71.0
mo cl co in 67.4
mo cl in co 66.3
mo co cl in 67.9
mo co in cl 70.0
mo in co cl 67.9
mo in cl co 67.9
in cl co mo 68.7
in cl mo co 69.2
in co cl mo 68.9
in co mo cl 68.9
in mo co cl 69.5
in mo cl co 69.2

Table 4: Accuracies of permutations of the optimal priority
list [Complex, Class, Interaction, Motif].

SIGKDD Explorations. Copyright 2002 ACM SIGKDD, January 2002. Volume 3, Issue 2 – page 16

5. CONCLUSIONS

The biological community has seen numerous technological
breakthroughs in the last decade. These include (but are not
limited to) fast genome sequencing techniques, high-throughput
screening robots for testing large libraries of small molecules for
binding to target proteins, and gene expression microarrays to
measure gene transcription. Still more breakthroughs are on the
horizon in areas such as proteomics, where the amount of protein
made from a gene can be measured directly, rather than merely
measuring the amount of mRNA as in current microarrays. All
these technologies are providing vast amounts of data, of a wide
variety of forms. In addition, much domain knowledge already
exists, such as information about some metabolic pathways. It
may even be said that biology is both data rich and knowledge
rich, with the challenge being to synthesize these to produce still
more knowledge. As a result, biology is not only a major user of
data mining tools, but also a driving force for the development of
future data mining algorithms. For this reason KDD Cup 2001
focused on biological applications of data mining. This section
concludes by summarizing lessons for mining biological databases
in particular, followed by general lessons for data mining, that
have been touched on in this paper.

5.1 Lessons for mining biological databases

The expression of one gene frequently regulates the expression
of other genes, resulting in a network of various regulatory
pathways. In addition, one protein may interact with a number of
other proteins in metabolic or signaling pathways. Therefore,
there is widespread belief in biology that as we learn more about
pathways, this new knowledge will help us determine the
functions of many genes. Such is the motivation, for example, for
predicting regulatory pathways from gene expression microarray
experiments. Hence, it is very surprising that protein interaction
information was not more useful in Tasks 2 and 3. Section 3
notes that interaction information was of some value for the
winning approach to Task 2 but not particularly great value. And
while interaction information was one of four items of information
used in the winning approach to Task 3, interaction was the least
important of these four. It might be perhaps that we still are
missing too much interaction information for it to be highly
useful. But that would be a disappointing conclusion given that
the organism we were studying, yeast, has far more interaction
information available than does any other organism. Or perhaps
still better techniques are needed for using this information. For
example, perhaps a Bayesian approach could be taken to
predicting pathways, with associated probabilities, and these
predicted pathways could be used to help with function
prediction. The question of whether we can get more out of the
available interaction information is of major importance.

A second lesson for mining biological databases is the issue of
interacting with the laboratory. For Task 1, the test set was drawn
from a very different distribution than the training set. This is
because the chemists selected the molecules to make in the second

round of experiments based on the results of the first round; they
chose to synthesize molecules in the second round that “looked”
like the active molecules from the first round. It has been the Cup
co-chairs’ experience that when collaborating with biologists and
chemists, data often comes in “waves,” and the selection of data
points in the next “wave” is dependent on the results (labels of the
data) in the previous wave. Because data mining tools tacitly
assume training and test data are drawn from the same
distribution, they often perform worse on the new wave than
cross-validation on the previous wave would predict. But this
iterative process also is a great opportunity for data mining to
influence experimentation. This influence is not according to the
simple “membership query” model that many adopt, where the
system gets to ask the label of one data point at a time. And the
experimenter is not simply at the service of the data mining
system but instead may need to be told why an experiment is
useful, e.g., why certain molecules should be made and tested.
Real-world experience into such interaction between machine and
scientist is a key area for data mining research, particularly with
respect to biological applications.

5.2 General lessons for data mining

The co-chairs’ intention for KDD Cup 2001 was that biological
knowledge would not be a prerequisite for entry into the
competition. It appears from the diversity of backgrounds of
entrants and winners that we succeeded in that regard. But an
equally important intention was that lessons would arise that
would be of value to data mining outside of biological
applications. We now consider several such lessons.

