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Let us consider a convex function f : Rn → R, where R is the extended real field, R := R ∪
{−∞,+∞}, which is proper (f never admits −∞ and is not identically equal to +∞). Convexity
of extended-real valued functions are defined in the same way as the real-valued counterparts, but
with additional operations defined on R (e.g. ∞+ α =∞ for α > 0).

This article discusses the optimality conditions of minimizing extended-real, nonsmooth convex
functions. For the purpose we need two ingredients: (i) the continuity of convex functions and (ii)
the existence of directional derivatives of convex functions.

1. Terminology

A proper function f : Rn → R is convex if

f(αx+ (1− α)x′) ≤ αf(x) + (1− α)f(x′), ∀x, x′ ∈ Rn,∀α ∈ (0, 1)

where the inequality is considered in R (defining additional necessary operations such as α∞ =∞,
∞+∞ =∞, ∞ ≤∞, etc.)

The (effective) domain of a function f is

dom f := {x ∈ Rn : f(x) < +∞},

which is nonempty when f is proper.
The relative interior of a convex set C ⊂ Rn is the interior of C for the topology relative to the

affine hull of C, i.e.

ri C = {x ∈ affC : ∃δ > 0 s.t. (affC) ∩B(x, δ) ⊂ C}.

Here B(x, δ) is a closed ball with radius δ centered at x. To see the reason why we need this notion,
imagine a “flat” filled circle in R3 as for our convex set C. The interior of C is empty, since C
does not contain any 3-D ball centered at a point from C. The affine hull affC is the affine plane
containing C, relative to which we can consider another notion of interior using 2-D balls within the
plane. When C 6= ∅, then ri C 6= ∅ ([HUL96], Theorem 2.1.3).

The epigraph of f is the set

epi f := {(x, r) ∈ Rn × R : f(x) ≤ r},

which is nonempty if f is proper. f is convex if and only if epi f is a convex set in Rn × R.

2. Continuity of Convex Functions

Lemma 1 ([HUL96], Lemma IV.3.1.1) For a proper convex function f , suppose that there exist
x0, δ,m, and M such that

m ≤ f(x) ≤M, ∀x ∈ B(x0, 2δ).
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Then f is Lipschitz continuous on B(x0, δ), that is,

|f(x′)− f(x)| ≤ M −m
δ
‖x′ − x‖ ∀x, x′ ∈ B(x0, δ).

Proof For two different points x, x′ in B(x0, δ), take

x′′ = x′ + δ
x′ − x
‖x′ − x‖

∈ B(x0, 2δ).

This implies that x′ lies on the line segment [x, x′′],

x′ =
‖x′ − x‖

δ + ‖x′ − x‖
x′′ +

δ

δ + ‖x′ − x‖
x.

Using the convexity of f and the given conditions, it leads to

f(x′)− f(x) ≤ ‖x′ − x‖
δ + ‖x′ − x‖

[f(x′′)− f(x)] ≤ ‖x
′ − x‖
δ

(M −m).

A similar inequality can be obtained by exchanging x and x′, to show the claim.

Theorem 2 ([HUL96], Theorem IV.3.1.2, Modified) For a proper convex f , there exists a
compact convex subset S of ri dom f such that with L = L(S) ≥ 0,

|f(x′)− f(x)| ≤ L‖x− x‖ ∀x, x′ ∈ S.

Proof First, note that ri dom f 6= ∅. Since the theorem statement ignores points outside of
aff dom f , we can discuss in Rd instead of in Rn where d is the dimension of dom f1. Then we may
assume ri dom f = int dom f to simply the proof.

Under the assumption, dom f (ri dom f without the assumption, for example) contains d + 1
affinely independent points v0, v1, . . . , vd. Consider a simplex defined as a convex hull of these
points, ∆ := conv {v0, v1, . . . , vd} ⊂ dom f , having x0 in its interior. Then we can find δ > 0 such

that B(x0, 2δ) ⊂ ∆. Then any x ∈ B(x0, 2δ) can be written x =
∑d
i=0 αivi for some αi ≥ 0,∑d

i=0 αi = 1, so that the convexity of f gives

f(x) ≤
d∑
i=0

αif(vi) ≤M := max{f(v0), . . . , f(vd)}.

