
Item Sets That Compress

Arno Siebes Jilles Vreeken
Department of Computer Science

Universiteit Utrecht
{arno, jillesv, mleeuwen}@cs.uu.nl

Matthijs van Leeuwen

Abstract
One of the major problems in frequent item set mining is

the explosion of the number of results: it is difficult to find

the most interesting frequent item sets. The cause of this

explosion is that large sets of frequent item sets describe

essentially the same set of transactions. In this paper we

approach this problem using the MDL principle: the best

set of frequent item sets is that set that compresses the

database best. We introduce four heuristic algorithms for

this task, and the experiments show that these algorithms

give a dramatic reduction in the number of frequent item

sets. Moreover, we show how our approach can be used to

determine the best value for the min-sup threshold.

Keywords: Frequent Item Sets, MDL

1 Introduction
Frequent item set mining is one of the major innova-
tions Data Mining has contributed to the broad area of
Inductive Inference. It started as a phase in the dis-
covery of association rules [2], but has been generalised
independent of these to many other patterns. For exam-
ple, frequent sequences [3], episodes [11], and frequent
subgraphs [9].

The problem of frequent item set mining [2] can be
described as follows. The basis is a set of items I, e.g.,
the items for sale in a store. A transaction t ∈ P(I) is
a set of items, e.g., representing the set of items a client
bought at that store. A database over I is simply a set
of transactions, e.g., the different sale transactions in
the store on a given day. An item set I ⊂ I occurs in
a transaction t ∈ db iff I ⊆ t. The support of I in db,
denoted by suppdb(I) is the number of transactions in
the database in which I occurs. The problem of frequent
item set mining is: given a threshold min-sup, determine
all item sets I such that suppdb(I) ≥ min-sup. These
frequent item sets represent, e.g., sets of items customers
buy together often enough.

There are many efficient algorithms to mine fre-
quent item sets, e.g., [2, 8]. However, there is one major
obstacle that precludes frequent item sets to be used
successfully more often. The problem is the number of

frequent item sets produced. If the threshold min-sup is
put high, the resulting sets are well-known. If min-sup
is put low the the number of frequent item sets explodes.

Much research has been devoted to reduce the
resulting set of frequent item sets. For example, by
using interestingness measures such as lift [12]. Or,
more general by constraints, such as requiring that the
resulting item sets are closed [15]. An item set I is
closed if there exists no item set J such that I ⊂ J and
suppdb(I) = suppdb(J).

The set of closed frequent item sets is a lossless
compression of the set of all frequent item sets. That
is, the set of all frequent item sets and their support
can be reconstructed from the set of all closed frequent
item sets and their support. There also exist approaches
that define, or can be seen as, lossy compression. For
example, maximal frequent item sets [4] and boundary
cover sets [1]. While these two still allow to reconstruct
all frequent item sets, their support information is lost.
There are also lossy compression schemes that put a
bound on the support of the “missing” item sets. For
example, δ-free sets [5] and the recently introduced
compressed frequent pattern sets [14]. These latter two,
require an extra user-defined parameter δ.

In other words, many of these compression ap-
proaches focus on the complete set of frequent patterns.
By choosing this focus, they do not address the rea-
son of the explosion of frequent item sets: large sets of
frequent item sets essentially describe the same set of
transactions. Clearly, closed item sets partially solve
this problem: if J and J ∪ {I} have the same support,
they describe exactly the same set of transactions. Both
δ-free sets and compressed frequent pattern sets do not
require that the transactions are exactly the same, but
at the cost of an extra, arbitrary parameter δ.

In this paper we propose a completely different
approach. We take the cause of the explosion head
on: a set of item sets is interesting iff it gives a good
description of the database. That is, a set of item sets
is interesting iff it yields a good (lossless) compression
of the database rather than a good compression of the

393

set of all frequent item sets.
To determine whether or not a subset of the set

of frequent item sets yields a good compression of
the database, we use the Minimum Description Length
Principle (MDL) [7]. The MDL principle gives us a
fair way to balance the size of the compressed database
and the size of the code table; note, we need both
for a lossless compression of the database! If we use
too few frequent item sets the database will hardly be
compressed. If we use too many, the code table (for
coding/decoding the database) will become too large.

The MDL approach gives a good way to determine
the most interesting frequent item sets; the reduction is
by four orders of magnitude as we show in this paper.
This reduction is reached without any user defined
threshold. Moreover, we can also use this approach for
a related problem, viz., what is the best value for the
threshold min-sup? We will briefly discuss this problem
and a solution at the end of the paper.

While MDL removes the need for user defined
parameters, it comes with its own problems: only
heuristics, no guaranteed algorithms. However, our
experiments show that these heuristics give already
dramatic reduction in the number of item sets.

The remainder of this paper is organised as follows.
In the next section we formally define our problems. In
Section 3 we introduce heuristic algorithms that for a
set of frequent item sets J determine that subset C ⊆ J
that gives the best compression of the database. Sub-
sequently, in Section 4, we report on our experiments
and discuss the results. In Section 5, we give a heuris-
tic algorithm for the more general problem: find the
set of frequent item sets that compress the database
best. Moreover, we present some experimental results.
The paper ends with Section 6 in which we formulate
our conclusions and give some directions for further re-
search.

2 Problem Statement
In this section we state our problem formally. First we
briefly discuss the MDL principle. Next we show how
sets of item sets can code a database and what the size
of the coded database is. Then we introduce code tables
and their size. With these ingredients, we formally state
the problems studied in this paper.

