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Abstract. We outline digital implementations of two newly developed multiscale representation systems, namely, the ridgelet
and curvelet transforms. We apply these digital transforms to the problem of restoring an image from noisy data and com-
pare our results with those obtained via well established methods based on the thresholding of wavelet coefficients. We show
that the curvelet transform allows us also to well enhance elongated features contained in the data. Finally, we describe the
Morphological Component Analysis, which consists in separating features in an image which do not present the same morpho-
logical characteristics. A range of examples illustrates the results.
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1. Introduction

The wavelet transform has been extensively used in astronom-
ical data analysis during the last ten years. A quick search
with ADS shows that around 600 papers contain the keyword
“Wavelet” in their abstract, and all astrophysical domains were
concerned, from the sun study to the CMB analysis.

This large success of the wavelet transform (WT) is due to
the fact that astronomical data presents generally complex hi-
erarchical structures, often described as fractals. Using multi-
scale approaches such as the wavelet transform (WT), an image
can be decomposed into components at different scales, and the
WT is therefore well-adapted to astronomical data study.

A series of recent papers (Candès & Donoho 1999d;
Candès & Donoho 1999c), however, argued that wavelets and
related classical multiresolution ideas are playing with a lim-
ited dictionary made up of roughly isotropic elements occur-
ring at all scales and locations. We view as a limitation the
facts that those dictionaries do not exhibit highly anisotropic
elements and that there is only a fixed number of directional el-
ements, independent of scale. Despite the success of the classi-
cal wavelet viewpoint, there are objects, e.g. images that do not
exhibit isotropic scaling and thus call for other kinds of multi-
scale representation. In short, the theme of this line of research
is to show that classical multiresolution ideas only address a
portion of the whole range of interesting multiscale phenom-
ena and that there is an opportunity to develop a whole new
range of multiscale transforms.

Following on this theme, Candès & Donoho introduced
new multiscale systems like curvelets (Candès & Donoho
1999c) and ridgelets (Candès 1999) which are very different
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from wavelet-like systems. Curvelets and ridgelets take the
the form of basis elements which exhibit very high directional
sensitivity and are highly anisotropic. In two-dimensions, for
instance, curvelets are localized along curves, in three dimen-
sions along sheets, etc. Continuing at this informal level of
discussion we will rely on an example to illustrate the funda-
mental difference between the wavelet and ridgelet approaches
–postponing the mathematical description of these new sys-
tems.

Consider an image which contains a vertical band embed-
ded in white noise with relatively large amplitude. Figure 1 (top
left) represents such an image. The parameters are as follows:
the pixel width of the band is 20 and the S NR is set to be 0.1.
Note that it is not possible to distinguish the band by eye. The
wavelet transform (undecimated wavelet transform) is also in-
capable of detecting the presence of this object; roughly speak-
ing, wavelet coefficients correspond to averages over approxi-
mately isotropic neighborhoods (at different scales) and those
wavelets clearly do not correlate very well with the very elon-
gated structure (pattern) of the object to be detected.

We now turn our attention towards procedures of a very
different nature which are based on line measurements. To be
more specific, consider an ideal procedure which consists in
integrating the image intensity over columns; that is, along the
orientation of our object. We use the adjective “ideal” to em-
phasize the important fact that this method of integration re-
quires a priori knowledge about the structure of our object. This
method of analysis gives of course an improved signal to noise
ratio for our linear functional better correlate the object in ques-
tion, see the top right panel of Fig. 1.

This example will make our point. Unlike wavelet
transforms, the ridgelet transform processes data by first
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Fig. 1. Top left, original image containing a vertical band embedded in white noise with relatively large amplitude. Top right, signal obtained
by integrating the image intensity over columns. Bottom left, reconstructed image for the undecimated wavelet coefficient, bottom right,
reconstructed image from the ridgelet coefficients.

computing integrals over lines with all kinds of orientations and
locations. We will explain in the next section how the ridgelet
transform further processes those line integrals. For now,
we apply naive thresholding of the ridgelet coefficients and
“invert” the ridgelet transform; the bottom right panel of Fig. 1
shows the reconstructed image. The qualitative difference with
the wavelet approach is striking. We observe that this method
allows the detection of our object even in situations where the
noise level (standard deviation of the white noise) is five times
superior to the object intensity.