On the other hand, from the convexity of f tells that for all y ∈ B(x0, 2δ),

f(x) ≥ f(y) + g(y)T (x− y) ≥ m := min
z∈B(x0,2δ)

{f(z) + g(z)T (z − x)}.

Note that the minimum exists since B(x0, 2δ) is a compact set. The claim follows from Lemma 1.

This result implies that a proper convex function f : Rn → R is continuous (even Lips-
chitz continuous) at x “well inside” of ri dom f . However, if x approaches the relative boundary
rbd dom f := cl dom f \ ri dom f , continuity may break down2.

1. The dimension of a set C is defined as the dimension of a subspace parallel to affC.
2. Relative closure is just closure, since affine hull is always closed. If f is finite everywhere, the continuity at

boundaries of the domain of f is easier to check using definitions, however it becomes nontrivial in R.

2



3. Directional Derivatives and Subdifferential

3.1 Subdifferential is Nonempty

We define a vector g as a subgradient for a function f : Rn → R at x ∈ ri dom f if

f(y) ≥ f(x) + gT (y − x), ∀y ∈ Rn.

The above is called the subgradient inequality. The set of all subgradients defines the subdifferential,
that is,

∂f(x) := {g ∈ Rn : f(y) ≥ f(x) + gT (y − x) ∀y ∈ Rn}.

Theorem 3 ([HUL96], Proposition IV.1.2.1) For a proper convex function f , ∂f(x) at any
x ∈ ri dom f is nonempty.

This theorem is intuitively understandable, but its proof requires the existence of separating
hyperplanes for convex sets involving several theorems. We skip the proof here, but interested
readers are advised to check the reference above.

3.2 Existence of Directional Derivatives

For any function f : Rn → R, the one-sided directional derivative of f at x (where f(x) is finite)
with respect to a direction d ∈ Rn is defined as the limit

f ′(x; d) := lim
ε↓0

f(x+ εd)− f(x)

ε
.

if the limit exists (we allow +∞ or −∞ as limits). Note that

−f ′(x;−d) = lim
ε↑0

f(x+ εd)− f(x)

ε

Theorem 4 ([Roc97] Theorem 23.1) Let f be convex and be finite near x. For each direction d,
the difference quotient in the definition of f ′(x; d) is nondecreasing function of ε > 0, so that f ′(x; d)
exists and

f ′(x; d) = inf
ε>0

f(x+ εd)− f(x)

ε
.

Moreover, f ′(x; d) is a positively homogeneous convex function of d, with f ′(x; 0) = 0 and −f ′(x;−d) ≤
f ′(x; d) for all d.

Proof We can express the difference quotient as ε−1h(εd) for ε > 0, where h(d) = f(x+ d)− f(x).
The convex set epih is obtained by translating epi f so that (x, f(x)) is moved to (0, 0). On the
other hand, ε−1h(εd) = (hε−1)(d), where hε−1 is defined as the convex function whose epigraph is
ε−1epih. Since epih contains the origin, ε−1epih increases as ε−1 increases. That is, for each d,
the difference quotient (hε−1)(d) decreases as ε decreases. Furthermore, (hε−1)(d) is bounded below
since f is convex,

(hε−1)(d) ≥ gT d
for some subgradient g ∈ ∂f(x). Then by the monotone convergence theorem, the limit f ′(x; d)
exists and

inf
ε>0

(hε−1)(d) = f ′(x; d).

Furthermore, this indicates that f ′(x; d) is a finite-valued convex function in d. It is also positively
homogeneous in d since for any α > 0,

f ′(x;αd) = inf
ε↓0

f(x+ ε(αd))− f(x)

ε
= α inf

εα↓0
f(x+ (εα)d)− f(x)

εα
= αf ′(x; d).
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f ′(x; 0) = 0 is obvious from definition. From convexity,

1

2
f ′(x; d) +

1

2
f ′(x;−d) ≥ f ′

(
x;
d

2
− d

2

)
= 0

which gives the final claim.

3.3 An Alternative Definition of Subdifferential

The previous theorem allows us to characterize a subdifferential using directional derivatives.

Theorem 5 The subdifferential ∂f(x) for x ∈ ri dom f has an equivalent definition,

∂f(x) := {g ∈ Rn : gT d ≤ f ′(x; d) ∀d ∈ Rn}.

Proof For any direction d and ε > 0 such that y = x+ εd ∈ Rn, the subgradient inequality implies
that

gT d ≤ f(x+ εd)− f(x)

ε
.