First, conventional wisdom holds that while Bayes nets are
good for modeling the distribution from which data are drawn, for
a pure classification task it is hard to beat modeling approaches
designed specifically for classification, such as decision trees,
SVMs, or ensembles. For example, we use Bayes nets to model
gene expression data when we want to identify clusters of genes
that appear highly interrelated. But if we want to distinguish
between two types of patients (e.g., cancer vs. non-cancer), we
turn to classification algorithms. In light of this conventional
wisdom, it is quite surprising that of 114 entries for Task 1 (a pure
2-valued classification task) the winning approach was a Bayes
net. The lesson is that Bayes nets should not be rejected out of
hand for pure classification tasks. Indeed, as a direct consequence
of this result one of the co-chairs (Page) is now employing Bayes
net learning in a study of gene expression data for a classification
task dealing with multiple myeloma, a blood cancer. The end of
Section 3 provides several insightful comments about why the
application of Bayes nets to Task 1 was successful.

The second lesson is one that has been recognized before within
the inductive logic programming (ILP) community but is little
known outside it. This is that propositionalization often is a good
approach to a relational learning task. Tasks 2 and 3 are classic
relational learning tasks, in which the information about a data
point (gene) includes not only features of that data point itself but
also how it relates to other data points. Many data mining tasks in
relational databases have a similar nature; one needs only to have

SIGKDD Explorations. Copyright 2002 ACM SIGKDD, January 2002. Volume 3, Issue 2 – page 17

a many-many relationship between entities of interest in the
database to have a true relational task. Even though Task 2 and
Task 3 are relational, the winning approach to Task 2 used an
SVM and the winning approach to Task 3 used a neighborhood
strategy. The key in Task 2 was a good algorithm for feature
construction from relations. The key in Task 3 was to change the
typical definition of distance. Ordinarily, distance is a measure of
how similar two feature vectors are. The modification made was
to incorporate the interaction relation into the distance measure,
by making two data points nearer to each other if they were
known to interact.

Finally, in Subsection 5.1 we noted challenges raised by
interacting with an experimental laboratory. These include the
need for improved human-computer interaction (e.g., in proposing
and motivating a new round of experiments) and the question of
how to handle a changing distribution over data. Note that this
latter point seems related to “concept drift” but is different. The
concept does not change, e.g., there is no change in what makes a
molecule bind to thrombin. This issue of changing distributions
raises questions about performance evaluation. If the change
merely affects the ratio of one class to another then AUC, or area
under a (ROC) curve, addresses the problems one would have if
using only accuracy.6 But what if the changes for example “focus
in” on one area of the space, making some potential data points
much more probable? This is what happened in Task 1. Is there a
single measure, such as AUC, that can tell us one model or
modeling approach will be more robust to these changes than
another, or is better over some space of possible changes?

6. ACKNOWLEDGMENTS

Christos Hatzis wishes to thank Chris Kostas of Silico Insights for
help in organizing, normalizing and cleaning the various datasets
for Dataset 2. Mark Krogel wishes to thank his supervisor, Stefan
Wrobel, who encouraged his participation in the Cup, and Anja
Rohleder and Christiane Mikosch who supported tests of
hypotheses. David Page wishes to acknowledge NSF grant
9987841.

7. REFERENCES

1. Agrawal, R., Imielinski, T., and A.N. Swami. Mining
association rules between sets of items in large databases.
Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, Washington, D.C.,
May 26-28, 1993}, pages 207--216. ACM Press, 1993.

6 It would be nice to use a measure such as AUC in future KDD

Cups instead of accuracy, but this is impractical. With accuracy,
entries can be simple files of predictions, whereas AUC would
require Cup chairs to run everyone’s predictors multiple times.
“Lift” could be used, but as mentioned earlier, it requires
participants to rank their predictions, and some approaches are ill-
suited to this.

2. Cheng, J. (1998). PowerConstructor System.
http://www.cs.ualberta.ca/~jcheng/bnpc.htm.

3. Cheng, J. (2000). PowerPredictor System.
http://www.cs.ualberta.ca/~jcheng/bnpp.htm.

4. Cheng, J., Greiner, R. (1999). Comparing Bayesian network
classifiers. In UAI-99.

5. Cheng, J. and Greiner, R., Learning Bayesian Belief Network
Classifiers: Algorithms and System. Proceedings of 14th
Biennial conference of the Canadian society for
computational studies of intelligence, 2001.

6. Cheng, J. et al. (2001). Learning Bayesian networks from
data: An information-theory based approach. To appear in
Artificial Intelligence Journal.

7. Cooper, G.F. and Herskovits, E. (1992). A Bayesian Method
for the induction of probabilistic networks from data.
Machine Learning, 9 (pp. 309-347).