2.1 MDL MDL (minimum description length) [7],
like its close cousin MML (minimum message length)
[13], is a practical version of Kolmogorov Complexity
[10]. All three embrace the slogan Induction by Com-
pression. For MDL, this principle can be roughly de-
scribed as follows.

Given a set of models1 H, the best model H ∈ H is
the one that minimises

L(H) + L(D|H)

in which

• L(H) is the length, in bits, of the description of H,
and

• L(D|H) is the length, in bits, of the description of
the data when encoded with H.

In our case, H will exist of sets of item sets and coding
tables. For, as explained in the introduction, we are
looking for those item sets that together best (in the
MDL sense) describe the database. Before we can
formally state our problem, we first have to define both
H and how a H ∈ H is used to describe the data.

2.2 Coding with Item Sets The first step in defin-
ing the description length of a database by a set of item
sets is to define how sets of item sets can be used to
code the database. Clearly, the coding item sets should
at least be able to “describe” each transaction in the
database. That is, each transaction should be the union
of some of the coding item sets. Moreover, the coding
item sets that cover a transaction should be mutually
disjoint. This intuition is formalised in the definition of
an item set cover.

Definition 2.1. A set of item sets C is an item set
cover for a database of transaction db iff for each t ∈ db
there is a subset C(t) ⊆ C such that:

1. t =
⋃

ci∈C(t) ci

2. ∀ci, cj ∈ C(t) : ci '= cj → ci ∩ cj = ∅

We say that C(t) covers t.

To use an item set cover to encode the database, we
need to know which set of items is to be used to cover
a transaction t ∈ db. This is formalised as a coding
scheme.

Definition 2.2. A coding scheme CS for a database
db is a pair (C,S) in which C is an item set cover of
db and S is a function S : db → P(C) such that S(t)
covers t.

Each coding scheme is part of a possible model. For a
given coding scheme we know exactly how to cover each
transaction in the database. To use our coding scheme
to actually encode the database, we need to assign a

1MDL-theorists tend to talk about hypothesis in this context,
hence the H; see [7] for the details.

394

code to each element of the item set cover. Naturally,
the coding set that is used most often should get the
shortest code. The number of times an item set is used
by a coding scheme is called its frequency2.

Definition 2.3. The frequency of an element c ∈ C
for a given coding scheme (C,S) of a database db is
defined by:

freq(c) = |{t ∈ db|c ∈ S(t)}|

Now we can assign codes to all elements of C for
some coding scheme (C,S). However, we are not so
much interested in the actual code as in the size of
the compressed database. In other words, we are only
interested in the length of the code for each c ∈ C.
Fortunately, there is a nice correspondence between
codes and probability distributions (see, e.g., [10])

Theorem 2.1. Let P be a distribution on some finite
set D, there exists a (unique) code CD on D such that
the length the code for d ∈ D, denoted by L(d) is given
by

L(d) = − log(P (d))
Moreover, this code is optimal in the sense that it
gives the smallest expected code size for data sets drawn
according to P .

The optimality property means that we introduce no
bias using this code length. The probability distribution
induced by a coding scheme is, of course, simply given
by the relative frequency of each of the item sets. This
intuition is formalised in the next definition.

Definition 2.4. A coding scheme (C,S) induces a
probability distribution P on C, called the Coding Dis-
tribution by:

∀c ∈ C : P (c) =
freq(c)∑

d∈C freq(d)

With this probability distribution, each c ∈ C receives
a code with length − log(P (c)). Each t ∈ db is
covered by S(t), hence, its coded version is simply the
concatenation of the codes for the c ∈ S(t). In other
words, the code length of t is:

L(t) =
∑

c∈S(t)

L(c)

Summing up over all tuples yields our first result.

Lemma 2.1. For a given coding scheme (C,S), the size
of the coded database is given by

L(C,S)(db) = −
∑

c∈C

freq(c) log
(

freq(c)∑
d∈C freq(d)

)

2So, in this paper the frequency and the support of an item
set are two completely different things!

2.3 Code Tables With the previous lemma, we can
compute L(D|H). To use the MDL principle, we still
need to know what L(H) is. To answer this question,
we first need to know what H actually is. That is, what
are our models? We have already noted that the coding
schemes are part of our models. How do we describe
coding schemes?

A coding scheme consists of a set of item sets
together with a function that tells which item sets are
used in the encoding of which transaction. Now all
functions can be written as a set of (x, y) pairs (clearly,
not necessarily the most efficient representation, we’ll
come back to this issue). In other words, a coding
scheme can be seen as a table in which each row consists
of an item set and a list of transactions in which it is
used for encoding.

While such tables describe the coding abstractly,
they are not sufficient to actually code and decode the
database. For this, we have to add one more column
containing the actual code used for a given item set. Of
course, the length of the code used should correspond
with the frequency of the item set in the coding scheme.
Formally, such tables are defined as follows.

Definition 2.5. For a database of transactions db over
item set I, a coding/decoding table is a table with three
columns, Item Set, Code and Tuple List such that

• The columns Item Set and Tuple List form a coding
scheme.

• Let Ni be the number of elements in the Tuple List
of Item Set i, then the length of the code for i

should equal − log
(

NiP
j∈Item Set Nj

)

As already noted above, the Tuple List is not necessarily
the most efficient way to represent the mapping from
item sets to tuples. Moreover, the number of bits
necessary for this encoding may simply swamp the size
of the remaining columns. For, if that database has n
transactions, we need log(n) bits to encode the pointer
to each transaction. Which implies that n log(n) bits
as a lower bound on the number of bits necessary to
encode the mapping. In practice, where we expect that
each transaction is covered by a few item sets and each
item set is used to cover many transactions, the actual
number of bits may be far higher.