That is,

gT d ≤ inf
ε>0

f(x+ εd)− f(x)

ε
= f ′(x; d).

The converse is trivial (d = y − x and ε = 1).

This reveals that the subdifferential ∂f(x) is a compact convex set.

4. Optimality Conditions

4.1 Unconstrained Case

Let us consider the optimization problem

min
x∈Rn

f(x) (1)

where f : Rn → R is proper and convex.

Theorem 6 The following statements are equivalent:

(i) x∗ is a solution of (1).
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(ii) 0 ∈ ∂f(x∗).

(iii) f ′(x; d) ≥ 0 ∀d ∈ Rn.

Proof [(ii) ⇒ (i)] Suppose that g = 0 ∈ ∂f(x∗). Then the subgradient inequality

f(x) ≥ f(x∗) + gT (x− x∗) = f(x∗), ∀x ∈ dom (f),

implies that x∗ is a solution.
[(i)⇒ (iii)] Suppose that x∗ is a solution, i.e., f(x∗) ≤ f(x) for all x ∈ dom (f). For any direction

d ∈ Rn such that x∗ + εd ∈ dom f , every subgradient g ∈ ∂f(x∗) satisfies that

gT d ≤ inf
ε>0

f(x∗ + εd)− f(x∗)
ε

= f ′(x∗; d)

where f ′(x∗; d) ≥ 0 since x∗ is a minimizer.
[(iii) ⇒ (ii)] The inequality h(g) = gT d ≤ f ′(x∗; d) defines a halfspace for each d, which contains

the origin since f ′(x∗; d) ≥ 0. The subdifferential

∂f(x∗) := {g : gT d ≤ f ′(x∗; d) ∀d ∈ Rn}

is the intersection of all such halfspaces, and therefore should contain the origin.

The above is my own proof.

4.2 Constrained Case

Let us first define geometric objects useful for describing optimality conditions in this case.

Definition 7 (Tangent Cone) Let X ⊂ Rn be a nonempty set. A direction d ∈ Rn is a tangent
direction to X at x ∈ X if there exists a sequence {xk} ∈ S and a scalar sequence {tk} such that

xk → x, tk → 0,
xk − x
tk

→ d as k →∞.

The set of all such directions is called the tangent cone to X at x, denoted by TX(x).

• TX(x) is indeed a cone.

• TX(x) always contains the origin.

• TX(x) is always closed.

• If X is a convex set, TX(x) is also convex.

Definition 8 (Normal Cone) Let X ⊂ Rn be a nonempty set. The direction s ∈ Rn is called
normal to X at x ∈ X if

〈s, x′ − x〉 ≤ 0 ∀x′ ∈ X.

The set of all such directions is called the normal cone to X at x, denoted by NX(x).

Definition 9 (Polar Cone) For a cone K ⊂ Rn, the polar cone of K is defined by

K◦ = {s ∈ Rn : 〈s, d〉 ≤ 0, ∀d ∈ K}.

It is easy to check the following:
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• NX(x) = (TX(x))◦.

• TX(x) = (NX(x))◦ if X is convex3.

Definition 10 (Indicator Function) IS(x) : Rn → R ∪ {+∞} is an indicator function for a
nonempty set S ⊂ Rn such that

IS(x) :=

{
0 if x ∈ S
+∞ o.w.

Note that indicator functions are convex.

Definition 11 (Support Function) Let S be a nonempty set in Rn. The function σS : Rn →
R ∪ {+∞} defined by

σS(x) = sup{〈s, x〉 : s ∈ S}

is called the support function of S.

Note that from the continuity and linearity of the function 〈s, ·〉 maximized over S, σS = σclS =
σconvS .

Proposition 12 ([HUL96], Example V.2.3.1) For a closed convex cone K ⊂ Rn, the support
function σK(d) becomes

σK(d) =

{
0 if 〈s, d〉 ≤ 0 for all s ∈ K
+∞ o.w.

That is, σK(d) is the indicator function of the polar cone K◦. Since K◦◦ = K, the support function
of K◦ is the indicator of K.

Theorem 13 ([HUL96], Theorem V.3.3.3 (i)) Let σ1 and σ2 be the support functions of the
nonempty closed convex sets S1 and S2. For positive scalars t1 and t2, t1σ1 + t2σ2 is the support
function of cl (t1S1 + t2S2).

