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Abstract. Subgroup discovery is the task of finding subgroups of a
population which exhibit both distributional unusualness and high gen-
erality. Due to the non monotonicity of the corresponding evaluation
functions, standard pruning techniques cannot be used for subgroup dis-
covery, requiring the use of optimistic estimate techniques instead. So
far, however, optimistic estimate pruning has only been considered for
the extremely simple case of a binary target attribute and up to now
no attempt was made to move beyond suboptimal heuristic optimistic
estimates. In this paper, we show that optimistic estimate pruning can
be developed into a sound and highly effective pruning approach for
subgroup discovery. Based on a precise definition of optimality we show
that previous estimates have been tight only in special cases. Thereafter,
we present tight optimistic estimates for the most popular binary and
multi-class quality functions, and present a family of increasingly efficient
approximations to these optimal functions. As we show in empirical ex-
periments, the use of our newly proposed optimistic estimates can lead
to a speed up of an order of magnitude compared to previous approaches.

1 Introduction

Subgroup discovery [Klö96, Wro97] is the task of finding subgroups of a pop-
ulation with high generality and distributional unusualness. It is a general ap-
proach that has shown to be useful in a variety of application scenarios, like
medical consultation systems [ABP06], spatial analysis [KM02], marketing cam-
paign planning [LCGF04], and also in contrast set mining tasks [KLGK07].

Unfortunately, if applied to real-world problems, subgroup discovery quickly
results in excessive computation, due to its exponential dependency on the num-
ber of attributes. Different approaches have proposed to cope with that problem:
While sampling based approaches [SW00] relax the task by allowing a certain
degree of departure from the optimal solution and a (controllable) error prob-
ability, other approaches make use of sophisticated data structures [AP06] or
heuristics [Klö02, LKFT04].

Another approach, proposed by Wrobel in [Wro97], is to prune the search
space using so-called optimistic estimates. An optimistic estimate is a function
that, given a subgroup s, provides a bound for the quality of every subgroup s′

that is a refinement of s. Surprisingly, the use of optimistic estimates for fast
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subgroup discovery has not yet been developed into a mature technology: until
recently optimistic estimates have only been considered for the extremely simple
case of a binary target attribute, and even in this case no attempt was made to
move beyond suboptimal optimistic estimates.

In this paper, we investigate the question whether the optimistic estimates
considered so far provide bounds that are, in some sense, optimal. To this end
we provide a formal definition of tight optimistic estimates, that is optimistic
estimates that are as conservative as possible wrt. the information at hand,
namely the size of a subgroup and its distribution over different classes. Using
this definition, we show that the optimistic estimate proposed in [Wro97] is
not tight. Thereafter, we present new tight optimistic estimates for some of the
most common quality functions. We also present a family of increasingly efficient
approximations to these optimal functions. While these optimistic estimates are
not tight, they have the advantage that they are simpler to calculate.

Summarizing, the main contributions of this paper are thus (i) the formal
definition of tightness, (ii) new, tight optimistic estimates for some of the most
common quality functions, and (iii) a family of increasingly efficient approxima-
tions to these optimal functions. In an experimental section, we show that our
results are not only interesting from a theoretical point of view, but also have a
significant impact on the performance of subgroup discovery algorithms.

The paper is organized as follows: In section 2, we define the basics of the
subgroup discovery task. In section 3, we provide our definition of tight optimistic
estimates; thereafter, we present and prove new (tight) optimistic estimates.
Section 4 contains the experiments, while section 5 concludes.

2 Preliminaries

In this section, we will introduce our terminology, formally define the problem
of subgroup discovery, and motivate the concept of optimistic estimates.1

2.1 The Task of Subgroup Discovery

Let DB = {R1, ..., RN} be a database or dataset, consisting of N rows, each built
up from of l + 1 values. We distinguish one attribute c, called the class attribute
with domain D(c) = {c1, ...cm}, from the l ordinary attributes {a1, a2, ...al}
with domains D(ai) = {vi,1, ..., vi,mi}. Every database row Rj is an n-tuple
(vj,1, ..., vj,l, cj), and we call cj its class.

A subgroup description sd is a set of terms {t1, ..., tk} where every term ti
is a constraint on an attribute, i.e. ti has the form (ai = vi), vi ∈ D(ai). The
length of the subgroup description is the number of terms it is built of. We call
a subgroup description sd′ = {t′1, ..., t

′
k′} a refinement of a subgroup description

sd = {t1, ..., tk}, denoted by sd′ " sd, if {t1, ..., tk} is a subset of {t′1, ..., t
′
k′}.

1 In the following presentation, we assume that a dataset is provided as a single ta-
ble. However, the concept of (tight) optimistic estimates also applies to the multi-
relational setting involving joins over relations as considered in [Wro97].
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Given a database DB and a subgroup description sd, the subgroup extension
of sd on DB is the set of rows Rj ∈ DB that satisfy all terms ti ∈ sd. Please
note that if sd′ is a refinement of sd, i.e. sd′ " sd, then for every database DB
the subgroup extension for DB and sd′ is a subset of the subgroup extension for
DB and sd.