An alternative representation is by an algorithm
described in some programming language. Given that
we assume that we have a very large database, the choice
for a particular programming language is immaterial as
usual in Kolmogorov Complexity [10].

Both alternatives share one big disadvantage. We
need not only find the set of item sets to compress the

395

database best, we also need to find the mapping that
gives this best compression. A wrong mapping may give
a very bad compression rate. In the general case, finding
the shortest program for a given task is an undecidable
problem, more precise, it is upper semi-computable [10].
If for a given set of item sets we want to find the best
mapping, we have a finite setting. Hence the problem
is trivially decidable. However, there are no known
efficient algorithms for the finite case.

Because of these reasons, we simplify our problem.
We take a fixed algorithm to code the database. We
are going to assume an order on a code table; a
table containing pairs of item sets and codes. To
code a transaction t, we simply take the first item
set i in the code table that is a subset of t. We
continue this procedure recursively on t \ i until the
remainder is empty. This simple procedure induces a
coding/decoding table from any set of item sets that
can cover all transactions in db. To show this, we first
need the notion of a coding set:

Definition 2.6. An ordered set of item sets that con-
tains all the singleton item sets {I} for I ∈ I is called a
coding set. The order, called the coding order is denoted
by <.

Given a coding set, we can compute a cover for a
transaction as sketched above. The Cover algorithm
given in figure 1 gives a more formal specification.
Its parameters are a Coding set C and a transaction
t, the result is a set of elements of C that cover t.
Cover is well-defined function on any coding set and

Cover(C, t)
1 S := smallest element c of C in coding order

for which c ⊆ t
2 if t \ S = ∅
3 then Res := {S}
4 else Res:= {S} ∪Cover(C, t \ S)
5 return Res

Figure 1: The Cover Algorithm

any transaction over I. Moreover, it defines a coding
scheme over any database of such transactions.

Lemma 2.2. Let C be any coding set, db a database of
transactions over I and let t ∈ db, then:

1. Cover(C, t) is a valid cover of t.

2. C and Cover induce a unique coding scheme on
db.

Proof. 1. A coding set contains all singleton item sets,
and, hence, Cover can compute a cover for each
possible transaction.

2. Construct a table of pairs (c, l), one for each c ∈ C.
Such that l is a list of transactions t ∈ db for which
c ∈ Cover(C, t).

With the right set of codes, the code scheme induced
by C and Cover can even be extended to a cod-
ing/decoding table. To formalise this, we first need the
notion of a code table.

Definition 2.7. Let C be a coding set, K a set of codes
and db a database. CT ⊆ C ×K is a code table for db
iff

• ∀(c1, k1), (c2, k2) ∈ CT : c1 = c2 → k1 = k2

• ∀(c, k) ∈ CT : L(k) = − log(P (c)) where P (c)
is the probability of c in the coding scheme for db
induced by C and Cover.

Now we can formalise our intuition:

Theorem 2.2. Let C be a coding set and db a database,
then

1. C and Cover induce a unique code table

2. This code table can be extended to a cod-
ing/decoding table.

Proof. 1. Lemma 2.2 gives a unique coding scheme.
From Theorem 2.1 get the existence of the neces-
sary code H. Together this gives the required code
table.

2. The code table can be extended to a cod-
ing/decoding table using the lists of transactions
constructed in, again. Lemma 2.2.

Now we can state what our models are: they are the
code tables induced by coding sets. We can use Cover
and table look-up to code the transactions in a database
and simply table look-up to decode a coded transaction.

2.4 The Size of a Code Table Now that we know
what our collection of models H is, we can answer the
question: what is L(H) for an H ∈ H? In part this
is easy, as for the right hand side of a code table we
already know the length. It is − log(P (c)) where P (c)
is the probability of the item set in the left hand side.
So, the remaining question is: how do we encode the
item sets on the left hand side and what is the length
of this encoding?

This may look like a pointless question: the right
hand side is already a code for the left hand side, why

396

do we need another code? But it isn’t pointless at all.
The code for the item set on the right hand side is the
code that is used to describe the database. The code
on the left hand side describes the item set itself. This
description can only be done in terms of I. That is, in
terms of the singleton item sets.

The set {I}I∈I is a coding set. Hence, it induces
an encoding. This is the encoding we will use. It allows
us to reconstruct the database upto the names of the
individual items. If necessary, one could add an ASCII
table giving the names of the individual items. Since
this table is the same for all code tables, it does not have
any effect on the choice for the best possible encoding.
Therefore, we do not consider the table with names in
this paper.

Definition 2.8. The standard encoding of an item set
i for a given database db over I is the encoding induced
by the coding set {I}I∈I .

With this definition, we can compute the size of the
code table CT ⊆ C×K. The length of the first element
of a pair (c, code(c)) ∈ CT) is the length of the standard
encoding of c, denoted by Lst(c). While the length of
code(c), is the length of the encoding induced by the
coding set C. This latter length is denoted by LC(c)
Summing up over C, we have

Lemma 2.3. The size of the coding table induced by a
coding set C for a database db is given by

L(CTC) =
∑

c∈C:freq(c) "=0

(Lst(c) + LC(c))

Note that we do not take item sets with zero frequency
into account. Such item sets are not used to code.

2.5 The Problem Let C be a coding set and db a
database. Denote by (C,SC) the coding scheme induced
by C and by CTC the coding table induced by C. The
total size of the encoded version of db is then given by

LC(db) = L(C,SC)(db) + L(CTC)

Lemma’s 2.1 and 2.3 tell how the two sizes on the right
hand side can be computed.