The contrasting behavior between the ridgelet and the
wavelet transforms will be one of the main themes of this pa-
per which is organized as follows. We first briefly review some
basic ideas about ridgelet and curvelet representations in the
continuum. In parallel to a previous article (Starck et al. 2002),
Sect. 2 rapidly outlines a possible implementation strategy.
Sections 3 and 4 present respectively how to use the curvelet
transform for image denoising and and image enhancement.

We finally develop an approach which combines both the
wavelet and curvelet transforms and search for a decomposi-

tion which is a solution of an optimization problem in this joint
representation.

2. The curvelet transform

2.1. The ridgelet transform

The two-dimensional continuous ridgelet transform in R2 can
be defined as follows (Candès 1999). We pick a smooth uni-
variate function ψ: R→ R with sufficient decay and satisfying
the admissibility condition∫
|ψ̂(ξ)|2/|ξ|2 dξ < ∞, (1)

which holds if, say, ψ has a vanishing mean
∫
ψ(t)dt =

0. We will suppose a special normalization about ψ
so that

∫ ∞
0
|ψ̂(ξ)|2ξ−2dξ = 1.

For each a > 0, each b ∈ R and each θ ∈ [0, 2π), we define
the bivariate ridgelet ψa,b,θ: R2 → R by

ψa,b,θ(x) = a−1/2 · ψ((x1 cos θ + x2 sin θ − b)/a); (2)
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Fig. 2. A few ridgelets.

A ridgelet is constant along lines x1 cos θ + x2 sin θ = const.
Transverse to these ridges it is a wavelet.

Figure 2 graphs a few ridgelets with different parameter val-
ues. The top right, bottom left and right panels are obtained af-
ter simple geometric manipulations of the upper left ridgelet,
namely rotation, rescaling, and shifting.

Given an integrable bivariate function f (x), we define its
ridgelet coefficients by

R f (a, b, θ) =
∫

ψa,b,θ(x) f (x)dx.

We have the exact reconstruction formula

f (x) =
∫ 2π

0

∫ ∞

−∞

∫ ∞

0
R f (a, b, θ)ψa,b,θ(x)

da
a3

db
dθ
4π

(3)

valid a.e. for functions which are both integrable and square
integrable.

Ridgelet analysis may be constructed as wavelet analysis in
the Radon domain. Recall that the Radon transform of an ob-
ject f is the collection of line integrals indexed by (θ, t) ∈
[0, 2π) × R given by

R f (θ, t) =
∫

f (x1, x2)δ(x1 cos θ + x2 sin θ − t) dx1dx2, (4)

where δ is the Dirac distribution. Then the ridgelet transform
is precisely the application of a 1-dimensional wavelet trans-
form to the slices of the Radon transform where the angular
variable θ is constant and t is varying.

This viewpoint strongly suggests developing approximate
Radon transforms for digital data. This subject has received a
considerable attention over the last decades as the Radon trans-
form naturally appears as a fundamental tool in many fields of
scientific investigation. Our implementation follows a widely
used approach in the literature of medical imaging and is based
on discrete fast Fourier transforms. The key component is to
obtain approximate digital samples from the Fourier transform
on a polar grid, i.e. along lines going through the origin in the
frequency plane.

2.2. An approximate digital ridgelet transform

2.2.1. Radon tranform

A fast implementation of the RT can be performed in the
Fourier domain. First the 2D FFT is computed. Then it is in-
terpolated along a number of straight lines equal to the selected
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number of projections, each line passing through the origin of
the 2D frequency space, with a slope equal to the projection
angle, and a number of interpolation points equal to the num-
ber of rays per projection. The one dimensional inverse Fourier
transform of each interpolated array is then evaluated. The FFT
based RT is however not straitforward because we need to in-
terpolate the Fourier domain. Furthermore, if we want to have
an exact inverse transform, we have to make sure that the lines
pass through all frequencies.