Given a set of rows R = {R1, ...Rn} (a database or subgroup extension), we
call n its size and p = (p1, ..., pm), where pi is the fraction of the rows of R of
class i, its class distribution. Formally, p is defined as follows:

pi := 1/n × |{r|r ∈ R ∧ class(r) = i}|.

Cost Specialty Region
High Surgery Urban
Medium Internal Med Urban
Medium Psychiatry Urban
Medium Internal Med Rural
Low Surgery Rural
Low Surgery Rural

Fig. 1. Prescription example

Figure 1 shows an example with hypothet-
ical data, inspired from a medical domain.
The rows represent medical prescriptions
made by doctors. As class attribute, we con-
sider the cost of the prescription. Beside this
special attribute, the prescriptions contain
the doctor’s specialty and the information
whether the doctor’s practice is in an ur-
ban or a rural environment. In this example,
{Specialty = Surgery} and {Specialty =
Surgery, Region = Urban} are two subgroup descriptions, and the correspond-
ing subgroups consist of the rows that fulfill these conditions. The size of the
subgroup extension of {Specialty = Surgery} is 3 and its probability distribu-
tion is phigh = 0.33, pmedium = 0, plow = 0.66.

A quality function q is a mapping from DB × sd to the reals. Intuitively, a
quality function expresses how “interesting” a subgroup is. Almost all quality
functions considered in the literature only depend on some parameters of the
subgroup and the database, in particular on the size n of the subgroup, the
size N of the database, the class distribution p of the subgroup, and the class
distribution p0 of the database. Table 1 summarizes some of the most prominent
quality functions [Klö96, SW00]: the Piatetsky-Shapiro quality function dealing
with the two-class case, and the Split, Gini and Person χ2 quality functions for
n-ary class attributes.2

The problem of subgroup discovery is defined as follows: Given a database DB,
a quality function q, and a number k, determine the k subgroup descriptions with
maximum quality. Or, put more formally: return a set of k subgroup descriptions
G such that

∀ subgroup descriptions sd : sd &∈ G ⇒ q(DB, sd) ≤ q∗,

where q∗ = minsd∈G q(DB, sd).
2 The notation and definitions used in other papers like [KLJ03, Wro97] sometimes

slightly differ from ours, but are (factor-) equivalent. For example, the Gini-Quality
is often expressed using the generality (i.e. n/N) of the subgroup. Other authors use
a notation like p(class| s) to denote the probability of a class in a subgroup.
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Table 1. Common quality functions for subgroups

Name Type Definition
Piatetsky-Shapiro 2 n(p − p0)
Split n n i(pi − p0i)

2

Gini n n
N−n i(pi − p0i)

2

Pearson’s χ2 n n i
(pi−p0i)

2

p0i

2.2 Optimistic Estimates and Their Use in Subgroup Discovery

Before we present the definition of optimistic estimates, we would like to moti-
vate this concept by taking a look at possible algorithmic approaches to subgroup
discovery. Given that the space of candidate subgroup descriptions can be consid-
ered as a tree with subgroup descriptions of length 1 at the first level, subgroup
descriptions of length 2 at the next level and so on, one obvious approach to
subgroup discovery is to perform some kind of search.

Of course, in this approach the size of the search space is exponential in
the number of attributes and hence it is desirable to use some kind of pruning
strategy. Unfortunately, unlike related tasks like frequent item mining where
state-of-the art algorithms like FpGrowth [HPYM04] exploit the property of
monotonicity, in subgroup discovery this property does not hold: Even if the
subgroup description a1 = x does not have a sufficient quality, it is still necessary
to consider its refinements. In fact, even if neither a1 = x nor a2 = y are
interesting subgroups, (a1 = x, a2 = y) might very well be interesting.

However, if we have already found k subgroups and we knew that all refine-
ments s′ of a subgroup s had a quality that is worse than that of all k subgroups
found so far, we could safely prune that branch. What is needed to do so is an
optimistic estimate for the refinements s′ of s [Wro97]:

Definition 1. An optimistic estimate oe(s) for a given quality function q is a
function that satisfies the following: ∀ subgroups s, s′. s′ " s =⇒ oe(s) ≥ q(s′).

3 Tight Optimistic Estimates

In this section, we will present our definition of tight optimistic estimates. There-
after, we will present new optimistic estimates for all quality functions in Table 1.