8. Freund, Y. and Schapire, R.E. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119--139, Aug. 1997.

9. Hand, D., Mannila, H. and Smyth, P. Principles of Data
Mining. MIT Press, 2001.

10. Hanley, J.A. and McNeil B.J. (1982). The meaning and use
of the area under a Receiver Operating Characteristic (ROC)
curve. Radiology, 143, pp. 29-36.

11. Heckerman, D. (1995). A tutorial on learning Bayesian
networks. Technical Report MSR-TR-95-06. Microsoft
Research.

12. Joachims, T. Making Large-Scale SVM Learning Practical.
In B. Scholkopf, C. Burges, and A. Smola, editors, Advances
in Kernel Methods - Support Vector Learning. MIT Press,
1999.

13. Krogel, M.-A. and Wrobel, S. Transformation-Based
Learning Using Multirelational Aggregation. In C.Rouveirol
and M.Sebag, editors, Proceedings of the Eleventh
International Conference on Inductive Logic Programming
(ILP), LNAI 2157. Springer-Verlag, 2001.

14. Morishita, S. Computing optimal hypotheses efficiently for
boosting. Springer LNAI: Progresses in Discovery Science,
in press.

15. Morishita, S. and Sese, J. Traversing itemset lattices with
statistical metric pruning. Proc. of ACM SIGACT-SIGMOD-
SIGART Symp. on Database Systems (PODS), pages 226--
236, May 2000.

16. Neapolitan, R.E. (1990), Probabilistic reasoning in expert
systems: theory and algorithms, John Wiley & Sons.

17. Pearl, J. (1988). Probabilistic Reasoning in Intelligent
Systems: networks of plausible inference, Morgan Kaufmann.

18. Quinlan, J.R. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

19. Spirtes, P., Glymour, C. and Scheines, R. (1993). Causation,
Prediction ,and Search. Springer Lecture Notes in Statistics.

20. Wrobel, S. Inductive Logic Progamming for Knowledge
Discovery in Databases. In N. Lavrac and S. Dzeroski,
editors, Relational Data Mining. Springer-Verlag, 2001.

About the authors:

SIGKDD Explorations. Copyright 2002 ACM SIGKDD, January 2002. Volume 3, Issue 2 – page 18

Jie Cheng is a senior data modeler at the Risk Management
Division of Canadian Imperial Bank of Commerce. He received
his Ph.D. from the Faculty of Informatics of University of Ulster,
UK. He then worked as a post-doc fellow with Professor Russell
Greiner at the Computing Science Dept. of the University of
Alberta. More about his research can be found at
www.cs.ualberta.ca/~jcheng.

Christos Hatzis is the Vice President of Informatics and co-
founder of Silico Insights, an informatics-based drug discovery
company. Prior to Silico Insights, he was involved in developing
and deploying real-time expert systems and knowledge discovery
platforms for biotechnology companies. He earned his Ph.D.
from the Department of Chemical Engineering and Materials
Science at the University of Minnesota, Minneapolis.

Hisashi Hayashi is a Masters student of Dept. of Computer
Science at the University of Tokyo. He has an interest in
theoretical and practical problems of improving prediction
accuracy and computational performance of data mining
algorithms.

Mark-A. Krogel received his first degree in computer science
from Magdeburg University, Germany, and an M.Sc. in cognitive

science from Edinburgh University, Scotland. After several years
in database application development, he is now a Ph.D. student in
Stefan Wrobel’s research group for Machine Learning &
Knowledge Discovery at Magdeburg University.

Shinichi Morishita is an associate professor in the Dept. of
Complexity Science and Engineering and Dept. of Computer
Science at the University of Tokyo. He has been working on bio-
informatics, data mining algorithms, database systems, and
computational logic. URL: http://www.gi.k.u-tokyo.ac.jp/~moris/.

David Page is an assistant professor of Biostatistics and Medical
Informatics and of Computer Science at the University of
Wisconsin at Madison. He earned his Ph.D. from the Computer
Science Department at the University of Illinois at Urbana-
Champaign. More about his research and background can be
found at www.cs.wisc.edu/~dpage.

Jun Sese is a Ph.D. student at the Dept. of Complexity Science
and Engineering at the University of Tokyo. He is now
developing an efficient algorithm for computing correlated
association rules that can be naturally incorporated into decision-
trees to achieve highly accurate predictions.