For our implementation, we use a pseudo-polar grid. The
geometry of the rectopolar grid is illustrated in Fig. 3. We se-
lect 2n radial lines in the frequency plane obtained by connect-
ing the origin to the vertices (k1, k2) lying on the boundary of
the array (k1, k2), i.e. such that k1 or k2 ∈ {−n/2, n/2}. The polar
grid ξ`,m (` serves to index a given radial line while the position
of the point on that line is indexed by m) that we shall use is
the intersection between the set of radial lines and that of carte-
sian lines parallel to the axes. To be more specific, the sample
points along a radial line L whose angle with the vertical axis
is less or equal to π/4 are obtained by intersecting L with the
set of horizontal lines {x2 = k2, k2 = −n/2,−n/2+ 1, . . . , n/2}.
Similarly, the intersection with the vertical lines {x1 = k1, k1 =

−n/2,−n/2 + 1, . . . , n/2} defines our sample points whenever
the angle between L and the horizontal axis is less or equal to
π/4. The cardinality of the rectopolar grid is equal to 2n2 as
there are 2n radial lines and n sampled values on each of these
lines. As a result, data structures associated with this grid will
have a rectangular format. We observe that this choice corre-
sponds to irregularly spaced values of the angular variable θ.
More details can be found in Starck et al. (2002).

2.2.2. 1D wavelet transform

To complete the ridgelet transform, we must take a one-
dimensional wavelet transform along the radial variable in
Radon space. We now discuss the choice of digital one-
dimensional wavelet transform.

Experience has shown that compactly-supported wavelets
can lead to many visual artifacts when used in conjunction with
nonlinear processing – such as hard-thresholding of individ-
ual wavelet coefficients – particularly for decimated wavelet
schemes used at critical sampling. Also, because of the lack
of localization of such compactly-supported wavelets in the
frequency domain, fluctuations in coarse-scale wavelet coef-
ficients can introduce fine-scale fluctuations; this is undesir-
able in our setting. Here we take a frequency-domain approach,
where the discrete Fourier transform is reconstructed from the
inverse Radon transform. These considerations lead us to use
band-limited wavelet – whose support is compact in the Fourier
domain rather than the time-domain. Other implementations
have made a choice of compact support in the frequency
domain as well (Donoho 1998; Donoho 1997). However, we
have chosen a specific overcomplete system, based on the work
of Starck et al. (1994, 1998), who constructed such a wavelet
transform and applied it to interferometric image reconstruc-
tion. The wavelet transform algorithm is based on a scaling
function φ such that φ̂ vanishes outside of the interval [−νc, νc].
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Fig. 3. Illustration of the digital polar grid in the frequency domain for
an n by n image (n = 8). The figure displays the set of radial lines
joining pairs of symmetric points from the boundary of the square.
The rectopolar grid is the set of points – marked with circles – at the
intersection between those radial lines and those which are parallel to
the axes.

We defined the scaling function φ̂ as a renormalized B3-spline

φ̂(ν) =
3
2

B3(4ν),

and ψ̂ as the difference between two consecutive resolutions

ψ̂(2ν) = φ̂(ν) − φ̂(2ν).

Because ψ̂ is compactly supported, the sampling theorem
shows than one can easily build a pyramid of n+n/2+ . . .+1 =
2n elements, see (Starck et al. 1998) for details.

This transform enjoys the following features:

– The wavelet coefficients are directly calculated in the
Fourier space. In the context of the ridgelet transform, this
allows avoiding the computation of the one-dimensional in-
verse Fourier transform along each radial line.

– Each subband is sampled above the Nyquist rate, hence,
avoiding aliasing – a phenomenon typically encoun-
tered by critically sampled orthogonal wavelet transforms
(Simoncelli et al. 1992).

– The reconstruction is trivial. The wavelet coefficients sim-
ply need to be co-added to reconstruct the input signal at
any given point. In our application, this implies that the
ridgelet coefficients simply need to be co-added to recon-
struct Fourier coefficients.

This wavelet transform introduces an extra redundancy factor,
which might be viewed as an objection by advocates of orthog-
onality and critical sampling. However, we note that our goal
in this implementation is not data compression/efficient cod-
ing – for which critical sampling might be relevant – but instead
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Fig. 4. Ridgelet transform flowgraph. Each of the 2n radial lines in the Fourier domain is processed separately. The 1-D inverse FFT is calculated
along each radial line followed by a 1-D nonorthogonal wavelet transform. In practice, the one-dimensional wavelet coefficients are directly
calculated in the Fourier space.

noise removal, for which it well-known that overcompleteness
can provide substantial advantages (Coifman & Donoho 1995).