3.1 A Definition of Tightness with Respect to Probability and Size

The quality functions from Table 1 are all defined in terms of a few characteristics
of the subgroup and the dataset, namely

– the distributions over the classes in the subgroup, denoted by p;
– the size of the subgroup, denoted by n;
– the distributions over the classes in the dataset, denoted by p0; and
– the size of the dataset, denoted by N .
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We will call such quality functions “probability/size quality functions” or “p/n
quality functions”. Formally, a p/n quality function is a function q(p, n, p0, N)
from [0, 1]c×N × [0, 1]c×N to the reals (here, c is the number of classes). We call
p and n the parameters of the subgroup and p0 and N the parameters of the
overall population. Similarly, we will call optimistic estimates that only make
use of these parameters “p/n optimistic estimates”. Formally, a p/n optimistic
estimate is a function from [0, 1]c × N × [0, 1]c × N to the reals such that

∀ subgroups s, s′. s′ " s =⇒ oe(p(s), n(s), p0, N) ≥ q(p(s′), n(s′), p0, N).

Here, p(s) and n(s) denote the class distribution and the size for subgroup s.
In general, there are infinitely many optimistic estimates. We are interested in
optimistic estimates that are as conservative as possible in the following sense:

Definition 2. Given a quality function q and two optimistic estimates oe1 and
oe2, we call oe1 is more conservative than oe2 if ∀ N, p0, n, p. oe1(p, n, p0, N) ≤
oe2(p, n, p0, N).

The more conservative an optimistic estimate, the larger part of the search space
can potentially be pruned: if we have already found k subgroups with a minimum
quality minQ, then we can prune the branch of subgroups below s if and only
if oe(s) < minQ. We will now formally define the notion of tight optimistic
estimates, i.e. optimistic estimates that are as conservative as possible:

Definition 3. An optimistic estimate oe for a quality function q is tight if for
any population DB and any subgroup description sd there is a subset s′ of the
extension of sd on DB such that the quality of s′ is equal to the optimistic
estimate for sd on DB. Formally: the optimistic estimate oe is tight iff

∀ DB, sd . ∃n′, p′. [n′ ≤ n ∧ n′p′ , np ∧ oe(p, n, p0, N) = q(p′, n′, p0, N)].

Here, p0 and p denote the probability distribution in DB, respectively in the
extension of sd on DB, while N and n denote the size of DB respectively of
the subgroup extension (actually, p, n, p0 and N are functions of DB and s).
n′p′ , np means that for all i, n′p′i ≤ npi, i.e. the number of rows of class i in
the subset of sd must be no larger than the number of rows of class i in sd.

Please note that the above definition does only require that there is a subset of
the extension of sd on DB with quality oe(p, n, p0, N) – it does not require that
there actually is a subgroup description with that quality. That is, the definition
considers every subset of rows that is consistent with the restrictions provided
by the parameters p and n. It is obvious that if an optimistic estimate for q is
tight, then there is no optimistic estimate for q that is more conservative.

3.2 A Tight Estimate for Piatetsky-Shapiro

We will now apply our definition of tightness to the optimistic estimate published
in [Wro97] for the Piatetsky-Shapiro function, and show that it is not tight.
Thereafter, we will present a tight optimistic estimate for that quality function.
First, we remark that in this two-class case we use p resp. p0 to refer to the first
component of p resp. p0.
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Lemma 1. The optimistic estimate n(1 − p0) presented in [Wro97] for the
Piatetsky-Shapiro function n(p−p0) is not tight. The optimistic estimate oe∗ps :=
np(1 − p0) is tight.

Proof. We first show that oe∗ps is tight. Suppose we are given a database DB and
an arbitrary subgroup extension s with probability p and size n. The case p = 0
is trivial, so let p > 0; The subgroup extension s contains np rows of the first
class. These rows are a subset of s with size np and a class distribution of p = 1;
thus, this subset has quality np(1 − p0). This construction did not make any
assumptions on DB or s, thus there is always a subset s′ with q(s′) = oe∗ps(s),
and oe∗ps is tight.

Finally, to see that n(1−p0) is not tight it is sufficient to note that np(1−p0) <
n(1 − p0) for some n > 0, p0 < 1 and p < 1. !

3.3 Tight Estimates for the Multi-class Quality Functions Split,
Gini and Pearson’s χ2

Next, we turn to the multi-class quality functions. First, please note that all
multi-class quality functions q(p, n, p0, N) considered can be reformulated as
functions q(m, p0, N), where m = (m1, ..., mc) is a vector whose components
are the numbers of rows of the different classes 1, ..., c. The mi’s can be obtained
from p, n by taking the scalar product n · (p1, ..., pc)T , while p and n can be
obtained from the mi’s by calculating n =

∑
j mj and p = 1

n · m. Using this
new representation, we can now present a scheme of tight optimistic estimates
for the multi-class quality functions in Table 1:

Lemma 2. The following is a tight optimistic estimate for every multi-class
quality function q in Table 1 (in fact, for any quality function that is convex in
p resp. m):

oe∗q(p1, ..., pc, n, p0, N) := max
m′

1,...,m′
c|m′

i∈{0,npi}
{q((m′

1, ..., m
′
c)

T , p0, N)} (1)

The above is thus the maximum over the 2c possible combinations of values for
m′

1, ..., m
′
c, resulting from the constraint that every m′

i can either take the value
0 or npi. Please note that although not specified in Equation 1, the case m′

i = 0
for every i needs not be considered.