With this remark, we can finally give our formal
problem statement:

Minimal Coding Set Problem:
For a database db over a set of items I, find a
coding set C for which LC(db) is minimal.

A minimal coding set is a set of item sets that gives
the best compression of the database db. Before we

consider this general problem, we will consider a simpler
problem, one in which we are given a set of item sets
J . The problem is to find a subset of J which leads
to a minimal encoding; where minimal pertains to all
possible subsets of J . To make sure that this is possible,
J should contain the singleton item sets. We will call
such a set, a proto coding set

Minimal Coding Subset Problem:
For a database db over a set of items I and J
a proto coding set, find a coding set C(J) ⊆ J ,
for which LC(J)(db) is minimal.

Note that C ⊆ J in this context means that C is a subset
of J if we forget the coding order associated with C.

A solution for the coding subset problem allows us
to find the “best” (closed) frequent item sets for a given
minimal support.

2.6 How Hard is the Problem? The number of
coding sets does not depend on the actual database.
Because of this, we can compute the size of our search
space rather easily.

A coding set consists of a set of item sets that
contains the singleton item sets plus an order. That
is, a coding set is based on a set that contains the
singleton item sets plus an almost arbitrary subset of
P(I) Almost, since we are not allowed to choose the |I|
singleton item sets. In other words, there are

(
2|I| − |I|− 1

j

)

such sets with j + |I| elements. Since a set with n
elements admits n! orders, we have:

Lemma 2.4. For a set of items I, the number of coding
sets is given by:

NCS(I) =
2|I|−|I|−1∑

j=0

(
2|I| − |I|− 1

j

)
× (j + |I|)!

So, even for a rather small set I we already have a
huge search space. Table 1, gives an approximation of
NCS for the first few sizes. Clearly, the search space

|I| 1 2 3
NCS(I) 1 8 8742
|I| 4 5 6
NCS(I) 2.70× 1012 1.90× 1034 4.90× 1087

Table 1: The number of coding sets

is far too large to consider exhaustive search. There is
some structure in the search space, given in Lemma 2.5.

397

Lemma 2.5. Let J1 and J2 be two proto coding sets such
that J1 ⊂ J2, then

LC(J1)(db) ≥ LC(J2)(db)

Proof. Any coding set in J1 is also a coding set in J2.

This lemma doesn’t suggest a pruning strategy for the
search space. Therefore, we use heuristic algorithms in
this paper. However, it is instrumental in defining a
strategy to answer the Minimal Coding Set Prob-
lem using the results for the Minimal Coding Subset
Problem. To exploit this opportunity, we first intro-
duce and test algorithms for the latter problem.

3 Discovering Item sets That Compress
In this section, we introduce four algorithms for the
Minimal Coding Subset Problem. As noted before,
all these algorithms are heuristic. In fact, they are
all based on the same simple greedy strategy. This
strategy is first introduced and then two strategies for
improvement are discussed and exploited.

3.1 The Basic Heuristic The basic heuristic we
employ is a simple greedy strategy:

• Start with the code consisting only of the singleton
item sets.

• Add the other item sets one by one. If the
resulting codes leads to a better compression, keep
it. Otherwise discard that item set.

To turn this sketch into an algorithm, some questions
have to be answered. Firstly, in which order do we add
item sets? Secondly, where does a new item set fit in
the order of the coding set? Phrased differently, what
is its place in the code table? Finally, when do we say
that the compression is better? Or, do we prune the
newly constructed coding set before we check whether
it compresses better or not?

Before we discuss each of this questions, we briefly
describe the initial encoding. This is, of course, the
standard encoding defined in definition 2.8. For this,
we need to construct a coding set form the elements of
I. The algorithm called Standard, given in figure 2,
returns such a coding set.

It takes a set of items and a database as parameters
and returns a coding set. Note that the actual order in
which we put the coding set is immaterial. As each
coding set will give a code with exactly the same length
to each of the items. This is formalised in lemma 3.1.

Lemma 3.1. Let I be a set of items and db a database
of transactions over I. Moreover, let J and K be two

Standard(I, db)
1 foreach I ∈ I
2 freq(I) := support of I in db
3 Res := I ordered descendingly on freq
4 return Res

Figure 2: The Standard Algorithm

arbitrary code sets containing exactly the elements of I,
then

LJ(db) = LK(db)

Proof. The singleton item sets are necessarily disjoint.
This means that in whatever order is defined on the set
of singletons,

P (I) =
suppdb(I)∑

L∈I suppdb(L)

where suppdb(I) denotes the support of I in db.

In other words, Standard is vacuously correct. The
reason that we prefer this particular order is that it fits
with order we define in the next subsection.

3.2 Order in the Set! We have two questions on
the order of item sets. Firstly in which order do we
check whether they ought to be in our code table or
not? Secondly, where should they be placed in the code
table?

To a large extend, the answer to the first question
is immaterial. As long as we try all item sets and put
them in the (unknown!) correct place in the code table,
the order in which we do this doesn’t matter at all. It
is only the final code table that counts. However, there
are two reasons to take the question seriously. Firstly,
the order in which we consider the item sets may make
it easier or more difficult to add them to the code table.
Secondly, a more prosaic reason is that our algorithm
will need a definite order; random choice doesn’t seem
the wisest of ideas.

Given a coding set CS, it is in principle easy to
determine the best spot for each item set in CS. Simply
try all possible permutations. However, the |CS|!
possibilities make this a not too practical approach.
Fortunately, there is a simple lemma that suggests a
(partial) solution.