Proof Let S = cl (t1S1 + t2S2) which is a closed convex set. By definition, its support function is

σS(d) = sup{〈t1s1 + t2s2, d〉 : s1 ∈ S1, s2 ∈ S2}.

In the above expression, s1 and s2 run independently in their index sets S1 and S2. Therefore, we
have

σS(d) = t1 sup
s∈S1

〈s, d〉+ t2 sup
s∈S2

〈s, d〉.

The following separation theorem is also useful.

Theorem 14 ([HUL96], Theorem III.4.1.1) Let C ⊂ Rn be nonempty closed convex, and let
x /∈ C. Then there exists s ∈ Rn, s 6= 0 such that

〈s, x〉 > sup
y∈C
〈s, y〉.

3. For a convex cone C, (C◦)◦ = clC (the closure of C), and thus if C is convex and closed then (C◦)◦ = C (polar
cone theorem).
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Proof Let PC(x) be the Euclidean projection of x onto C, that is, PC(x) = arg miny∈C
1
2‖y− x‖

2
2.

From the optimality condition of smooth convex minimization (see e.g. lecture notes of Numerical
Optimization), PC(x) is the projection if and only if

〈x− PC(x), y − PC(x)〉 ≤ 0 ∀y ∈ C.

Let s := x− PC(x) 6= 0. The above inequality gives that

0 ≥ 〈s, y − x+ s〉 = 〈s, y〉 − 〈s, x〉+ ‖s‖2.

That is,
〈s, x〉 − ‖s‖2 ≥ 〈s, y〉 ∀y ∈ C.

Now we consider the optimization over a nonempty convex set X ⊂ Rn,

min
x∈X

f(x) (2)

where f : Rn → R is convex on X.

Theorem 15 ([HUL96], Theorem VII.1.1.1) The following statements are equivalent:

(i) x∗ is a solution of (2).

(ii) f ′(x∗, x− x∗) ≥ 0 for all x ∈ X.

(iii) f ′(x∗, d) ≥ 0 for all d ∈ TX(x∗).

(iv) 0 ∈ ∂f(x∗) +NX(x∗).

Proof [(i) ⇒ (ii) ⇒ (iii)] Choose a x ∈ X. By convexity, x∗ + t(x− x∗) ∈ X for all t ∈ [0, 1]. If (i)
is true, then (ii) follows since

f(x∗ + t(x− x∗))− f(x)

t
≥ 0 ∀t ∈ (0, 1]

and f ′(x∗, x − x∗) is the limit of this quantity as t ↓ 0. Letting d = x − x∗ and using positive
homogeneity, we have f ′(x; d) ≥ 0 for all d = α(x − x∗) with x ∈ X and α > 0 (this objective is
called the cone generated by X − {x∗}). TX(x∗) is the closure of this cone ([HUL96] Proposition
III.5.2.1), and (iii) follows from the continuity of the finite convex function f ′(x∗; ·).

[(iii) ⇒ (i)] For any x ∈ X, we have x− x∗ ∈ TX(x∗), and therefore (iii) implies that

0 ≤ f ′(x∗, x− x∗) ≤ f(x)− f(x∗)

where the second inequality is due to Theorem 4. This implies (i).
[(iii) ⇔ (iv)] Since f ′(x; ·) is finite everywhere (Theorem 4), we can rewrite (iii) as

f ′(x∗; d) + ITX(x∗)(d) ≥ 0 ∀d ∈ Rn.

The indicator ITX(x∗)(d) is σNX(x∗), the support of the polar cone NX(x∗) = (TX(x∗))◦. Also,
f ′(x∗; d) is the support of ∂f(x∗) by definition in Theorem 5. Using Theorem 13, (iii) is equivalent
to the condition that

0 ≤ σ∂f(x∗)(d) + σNX(x∗)(d) = σ∂f(x∗)+NX(x∗)(d) ∀d ∈ Rn.
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The sum S of the compact convex set ∂f(x∗) and the closed convex set NX(x∗) is a closed convex
set. Suppose that 0 /∈ S. By Theorem 14, then there exists a nonzero vector d0 ∈ Rn such that

〈0, d0〉 > sup{〈s, d0〉 : s ∈ S} = σS(d0)

This is a contradiction. Therefore 0 ∈ S = ∂f(x∗) +NX(x∗).
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