Proof. The proof that oe∗q is an optimistic estimate is based on the fact that all
the multi-class quality functions considered in Table 1 are convex in p resp. m.

First, we use the fact that by definition a tight optimistic estimate for the
refinements of a subgroup s is the maximum over the quality of every possible
subset of subgroup s. The subgroup s has np1 rows of class 1, np2 rows of class
2, and so on. Thus, every refinement s′ of s consists of at most npi rows of class
i. Hence, a tight optimistic estimate for a quality function q can be calculated
as follows:

max
m′

1,...,m′
c|∀i.m′

i∈N+∧0≤m′
i≤npi

{q((m′
1, ..., m

′
c)

T , p0, N)} (2)
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Please note that unlike in Equation 1, the above considers the maximum over
every subset of rows of the subgroup s. The above expression is not only an opti-
mistic estimate, but it is tight, which follows directly from our definition of tight-
ness from Section 3.1.

It remains to show that Equations 1 and 2 are equivalent. This can be shown
using the fact that every quality function in Table 1 is convex in its parameters
m. In fact, for every c-dimensional convex function f the maximum over a
polyhedron P = [0, m1] × [0, m2] × ... × [0, mc] is an extreme point of P , also
called a vertex [Bre96, BV04]. Thus, the maximum over P can be calculated
by taking the maximum of the values at every extreme point. The proof is
completed by the fact that every quality function in Table 1 is convex, as shown
in Appendix A. Please note that although in the Appendix we consider the
extension of the quality functions to the real numbers, the extreme points are
nevertheless tuples of positive natural numbers. !
Let us now consider the computational complexity for the calculation of the tight
optimistic estimate. oe∗q involves taking the maximum of 2c values of q, where c
is the number of classes. All multi-class quality functions we considered can be
reformulated to the form q = φ1 + ... + φc (for the Split quality function, the
expressions φi summed up are n(pi − p0i)2, for Gini they are n

N−n (pi − p0i)2

and for Pearson’s they are n
p0i

(pi − p0i)2). The calculation of such an expression
φi involves only a constant number of subtractions and multiplications, thus
the tight optimistic estimates oe∗q have a computational complexity of O(c 2c)
primitive (add/multiply) operations. Please note that the computational com-
plexity of oe∗q does not depend on the size of dataset, but only on the parameters
p, n, p0 and N , which have to be calculated anyway to compute the quality of
the subgroup.

3.4 A Family of Increasingly Conservative Optimistic Estimates

For large numbers of classes, c, the computational complexity, O(c 2c), of the
tight optimistic estimate oe∗q can become problematic, as will be confirmed by
the experiments in Section 4.

In this section, we present a scheme of optimistic estimates that are not tight,
but faster to calculate. The estimates are increasingly conservative and at the
same time increasingly complex to calculate. The idea is not to consider all
2c combinations as done in oe∗q , but instead to consider only combinations for d
classes at a time. That is, we consider 2d different combinations for the d selected
classes; for the other classes, we only consider the two extreme cases where either
every m′

i = mi or every m′
i = 0 (for classes i not within the d classes). Finally,

the sum over all these maximums is calculated and used as an estimate.3
Here is the definition of the scheme oed

q of optimistic estimates, where d de-
termines the number of classes considered at a time:

3 This scheme is a generalization of the optimistic estimate proposed in [GRSW08],
which considers just one class at a time (instead of d).



Tight Optimistic Estimates for Fast Subgroup Discovery 447

oed
q(p, n, p0, N) :=

∑

j=1,d+1,2d+1,...

[
max

m′
j,...,m′

j+d−1|m′
j∈{0,npj}

(
max

{ j+d−1∑

i=j

φi(m′
−, p0, N),

j+d−1∑

i=j

φi(m′
+, p0, N)

})]
(3)

Here, the φi are summands of the quality functions as discussed in the pre-
vious section. The m′

− stands for the vector (0, 0, ..., m′
j, ..., m

′
j+d−1, 0, ..., 0)T

and m′
+ for the vector (np0, np1, ..., npj−1, m′

j , ..., m
′
j+d−1, npj+d, ..., npc)T ; in-

tuitively m′
− stands for the case where the subset of s includes none of the rows

of the classes 1, ..., j − 1, j + d, ..., c of the subgroup s, while m′
+ stands for the

case where every row of these classes is present. Of course, if c is not a multiple
of d, the last summands might involve less than d classes.