Lemma 3.2. Let J be an item set in coding set CS.
Moreover, let {J1, . . . , Jk} also be item sets in CS, such
that the Ji form a cover of J . If J occurs in CS after
all the Ji, the frequency of J will be zero.

398

Proof. Cover will find a cover for each transaction t
that could be covered by J before it even considers J .
Hence, no transaction will get J in its cover.

If we denote the number of items in an item set J
by size(J), lemma 3.2 suggests that we order the item
sets in CS by size. In this order, item sets with a larger
size will come before item sets with a smaller size. In
other words, we have a stratified code set. But, what
order should we choose if two item sets have the same
size?

So, we have two distinct J1, J2 ∈ CS with
size(J1) = size(J2). When does the order of J1 and J2

in the code table matter? Answer: if there is a transac-
tion in the database for which both Ji could be part of
the cover. That is, transactions that could be covered
by J1 ∪ J2.

In other words, if there is an item set J ∈ CS
such that J1 ∪ J2 ⊆ J , the relative order of the Ji

is unimportant. If there is no such J in CS (in
particular, J1 ∪ J2 /∈ CS), this means that the number
of transactions that could be covered by J1 ∪ J2 is too
small to be of importance. That is, either J1∪J2 (or its
closure) had too small a support to meet the threshold.
Or, it has been pruned (see section 3.4 for details).

In this case, a choice for either of the Ji as the
smaller in the order will diminish the frequency of the
other. Since high frequencies lead to small codes (and
thus well compressed databases), the a priori best choice
is to give preference to the Ji with the highest support
in the database.

Concluding, we sort by size and then by support.
This is only a heuristic. But, given the observations
above, it seems a reasonable heuristic. Any better
heuristic will require far more computational effort.
This order is our standard order.

Definition 3.1. Let db be a set of transactions over a
set of items I. Moreover, let C ∈ P(I) be an ordered
set of item sets. C is in standard order for db iff for
any two J1, J2 ∈ C

• size(J1) ≤ size(J2) → J2 .C J1;

• size(J1) = size(J2) ∧ suppdb(J1) ≤ suppdb(J2)) →
J2 .C J1.

While we use the standard order for the code table, we
are greedy in which item set to use next: the one with
the highest cover in the database. In the cover order,
the item set with the largest cover is maximal. For a set
of item sets J and a database db, Cover-Order(J, db)
returns the version of J with this order.

3.3 Naive Compression We now have the ingredi-
ents for a naive compression algorithm:

• Start with the code consisting only of the singleton
item sets.

• Add the other item sets one by one. Each time,
take the item set that is maximal with regard to the
cover order. If the resulting codes leads to a better
compression, keep it. Otherwise discard that item
set.

This intuition is formalised as the Naive-
Compression algorithm specified in figure 3

Naive-Compression(I, J, db)
1 CodeSet := Standard(I, db)
2 J := J \ I
3 CanItems := Cover-Order(J, db)
4 while CanItems '= ∅ do
5 cand := maximal element of CanItems
6 CanItems := CanItems \ {cand}
7 CanCodeSet := CodeSet⊕ {cand}
8 if LCanCodeSet(db) < LCodeSet(db)
9 then CodeSet := CanCodeSet

10 return CodeSet

Figure 3: Naive Compression

Naive-Compression takes as input the set of
items I, the database db, and the code set J out of
which the subset should be found that leads to the
shortest encoding. The result is the best code set the
heuristic algorithm has seen. “Maximal” in line 5 means
maximal with regard to the cover order according to
which CanItems is ordered. The symbol ⊕ in line
7 signifies that cand is put into its proper position
according to the standard order.

Now, it may seem that each iteration of Naive
Compression can only lessen the frequency of an item
set. For, if J1 ∩ J2 '= ∅ and J2 is added before J1

in a coding scheme, the frequency of J1 will go down
(provided the support of J2 does not equal zero).

While this is true, it is not the whole story. Because,
what happens if we now add an item set J3 before J2

such that:

• J1 ∩ J3 = ∅ and

• J2 ∩ J3 '= ∅.

The frequency of J2 will go down, while the frequency
of J1 will go up again; by the same amount, actually.

399

So, even item sets with frequency zero can not be
removed from the code set. However, since they are
not used in the actual coding, they are not taken into
account while computing the total compressed size for
the current solution.

Only in the end, item sets with frequency zero
should be removed. After all, they do not code, so they
are not part of the optimal answer.

A useful observation about Naive-Compression is
that the average frequency of item sets is getting smaller
all the time.

3.4 Pruning the Code Set What about item set
J with a small frequency, say 1? They have a very
small probability and thus a code with a very high
length. Such short codes may make better code sets
unreachable. Consider, e.g., the following three code
sets:

• CS1 = {{I1, I2}, {I1}, {I2}, {I3}}

• CS2 = {{I1, I2, I3}, {I1, I2}, {I1}, {I2}, {I3}}

• CS3 = {{I1, I2, I3}, {I1}, {I2}, {I3}}

Assume that supp({I1, I2, I3}) = supp({I1, I2}) − 1. It
is very well possible that LCS2(db) > LCS1(db) while at
the same time LCS3(db) < LCS1(db). However, given
these facts, Naive-Compression will never consider
CS3.