Figure 4 shows the flowgraph of the ridgelet transform. The
ridgelet transform of an image of size n × n is an image of size
2n × 2n, introducing a redundancy factor equal to 4.

We note that, because our transform is made of a chain of
steps, each one of which is invertible, the whole transform is
invertible, and so has the exact reconstruction property. For the
same reason, the reconstruction is stable under perturbations of
the coefficients.

Last but not least, our discrete transform is computation-
ally attractive. Indeed, the algorithm we presented here has low
complexity since it runs in O(n2 log(n)) flops for an n×n image.

The ridgelet transform of a digital array of size n × n is an
array of size 2n × 2n and hence introduces a redundancy factor
equal to 4.

2.3. Local ridgelet transforms

The ridgelet transform is optimal to find only lines of the size of
the image. To detect line segments, a partitioning must be intro-
duced (Candès 1998). The image is decomposed into smoothly
overlapping blocks of sidelength b pixels in such a way that the
overlap between two vertically adjacent blocks is a rectangular

array of size b by b/2; we use overlap to avoid blocking arti-
facts. For an n by n image, we count 2n/b such blocks in each
direction.

The partitioning introduces redundancy, as a pixel belongs
to 4 neighboring blocks. We present two competing strategies
to perform the analysis and synthesis:

1. The block values are weighted (analysis) in such a way that
the co-addition of all blocks reproduce exactly the original
pixel value (synthesis).

2. The block values are those of the image pixel values
(analysis) but are weighted when the image is reconstructed
(synthesis).

Experiments have shown that the second approach leads to
better results. We calculate a pixel value, f (i, j) from its four
corresponding block values of half-size ` = b/2, namely,
B1(i1, j1), B2(i2, j1), B3(i1, j2) and B4(i2, j2) with i1, j1 > b/2
and i2 = i1 − `, j2 = j1 − `, in the following way:

f1 = w(i2/`)B1(i1, j1) + w(1 − i2/`)B2(i2, j1)

f2 = w(i2/`)B3(i1, j2) + w(1 − i2/`)B4(i2, j2)

f (i, j) = w( j2/`) f1 + w(1 − j2/`) f2 (5)

with w(x) = cos2 (πx/2). Of course, one might select any other
smooth, nonincreasing function satisfying, w(0) = 1, w(1) = 0,
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w′(0) = 0 and obeying the symmetry property w(x) + w(1 −
x) = 1.

It is worth mentioning that the spatial partitioning intro-
duces a redundancy factor equal to 4.

2.4. Digital curvelet transform

2.4.1. Definition

The curvelet transform (Donoho & Duncan 2000; Candès &
Donoho 1999a; Starck et al. 2002), open us the possibility to
analyze an image with different block sizes, but with a sin-
gle transform. The idea is to first decompose the image into
a set of wavelet bands, and to analyze each band by a lo-
cal ridgelet transform. The block size can be changed at each
scale level. Roughly speaking, different levels of the multiscale
ridgelet pyramid are used to represent different subbands of a
filter bank output. At the same time, this subband decomposi-
tion imposes a relationship between the width and length of the
important frame elements so that they are anisotropic and obey
width = length2.

The discrete curvelet transform of a continuum func-
tion f (x1, x2) makes use of a dyadic sequence of scales, and
a bank of filters with the property that the passband filter ∆s is
concentrated near the frequencies [22s, 22s+2], e.g.

∆s = Ψ2s ∗ f , Ψ̂2s(ξ) = Ψ̂(2−2sξ).

In wavelet theory, one uses a decomposition into dyadic sub-
bands [2s, 2s+1]. In contrast, the subbands used in the discrete
curvelet transform of continuum functions have the nonstan-
dard form [22s, 22s+2]. This is nonstandard feature of the dis-
crete curvelet transform well worth remembering.

The curvelet decomposition is the sequence of the follow-
ing steps:

– Subband decomposition. The object f is decomposed into
subbands.

– Smooth partitioning. Each subband is smoothly windowed
into “squares” of an appropriate scale (of sidelength ∼2−s).

– Ridgelet analysis. Each square is analyzed via the discrete
ridgelet transform.