Proof. Similar to the proof for oe∗q , the proof is based on the fact that every
quality function considered is convex, as shown in the Appendix. Additionally,
we use the fact all quality functions considered can be brought to the form
φ1(m, p0, N)+ ...+φc(m, p0, N), with φi being (

∑
j mj)( mi

j mj
−p0i)2 for Split,

( j mj)
N−( j mj)(

mi

j mj
−p0i)2 for Gini and ( j mj)

p0i
( mi

j mj
−p0i)2 for Pearson’s. Now

the following holds:

max
m′

1,...,m′
c|∀i.m′

i∈N+∧0≤m′
i≤npi

{
c∑

i=1

φi(m′, p0, N)} =

max
m′

1,...,m′
c|∀i.m′

i∈{0,npi}
{

c∑

i=1

φi(m′, p0, N)} ≤

∑

j=1,d+1,2d+1,...,c

max
m′

1,...,m′
c|∀i.m′

i∈{0,npi}
{

j+d−1∑

i=j

φi(m′, p0, N)} ≤

∑

j=1,d+1,...,c

max
m′

j ,...,m′
j+d−1|m′

j∈{0,npj}



 max
m′

1,...m′
j−1,mj+d,...m′

c|m′
i∈{0,npi}

{
j+d−1∑

i=j

...}





where ... stands for φi(m′, p0, N). Now we make use of the fact that φi is not
only convex in mi and mj , j &= i, but also in the sum of mj ’s with j &= i. That is,
for every set of indexes J = {j1, ...jn} not including i, φi is convex in

∑
k∈J mk.

This follows from the fact that in all definitions of φi (i.e. for the definition for
Split, Gini and χ2) the mj with j &= i only occur in the sum

∑
j mj . Thus, for

any set of indexes J that does not include i, φi could be considered as a function
of the new parameter (

∑
k∈J mk) and the remaining mk′ , i.e. those with index

k′ &∈ J . The resulting function is of the same form as φi (except that it takes
less parameters) and thus is convex in

∑
k∈J mk.
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In particular, any φi with j ≤ i ≤ j+d−1 is convex in
∑

k∈{0,...,j−1,j+d,...c} mk.
Therefore, it is sufficient to consider the case where the sum is minimal or max-
imal, that is when either all these m′

k’s are zero or all have value npk. So the
above is bounded by

∑

j=1,d+1,...,c



 max
m′

j,...,m′
j+d−1|m′

j∈{0,npj}



 max
(∀k. m′

k=0),(∀k. m′
k=npk)

j+d−1∑

i=j

φi(m′, p0, N)









This is equivalent to oed
q and the proof is completed. !

Some Considerations on the new Optimistic Estimates. We will now consider
some properties of the optimistic estimates oed

q . As before, we use c to denote the
number of classes. The computation of oed

q involves the evaluation of O( c
d2dd) =

O(c2d) different expressions φi, meaning that the higher the number d of classes
considered at a time, the higher the computational cost. We remark that in an
implementation of the function oed

q , only those classes where mi > 0 have to be
considered, meaning that O(c2d) is only the worst case.

Lemma 3. oe2d
q is at least as conservative as oed

q . oed
q is tight if either d ≥ c,

or c = 2 and d ≥ 1.

Proof. It is easy to see that if c ≤ d, then oed
q = oe∗q , because the number of

classes d in oed
q for which every combination is considered is exactly c, as in oe∗q .

oe2d
q is at least as conservative as oed

q because oe2d
q considers every combination

of classes considered by oed
q (and some more combinations).

In the special case c = 2, oe1
q is tight because the set of indexes {0, ..., j−1, j+

d, ...c} considered in the second sum of Equation 3 actually involves only one class
index, and hence effectively every combination of the two classes is considered,
just as in oe∗q . To show that oed

q is not tight otherwise, it is sufficient to have
one example. The experiments in Section 4 have plenty of them, and the next
paragraph also presents one. Here is another one: consider p0 = (0.1, 0.45, 0.45)
(for c = 3) respectively p0 = (0.1, 0.3, 0.3

c−3 , ..., 0.3
c−3 , 0.3) (for c > 3). Furthermore,

consider a subgroup s with m = (10, 10, 0, 0, ...0, 10). It is easy to verify that of
all subsets of m, m′ = (10, 0, 0, ...0, 0) has the highest quality. However, the last
summand of oed

q would consider the values 10 and 0 for m′
c only in combination

with either both m′
1 = 10 and m′

2 = 10 or both m′
1 = 0 and m′

2 = 0. That
is, it would not consider the actual maximizing combination (10, 0, 0, ...0, 0), but
instead will provide an overoptimistic estimate. !

An Example. To illustrate the effect of different optimistic estimates, let us
reconsider the example from Figure 1. In particular, let us consider the subgroup
description {Region = Urban}. The corresponding subgroup consists of the first
three rows of the dataset and has a probability distribution of pHigh = 1/3,
pMed = 2/3, and pLow = 0.

For the Split quality function, we get a tight optimistic estimate of 0.176
for the quality of the refinements of {Region = Urban}. Using the suboptimal
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estimate oe1
q, we only get the estimate 0.255. While both estimates can be used

by a subgroup discovery algorithm, if the minimal required quality is 0.195 only
the tight estimate of 0.176 would allow to prune all subgroups description below
{Region = Urban} (In fact, 0.195 is exactly the minimal required quality at
that point, if the algorithm sketched in Section 4 is used).