To alleviate this problem, we can prune
CanCodeSet. Pruning means that we remove an
element from CanCodeSet and check if the resulting
compression is better than that of CodeSet itself.
Clearly, we only have to check those item sets whose
cover has become smaller. Since there may be more
such item sets, the question is: which one do we prune
out first? In line with our standard order philosophy,
we take the one with the smallest cover. This is
formalised in Algorithm Prune-on-the-Fly specified
in figure 5. Note that the 1 in line 7 simply signifies
that we remove cand from the (ordered) candidate set.
The details on how this procedure is used in the search
for the best compression is discussed in Section 3.6

3.5 Noise in the Database? In Section 3.4 we
discussed pruning item sets from the code set that cover
just a few transactions. Form another perspective, if
a transaction needs an “exotic” item set in its cover,
perhaps this transaction itself is simply noise. That is,
a transaction that doesn’t fit the regularity exhibited by
the rest of the database.

If we simply remove such freak transactions from
the database, the regularity patterns become far more
visible. Because it also implies that the very infrequent

Prune-on-the-fly(CanCodeSet, CodeSet, db)
1 PruneSet :=

{J ∈ CodeSet|coverCanCodeSet(J) < coverCodeSet(J)}
2 PruneSet := Standard(PruneSet, db)
3 while PruneSet '= ∅ do
4 cand := element of PruneSet with minimal cover
5 PruneSet := PruneSet \ {cand}
6 PosCodeSet := CodeSet1 {cand}
7 if LPosCodeSet(db) < LCanCodeSet(db)
8 then CanCodeSet := PosCodeSet
9 return CanCodeSet

Figure 4: Prune before acceptance testing

item sets in a code set will be removed “automatically”.
To implement this intuition, we need to answer four
questions:

1. How do we decide a transaction is a freak transac-
tion?

2. How do we encode freak transactions? For, after
all, we should encode the complete database. Oth-
erwise, the best compression is simply: remove all
transactions.

3. When do we remove the freak transactions?

4. What is the size of the compressed database if we
remove freak transactions?

Deciding which transactions are freak transactions,
is not too complicated. Our goal is to compress
the database. While compressing the database, it is
very well possible that the code for some transactions
becomes longer than its standard code. We would be
far better off, if we would encode such transactions with
their standard code:

Definition 3.2. Let CS be a code scheme for database
db over the set of items I. Moreover, let S be the
standard code for db induced by I. A transaction t ∈ db
is a freak transaction for CS iff:

LS(t) < LCS(t)

The freak transactions are removed by three small
algorithms. Noise determines the freak transactions
in the database. Denoise removes the freak from the
database. While Sanitize removes the item sets with a
zero cover in the denoised database.

The third question was when can we remove the
noise? Doing it while growing our code set is not a good

400

Noise(I, CodeSet, db)
Noise := ∅
foreach t ∈ db do

if LS(t) < LCS(t) then
Noise := Noise ∪ {t}

return Noise

Denoise(I, CodeSet, db)
Noise := Noise(I, CodeSet, db)
db := db \ Noise
return db

Sanitize(I, CodeSet, db)
db := Denoise(I, CodeSet, db)
foreach J ∈ CodeSet do

if coverdb(J) = ∅ then
CodeSet := CodeSet1 J

return CodeSet

Figure 5: Removing the Noise

idea. For, the code size of a transaction may shrink if a
new item set is added to the code set. Hence, removing
the noise should only be done as a post-processing step.

Finally, what is the size of the compressed database
if we remove freak transactions? The only reasonable
size is to compute the size of the sanitized code set, the
size of the denoised database under this sanitized code
set, the size of the Noise set and add these three. The
encoding of the Noise set is straightforward. It is coded
by the standard encoding:

LCS(Noise) =
∑

t∈Noise

Lstandard(t)

With this, we can define our generalised compressed
database size.

Definition 3.3. Let CS be a coding set for a database
of transactions db over a set of items I. The generalised
length of db coded with CS is given by:

LNCS(db) = LCS(Denoise(I, CS, db))
+ LCS(Sanitize(I, CS, db))
+ LCS(Noise(I, CS, db))

An important observation is that this defines a
proper extension of our earlier definition of length.

Lemma 3.3. Let CS be a coding set for a database
of transactions db over a set of items I. If

Noise(I, CodeSet, db) = ∅, then

LNCS(db) = LCS(db)

Proof. If Noise(I, CS, db) = ∅, then

• Denoise(I, CS, db) = db

• Sanitize(I, CS, db) = CS

• LCS(Noise(I, CS, db)) = 0

Hence, it makes perfect sense to compare the two
different lengths. In fact, if it is clear from the context,
we’ll blur the distinction and simply write LCS(db) to
denote either of the two.

3.6 Alternatives for Better Compression. With
Prune-on-the-fly specified in Section 3.4 and the set
of algorithms Noise, Denoise, and Sanitize specified
in Section 3.5 we have a number of opportunities to try
and improve the performance of our naive algorithm
Naive-Compression from Section 3.3.

First of all, we can extend Naive-Compression by
Prune-on-the-fly, this algorithm is called Compress-
and-Prune. Secondly, we can extend Naive-
Compression using Sanitize as a post-processing
step, this algorithm is called Compress-and-Sanitize.
Finally, we can extend Naive-Compression by
both methods, this algorithm is called All-out-
Compression. All three algorithms are given in figure
6. Note that Compress-and-Prune, and thus All-
out-Compression, could perform worse than Naive-
Compression, because the intermediate pruning steps
could have detrimental effects later on in the search.
Only Compress-and-Sanitize is guaranteed to do no
worse. For, if Sanitize doesn’t produce a better code,
it simply does nothing. Only experiments can indicate
which approach is the best.

4 Experiments
In this section we present and discuss our experimental
results. First we give the set-up of the experiments.
Then we give our results. Finally, we discuss these
results.