In this definition, the two dyadic subbands [22s, 22s+1]
and [22s+1, 22s+2] are merged before applying the ridgelet
transform.

2.4.2. Digital realization

It seems that the “à trous” subband filtering algorithm is
especially well-adapted to the needs of the digital curvelet
transform. The algorithm decomposes an n by n image I as
a superposition of the form

I(x, y) = cJ(x, y) +
J∑

j=1

w j(x, y),

where cJ is a coarse or smooth version of the original image I
and w j represents “the details of I” at scale 2− j, see Starck et al.
(1998), Starck & Murtagh (2002) for more information. Thus,

the algorithm outputs J + 1 subband arrays of size n × n. (The
indexing is such that, here, j = 1 corresponds to the finest scale
(high frequencies).)

A sketch of the discrete curvelet transform algorithm is:

1. apply the “à trous” algorithm with J scales,
2. set B1 = Bmin,
3. for j = 1, . . . , J do,

– partition the subband w j with a block size B j and apply
the digital ridgelet transform to each block,

– if j modulo 2 = 1 then B j+1 = 2B j,
– else B j+1 = B j.

The sidelength of the localizing windows is doubled at ev-
ery other dyadic subband, hence maintaining the fundamen-
tal property of the curvelet transform which says that elements
of length about 2− j/2 serve for the analysis and synthesis of
the jth subband [2 j, 2 j+1]. Note also that the coarse description
of the image cJ is not processed. We used the default value
Bmin = 16 pixels in our implementation. Finally, Fig. 5 gives
an overview of the organization of the algorithm.

This implementation of the curvelet transform is also re-
dundant. The redundancy factor is equal to 16J + 1 whenever
J scales are employed. Finally, the method enjoys exact recon-
struction and stability, because these invertibility holds for each
element of the processing chain.

3. Filtering

We now apply our digital transforms for removing noise from
image data. The methodology is standard and is outlined
mainly for the sake of clarity and self-containedness.

Suppose that one is given noisy data of the form

xi, j = f (i, j) + σzi, j,

where f is the image to be recovered and z is white noise, i.e.

zi, j
i.i.d.∼ N(0, 1). Unlike FFT’s or FWT’s, our discrete ridgelet

(resp. curvelet) transform is not norm-preserving and, there-
fore, the variance of the noisy ridgelet (resp. curvelet) coef-
ficients will depend on the ridgelet (resp. curvelet) index λ.
For instance, letting F denote the discrete curvelet transform

matrix, we have Fz i.i.d.∼ N(0, FFT ). Because the computation
of FFT is prohibitively expensive, we calculated an approx-
imate value σ̃2

λ of the individual variances using Monte-Carlo
simulations where the diagonal elements of FFT are simply es-
timated by evaluating the curvelet transforms of a few standard
white noise images.

Let yλ be the noisy curvelet coefficients (y = Fx). We
use the following hard-thresholding rule for estimating the un-
known curvelet coefficients:

ŷλ = yλ if |yλ|/σ ≥ kσ̃λ (6)

ŷλ = 0 if |yλ|/σ < kσ̃λ. (7)

In our experiments, we actually chose a scale-dependent value
for k; we have k = 4 for the first scale ( j = 1) while k = 3 for
the others ( j > 1).
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Fig. 5. Curvelet transform flowgraph. The figure illustrates the decomposition of the original image into subbands followed by the spatial
partitioning of each subband. The ridgelet transform is then applied to each block.

Poisson noise

Assume now that we have Poisson data xi, j with unknown mean
f (i, j). The Anscombe transformation (Anscombe 1948)

x̃ = 2

√
x +

3
8

(8)

stabilizes the variance and we have x̃ = 2
√

f + ε where ε
is a vector with independent and approximately standard
normal components. In practice, this is a good approxima-
tion whenever the number of counts is large enough, greater
than 30 per pixel, say.

For small number of counts, a possibility is to compute the
Radon transform of the image, and then to apply the Anscombe
transformation to the Radon data. The rationale being that,
roughly speaking, the Radon transform corresponds to a sum-
mation of pixel values over lines and that the sum of indepen-
dent Poisson random variables is a Poisson random variable
with intensity equal to the sum of the individual intensities.
Hence, the intensity of the sum may be quite large (hence vali-
dating the Gaussian approximation) even though the individual
intensities may be small. This might be viewed as an interesting
feature as unlike wavelet transforms, the ridgelet and curvelet

transforms tend to average data over elongated and rather large
neighborhoods.