4 Experimental Evaluation

Sketch of a Subgroup Discovery Algorithm. To evaluate the impact of different
optimistic estimates, we used a branch and bound depth-first-search (DFS) algo-
rithm similar to OPUSO [Web95] (without optimistic reordering). The optimistic
estimates are used to prune as large a part of the search space as possible, and
furthermore determine the order in which the nodes are expanded during DFS.
Our implementation makes use of FP-Trees [HPY00] to speedup the calculation
of the parameters p and n of a subgroup, as first proposed in [AP06]. The overall
algorithm, called DpSubgroup, is described in more detail in [GRSW08].

Datasets and Results. We evaluated the impact of the different optimistic esti-
mates on five datasets: four datasets from the UCI Machine Learning Repository

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 2  3  4  5  6

nu
m

be
r 

of
 n

od
es

depth limit

no oe
oe-1
oe-2
oe-*

(a) # nodes considered (Splice/Split)

 1

 10

 100

 1000

 10000

 2  3  4  5  6

ru
nt

im
e 

(in
 s

ec
.)

depth limit

no oe
oe-1
oe-2
oe-*

(b) Runtime (Splice/Split)

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 2  3  4  5  6

nu
m

be
r 

of
 n

od
es

depth limit

no oe
oe-1
oe-2
oe-4
oe-*

(c) # nodes considered (Census/Gini)

 10

 100

 1000

 10000

 2  3  4  5  6

ru
nt

im
e 

(in
 s

ec
.)

depth limit

no oe
oe-1
oe-2
oe-4
oe-*

(d) Runtime (Census/Gini)

Fig. 2. Results for the Splice and Census dataset (with 3 resp. 5 classes) using the
Split resp. the Gini quality function. The curves show the number of nodes considered
(left images) resp. the runtime (right images) for different optimistic estimates.
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[AN07] and one real-world dataset. In particular,we used the “Mushroom”dataset
with 8124 rows, 22 attributes and 2 classes; the “Soybean” dataset with 683 rows,
35 attributes and 19 classes; the “splice” dataset with 3190 rows, 62 attributes
and 3 classes; a sample of 30.000 rows of the UsCensus1990 database with 68 at-
tributes and 5 classes (we used “dIncome1” as class attribute); and finally a pre-
scription dataset with 29 attributes, 60488 rows and 11 classes from the iWebCare
project (http://iwebcare.iisa-innov.com/). In all experiments, we searched
for the top 100 groups on an Intel Core 2 Duo T7500 with 2 GB of RAM under
Windows XP.

Figure 2 shows the performance results on the datasets Census and Splice,
using different quality functions. The horizontal axis shows the depth limits for
the subgroup discovery, that is a maximum length of the subgroup descriptions
considered. The different curves show the results using different optimistic esti-
mates: “oe-d” stands for subgroup discovery with oed

q , “oe-*” shows the results
using the tight optimistic estimate oe∗q , and finally “no oe” shows the perfor-
mance without any optimistic estimate pruning. It is worthwhile to note that
“no oe” essentially corresponds to the algorithm SD-Map (which also makes
use of FP-Trees but does not use optimistic estimate pruning), because this
algorithms has been shown to outperform all other exhaustive algorithms like
Apriori-SD [KLJ03] by an order of magnitude [AP06].

The figure shows both the number of nodes explored during the subgroup
discovery and the overall runtime, using a logarithmic scale. As expected, the
number of nodes considered depends on the optimistic estimate used: The higher
the degree d in oed

q , the less nodes are considered. The use of the tight optimistic
estimate oe∗q results in a minimal number of considered nodes.4 Similar to the
number of nodes, the runtime is affected by the optimistic estimate used. Al-
though the performance ratio does not exactly correspond to the node ratio, the
ordering of the optimistic estimates is the same. The performance gain using
pruning can become as large as an order of magnitude and more.

Figure 3 shows the results for the Soybean and the Mushroom dataset. We
first consider the results for the Soybean dataset (subfigures (a)-(c)): Again, the
higher the degree d of the optimistic estimate oed

q , the less nodes are considered,
with oe∗q being optimal (Figure 3(a)). Regarding the runtime, however, the situ-
ation is different: Figure 3(b) shows that the runtime is minimal when a pruning
level d is between 1 and 4. The reason is that although the more conservative
optimistic estimates reduce the number of nodes considered, their calculation is
more expensive. This effect becomes apparent in the Soybean dataset because it
has much more classes than the earlier datasets.

The above experiment shows that for datasets with a large number of classes,
it can be appropriate to use a non-tight optimistic estimate. However, the best
pruning level depends on the ratio of the costs for the calculation of the optimistic

4 It is interesting to note that the number of nodes and the runtime sometimes de-
creases when the depth limit increases. The reason is that the algorithm quickly finds
subgroups with a very high quality at a higher level, which allows to prune a larger
part of the search space than possible if only shorter subgroups were considered.