4.1 The Set-Up The main thing we want to test is,
of course, do these algorithms work? That is, will they
reduce the number of item sets? And, if so, by how
much? Given that closed item sets are a well known
compression of item sets and that there are often far
fewer closed frequent item sets than frequent item sets,
we also want to compare with the number of closed
frequent item sets.

401

Compress-and-Prune(I, J, db)
CodeSet := Standard(I, db)
J := J \ I
CanItems := Cover-Order(J, db)
while CanItems '= ∅ do

cand := maximal element of CanItems
CanItems := CanItems \ {cand}
CanCodeSet := CodeSet⊕ {cand}
if LCanCodeSet(db) < LCodeSet(db) then

CanCodeSet :=
Prune-on-the-fly(CanCodeSet, CodeSet, db)
CodeSet := CanCodeSet

return CodeSet

Compress-and-Sanitize(I, J, db)
Result := Naive-Compression(I, J, db)
Result := Sanitize(I, Result, db)
return Result

All-out-Compression(I, J, db)
Result := Compress-and-Prune(I, J, db)
Result := Sanitize(I, Result, db)
return Result

Figure 6: Compression with Pruning and Sanitization

In fact, because the number of closed frequent item
sets is far smaller it is also interesting to see whether
our methods can compress the set of closed frequent
item sets and, by how much. In the same vein, it is
interesting to see which of the two inputs for the same
min-sup, all frequent or all closed frequent, yields the
better results.

Moreover, in both cases we want to see whether our
optimisation schemes work. If they do, we also want
to know which of the three optimised algorithms works
best.

To do these tests, we have taken two data sets from
the Fimi web site [6], viz., the chess and the mushroom
data sets. We have taken these two data sets because
they differ very much in their ration of frequent item sets
versus closed frequent item sets. The chess database
has, at min-sup = 1500, 2 million frequent item sets
versus 550,000 closed frequent item sets. The mushroom
database has, at min-sup = 724, 945,000 frequent item
sets versus only 7800 closed frequent item sets.

4.2 The Results In table 2 we give the results of all
four algorithms on both the closed and all frequent item
sets for min-sup = 724 on the mushroom database.

The results on the closed frequent item sets are

impressive, we end up with less than 2% of the closed
frequent item sets. Only 147 respectively 149 closed
item sets are necessary to capture the structure in the
mushroom database! This small subset allows us to
compress the database by over 50%; hence, it certainly
captures the structure. There is no a posteriori noise to
remove, but pruning removes 2 closed frequent sets at
the cost of 1 bit.

The results for all frequent item sets is even more
impressive, The set of 945,000 has been reduced to 338
respectively 282 frequent sets; this is four orders of mag-
nitude! This small subset gives a much better compres-
sion than the one constructed from closed frequent item
sets. There seems to be structure in the database that is
not captured by closed sets. That is, focusing on closed
sets only may make you miss important frequent sets.

The chess database gives very much similar re-
sults. Uncompressed it is 605739 bits, Compress-and-
Prune compresses it in total to 304034 bits using only
186 of the 2076366 available frequent item sets with
min-sup = 1500; again 4 orders of magnitude reduction.
If we only look at the closed item sets, Compress-and-
Prune uses 174 of these out of 549920 available, for a
total compressed size of 329870. So, again there is some
structure not completely captured by the closed item
sets.

The main effects we see in these results also bear
out in more extensive testing. In figure 7 we plot the
total compression size of the chess database for various
support levels for both all and only closed frequent item
sets: both input sets give comparable results.

Figure 8 illustrates the effect of pruning in a similar
fashion on the mushroom data set. The two lines are

Figure 8: Naive vs Compress-and-Prune on Mushroom

simply on top of each other. Clearly, the (necessary)
scale has some influence on this, witness the numbers
mentioned above, but the algorithms are pretty compa-
rable.

402

Source Algorithm Coding Items Code Table Database Noise Total Compressed Size

All

Naive 338 9901 425977 0 435878
Compress-and-Sanitize 338 9901 425977 0 435878
Compress-and-Prune 282 8252 423487 0 431739
All-out-Compression 282 8252 423487 0 431739

Closed

Naive 149 4754 507691 0 512445
Compress-and-Sanitize 149 4754 507691 0 512445
Compress-and-Prune 147 4631 507633 0 512246
All-out-Compression 147 4631 507633 0 512246

Table 2: Algorithm results on Mushroom, min-sup = 724. The standard code size of the database is 1111287 bits.

1500200025003000
0

1

2

3

4

5

6

x 105

min−sup

to
ta

l c
om

pr
es

se
d

siz
e

(b
its

)

1500200025003000
0

20

40

60

80

100

120

140

160

180

200

min−sup

ite

m
s

in
 c

od
et

ab
le

closed
all

Figure 7: Closed or All on Chess

4.3 Discussion The experiments show that our
MDL approach works. Just a few frequent item sets are
necessary to give a succinct description of the database.
The numbers mentioned are even more impressive if one
realises that most of the singleton item sets are still
present in the code table. In other words, there are
even fewer “real” item sets to consider.

The pruning strategy works. This is not true for
the noise removal. The compression doesn’t find many
freak transaction, none in the numbers presented here.
We checked whether there were codes in the code table
that had a code-length longer than standard. Again, we
couldn’t find any. This might still be an artifact of the
databases we used. Further tests are necessary.

Based on the tests, it is clear that using all frequent
item sets gives slightly better results in compression.
On the other hand, using just closed ones gives far less
item sets with comparable compression. Pruning can be
used without much risk. Again, leaving less item sets in
the result.