Tight Optimistic Estimates for Fast Subgroup Discovery 451

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 2  3  4  5  6

nu
m

be
r 

of
 n

od
es

depth limit

no oe
oe-1
oe-2
oe-4
oe-8
oe-*

(a) # nodes considered (Soybean/Gini)

 0.1

 1

 10

 100

 1000

 10000

 2  3  4  5  6

ru
nt

im
e 

(in
 s

ec
.)

depth limit

no oe
oe-1
oe-2
oe-4
oe-8
oe-*

(b) Runtime using FpTree (Soybean/Gini)

 10

 100

 1000

 10000

 100000

 2  3  4  5

ru
nt

im
e 

(in
 s

ec
.)

depth limit

oe-1
oe-2
oe-4
oe-8
oe-*

(c) Runtime using persistent FpTree

 0.1

 1

 10

 100

 2  3  4  5  6

ru
nt

im
e 

(in
 s

ec
.)

depth limit

no oe
oe-*

(d) Runtime (Mushroom/P.-S.)

Fig. 3. Number of nodes (a) and runtime (b, c) on the Soybean dataset (using the
Gini quality function), and runtime on the mushroom dataset (d) (using the Piatetstky-
Shapiro quality function)

estimate, and the cost for the calculation of the parameters of a subgroup. So
far we used FP-Trees, which allowed a very fast calculation of n and p. However,
if the dataset is very large it might not be possible to keep the FP-Tree in main
memory. To see how the situation changes if the calculation of the parameters
n and p becomes more expensive, we have run some experiments using a per-
sistent FP-Tree, i.e. an implementation where the FP-Trees are stored on disk
[HPYM04]. Our prototypical implementation is based on the object database
db4o [PEHH06]. Figure 3(c) shows the resulting runtime: In this setting, the
use of conservative optimistic estimates pays off again, with oe∗q resulting in the
fastest calculation (the number of nodes is, of course, unaffected).

Finally, Figure 3(d) shows the runtime for the Mushroom dataset, using the
Piatetstky-Shapiro quality. As in the multi-class case, the use of optimistic esti-
mates results in a significant speedup in this two-class example. The results from
the prescriptions dataset do not significantly differ, so we merely used them in
the summarizing table in the next paragraph.

Summary. The above results show that the optimistic estimates presented in this
paper have a significant impact on the performance of the subgroup discovery.
The use of the (fastest to calculate) optimistic estimates oe1

q and oe∗ps never
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slows down the execution but instead results in a tremendous speedup. The
performance gain reaches an order of magnitude at relative small depth bounds
(about 2 to 4) and gets even larger when the depth limit continues to increase.

The use of more conservative optimistic estimates allow to further speedup
the subgroup discovery. The following table summarizes the performance gain
over oe1

q achieved using the optimistic estimates oed
q and oe∗q (with d > 1). For

different values of d (i.e. 2, 3, 4 and ∞), it compared the performance with that
achieved using oe1

q, aggregated over different quality functions and datasets. In
particular, it shows the relative runtime (the runtime using the more conservative
optimistic estimate, divided by the runtime using oe1

q) in the best experiment
(Minimal), the worst experiment (Maximal) and on average. The table is based
on a total of 248 experiments.

oe2
q oe3

q oe4
q oe∗q

Minimal relative runtime compared to oe1
q 62% 21% 3% 1%

Average relative runtime compared to oe1
q 93% 69% 63% 847%

Maximal relative runtime compared to oe1
q 113% 118% 135% 3640%

The table shows that the larger d, the more the runtime can decrease (due to
the stronger pruning) - but it can also increase (due to the computation time of
the optimistic estimate). Overall, the use of oe4

q (which is tight if the number of
classes is ≤ 4) is a safe choice in most situations. While in the worst example, it
was slower by 35% than oe1

q , on average it was faster, taking only 63% of oe1
q’s

runtime; In the best example, it even reduced the runtime to 3% of that of oe1
q .

5 Summary and Discussion

In this paper, we have pursued the investigation of optimistic estimates for fast
subgroup discovery, started in [Wro97]. In particular, we considered and formal-
ized the concept of tight optimistic estimates. We have shown that the opti-
mistic estimate proposed in [Wro97] is not tight, and have presented new tight
optimistic estimates, including tight optimistic estimates for several multi-class
quality functions.

While the use of tight optimistic estimates minimizes the number of subgroups
considered, their calculation sometimes becomes quite time consuming. To cope
with this difficulty, we have presented a family of increasingly efficient approxi-
mations of the tight optimistic estimates. While these estimates are (in general)
not tight, they allow to trade more conservative estimates for faster computation
and thereby provide a mean to select an optimistic estimate with the right ratio
of conservative-ness and computational cost.

The results are interesting both from a theoretic and a practical point of view.
On the theoretical side, the notions of conservative and tight optimistic estimates
allow to compare optimistic estimates. On the practical side, our experiments
show that the use of the new optimistic estimates oe∗ps, oed

q and oe∗q result in a
significant speedup compared to current state-of-the-art algorithms like SD-Map
[AP06]. While for problems with a relatively small number of classes oe∗q is the
estimate of choice, for datasets with a larger number of classes (more than 6 or
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so) the optimal choice depends on more factors. Overall, the use of oe4
q is a safe

choice in most situations.
The idea to perform pruning based on an optimistic evaluation of the search

space below a node was already investigated before the introduction of opti-
mistic estimate into subgroup discovery. In particular, Webb [Web95] considers
optimistic pruning for rule learning tasks in his OPUS search algorithm. The
concept is also applied in other pattern-mining tasks involving non-monotonic
objective functions, like tiling databases [GGM04]. Of course, the objective func-
tion considered in tasks like tiling are different than in subgroup discovery.

In future work, we plan to investigate optimistic estimates for other quality
function, and to extend the concept of tight optimistic estimates to numeric
target attributes. We would also like to investigate whether the optimistic es-
timates oed

q can be improved by some kind of heuristic grouping of the classes,
with the idea not just to build arbitrary groups of d attributes. It would also
be interesting to combine the optimistic estimates presented in this paper with
other approaches to subgroup discovery, in particular with sampling-based ap-
proaches [SW00]. Altogether, we believe that the definition of tight optimistic
estimates and the new optimistic estimates presented in this paper can be a
valuable instrument in a wide range of subgroup discovery algorithms.
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[Klö96] Klösgen,W.:Explora:Amultipattern andmultistrategydiscovery assistant.
In: Advances in Knowledge Discovery and Data Mining, pp. 249–271 (1996)
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A Proof of Convexity of the Multi-class Quality
Functions

A.1 Split and Pearson’s χ2

Both the Split and Pearson’s χ2 quality functions are nonnegative weighted
sums. The nonnegative weighted sum of convex functions is convex ([BV04]),
hence it is sufficient to show that the summands are convex. The summand of
both quality functions can be brought to the following form

φi = ci(
∑

j

nj)(
ni∑
j nj

− p0i)
2

where in the case if Split ci = 1 and in the case of Pearson’s ci = 1
p0i

.
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We only need to consider the case where ci = 1, because the ci’s are merely
positive weights. The φi’s are twice differentiable, thus it is sufficient to show
that the Hessian or second derivative is positive semidefinite [BV04]. We only
consider the first summand φ1, as the other cases are analog. It is somewhat
laborious but straightforward to verify that

∇2φ1 =
2

(
∑

j nj)3





(
∑

j )=1 nj)2 −n1(
∑

j )=1 nj) ... −n1(
∑

j )=1 nj)
−n1(

∑
j )=1 nj) (n2

1) ... (n2
1)

... ... ... ...
−n1(

∑
j )=1 nj) (n2

1) ... (n2
1)





The above matrix can be brought to the following form

GGT

with G = (
∑

j )=1 nj, −n1, ...,−n1)T , that is there is a Cholesky decomposition
and hence the matrix is positive-definite [BV04].

A.2 Gini

The fact that the Gini quality function is convex can be derived from previous
work in the area of decision tree construction. This comes from the fact that the
Gini quality functions is based on the Gini index, used as a splitting criterion
in the construction of decision trees [Bre96, BFOS84]. The Gini index is defined
as G(p) =

∑
j pj(1 − pj) and measures the “impurity” of a distribution p. The

gain in impurity resulting from a split is defined as Θ(s) = G(p0) − PLG(pl) −
PRG(pr) and was used as a goodness of a split measure. Here, p0 denotes the
distribution over the classes in the overall population, pl and pr denote the
distribution in the left and the right subpopulation resulting from a split, PL

denotes the proportion of the population send to the left by the split and PR =
1 − PL denotes the proportion send to the right.

This goodness of split was turned into the Gini quality function [Klö96]:

G(p0) − g ∗ G(p) − (1 − g) ∗ G(p∗)

where p0 is (as before) the class distribution in the overall population, p the class
distribution in the subgroup, p∗ the probability distribution in the remainder,
i.e. in the examples from the overall population not in the subgroup, and finally
g the generality of the subgroup. It is easy to verify that the components of p∗

are defined by p∗i = Np0i−Ngpi

N(1−g) = p0i−gpi

1−g . By inserting this definition of p∗ we
obtain the following, more familiar-looking definition of the Gini quality,

g

1 − g

∑

j

(pi − p0i)
2 =

n

N − n

∑

j

(pi − p0i)
2

[Bre96] shows that g ∗G(p)+ (1 − g) ∗ G(p∗) is concave in the proportion of the
probabilities that are sent to the left (which he calls α). We remark that Breiman
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uses the term convex in the meaning of “convex downward”; We use the term
convex in the opposite sense, as [BV04] (Breimans notation also differs from
ours in other respects). Now our vector m can be obtained from α by an affine
mapping, namely mi = Np0i αi, which implies that g ∗ G(p)+ (1 − g) ∗ G(p∗) is
also concave in m, because affine mappings preserves concavity. Hence the Gini
quality function is convex in m.
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