5 One Step Beyond
In this section we introduce an algorithm for the Mini-
mal Coding Set Problem. In fact, it is an algorithm
scheme rather than an algorithm.Using a particular in-
stantiation, we give some experimental results.

5.1 What About Min-Sup The key difference be-
tween the Minimal Coding Set Problem and the
Minimal Coding Subset Problem is that the lat-
ter only has to consider the item sets it gets as input,
while the former has to consider all item sets. This may
seem like a far more complex problem, however, lemma
2.5 gives an important clue. It shows that we can use
a level-wise like search approach. The stratification is
such that Leveli+1 is constructed using a lower min-sup
than Leveli Then. lemma 2.5 tells us that

LLeveli+1(db) ≤ LLeveli(db)

That is, we use the following scheme:

• Choose a min-sup

– Determine all frequent item sets for thus min-
sup

403

– Determine the best coding set from these
frequent item sets

• Choose a smaller min-sup and continue until the
search converges.

This may seem like a vacuous scheme. Of course
it will converge, at the very latest when all possible
item sets (with non-zero support) have been considered.
However, it is not as bad as it seems.

Firstly, for sparse data sets it is not impossible
to compute all item sets with very low thresholds,
especially since we can concentrate on the closed item
sets. The extensive experiments in the Fimi workshops
[6] show that these can be computed relatively fast.

Secondly, we do not have to maintain this enormous
list of (closed) item sets. In each iteration, the set of
newly generated item sets is compressed to a coding set
that is orders of magnitude smaller as we have seen in
the previous section.

Finally, and most importantly, we can re-use heuris-
tics that exist for algorithms such as MCMC. That is,
we plot the compressed database size against min-sup.
If the plot becomes more or less horizontal, we decide
that it has converged. We can then simply read off the
optimal threshold min-sup from the plot.

Clearly, just as for MCMC, this is only a heuristic.
The iteration after the last one we looked at could give
a (huge) drop in the size of the compressed database.
But, it seems a better heuristic than simply defining
a threshold and hope that all interesting patterns are
covered. Figure 8 illustrates the idea. It shows both the
viability and the dangers of this approach.

6 Conclusions
In this paper we introduced a new way to fight the
explosion of frequent item sets that occurs at low
thresholds. Rather than trying to compress the set of
frequent items, we compress the database. Using the
MDL principle, we search for that subset of all frequent
item sets that compresses the database best.

The greedy Naive Compression algorithm we
introduced in this paper does impressively well. Pruning
reduces the set of frequent item sets even more, while
giving comparable compression of the database.

The compression algorithms reduce the number of
frequent item sets by orders of magnitude, both on all
frequent item sets and on closed frequent item sets.
Moreover, the compression levels reached show that
these small sets of item sets do indeed capture the
structure in the database.

Finally, we have shown that this MDL-based ap-
proach can be used to compute the optimal threshold
value for min-sup.

There are two directions we are currently exploring.
Firstly, the implementation of the algorithms is rather
naive. More sophisticated and, thus, faster implementa-
tions and perhaps some more heuristics should be pos-
sible. Secondly, with these faster implementations we
want to do more extensive testing.

References

[1] F. Afrati, A. Gionis, and H. Mannila. Approximating a
collection of frequent item sets. In Proc ACM SIGKDD
conference, pages 12–19, 2004.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining asso-
ciation rules between sets of items in large databases.
In Proc. ACM SIGMOD conference, pages 207–216,
1993.

[3] R. Agrawal and R. Srikant. Mining sequential patterns.
In Proc. ICDE conference, pages 3–14, 1995.

[4] R. Bayardo. Efficiently mining long patterns from
database. In Proc. ACM SIGMOD conference, pages
85–93, 1998.

[5] B. Crémilleux and J-F. Boulicaut. Simplest rules
characterizing classes generated by delta-free sets. In
Proceedings of the 22nd SGAI International Conference
on Knowledge Based Systems and Applied Artificial
Intelligence, pages 33–46, 2002.

[6] B. Goethals et.al. Fimi website. In fimi.cs.helsinki.fi.
[7] P.D. Grünwald. Minimum description length tutorial.

In P.D. Grünwald, I.J. Myung, and M.A. Pitt, editors,
Advances in Minimum Description Length. MIT Press,
2005.

[8] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In Proc. ACM SIGMOD
conference, pages 1–12, 2000.

[9] A. Inokuchi, T. Washio, and H. Motoda. An apriori-
based algorithm for mining frequent substructures from
graph data. In Proc. PKDD conference, pages 13–23,
2000.

[10] M. Li and P. Vitányi. An introduction tp kolmogorov
complexity and its applications. Springer-Verlag, 1993.

[11] H. Mannila, H. Toivonen, and A.I. Verkamo. Discovery
of frequent episodes in event sequences. Data Mining
and Knowledge Discovery, 1:259–289, 1997.

[12] A. Silberschatz and A. Tuzhilin. What makes patterns
interesting in knowledge discovery. IEEE Transactions
on Knowledge and Data Engineering, 8:970–974, 1996.

[13] C.S. Wallace. Statistical and inductive inference by
minimum message length. Springer, 2005.

[14] D. Xin, J. Han, X. Yan, and H. Chend. Mining
compressed frequent-pattern sets. In Proc. VLDB
conference, pages 709–720, 2005.

[15] M.J. Zaki and M. Orihara. Theoretical foundations of
association rules. In Proc. ACM SIGMOD workshop
on research issues in KDD, 1998.

404