Gaussian and Poisson noise

The arrival of photons, and their expression by electron counts,
on CCD detectors may be modeled by a Poisson distribu-
tion. In addition, there is additive Gaussian read-out noise. The
Anscombe transformation (Eq. (8)) has been extended to take
this combined noise into account. As an approximation, con-
sider the signal’s value, sk, as a sum of a Gaussian variable, γ,
of mean g and standard-deviation σ; and a Poisson variable,
n, of mean m0: we set x = γ + αn where α is the gain. The
generalization of the variance stabilizing Anscombe formula is
(Murtagh et al. 1995):

x̃ ==
2
α

√
αx +

3
8
α2 + σ2 − αg. (9)

With appropriate values of α, σ and g, this reduces to
Anscombe’s transformation.

Then, for an image containing Poisson and
Poisson+Gaussian noise, we apply first respectively the
Anscombe and the Generalized Anscombe transform.



792 J. L. Starck et al.: The curvelet transform

Fig. 6. Top left, part of Saturn image with a Gaussian noise. Top right, filtered image using the undecimated bi-orthogonal wavelet transform.
Bottom left and right, filtered image by the à trous wavelet transform algorithm and the curvelet transform.

These variance stabilization transformations, it has been
shown in Murtagh et al. (1995), are only valid for a sufficiently
large number of counts (and of course, for a larger still num-
ber of counts, the Poisson distribution becomes Gaussian). The
necessary average number of counts is about 20 if bias is to
be avoided. Note that errors related to small values carry the
risk of removing real objects, but not of amplifying noise. For
Poisson parameter values under this threshold acceptable num-
ber of counts, the Anscombe transformation loses control over
the bias. In this case, an alternative approach to variance stabi-
lization is needed. It has been shown that the first step of the
ridgelet transform consists in a Radon transform. As a Radon
coefficient is an addition of pixel values along a line, the Radon
transform of an image containing Poisson noise contains also
Poisson noise. Then the Anscombe transform can be applied
after the Radon transformation rather than on the original im-
age. The advantage is that the number of counts per pixel will
obviously be larger in the Radon domain than in the image do-
main, and the variance stabilization will be more robust.

Experiment

A Gaussian white noise with a standard deviation fixed to 20
was added to the Saturn image. We employed several methods
to filter the noisy image:

1. Thresholding of the Curvelet transform.
2. Bi-orthogonal undecimated wavelet de-noising methods

using the Dauchechies-Antonini 7/9 filters (FWT -7/9) and
hard thresholding.

3. À trous wavelet transform algorithm and hard thresholding.

Our experiments are reported in Fig. 6. The curvelet recon-
struction does not contain the quantity of disturbing artifacts
along edges that one sees in wavelet reconstructions. An exam-
ination of the details of the restored images is instructive. One
notices that the decimated wavelet transform exhibits distor-
tions of the boundaries and suffers substantial loss of important
detail. The “à trous” wavelet transform gives better boundaries,
but completely omits to reconstruct certain ridges. In addition,



J. L. Starck et al.: The curvelet transform 793

Fig. 7. Left, XMM/Newton image of the Kepler SN1604 supernova. Right, ridgelet filtered image.

it exhibits numerous small-scale embedded blemishes; setting
higher thresholds to avoid these blemishes would cause even
more of the intrinsic structure to be missed.

Further results are visible at the following URL:
http://www-stat.stanford.edu/∼jstarck.

Figure 7 shows an example of an X-ray image filtering by
the ridgelet transform using such an approach. Figure 7 left and
right shows respectively the XMM/Newton image of the Kepler
SN1604 supernova and the ridgelet filtered image (using a five
sigma hard thresholding).

Which transform should be chosen for a given data
set?

We have introduced in this paper two new transforms, the
ridgelet transform and the curvelet transform. Several other
transforms are often used in astronomy, such the Fourier trans-
form, the isotropic à trous wavelet transform and the bi-
orthogonal wavelet transform. The choise of the best trans-
form may be delicate. Each transform has its own domain
of optimality:

– The Fourier transform for stationary process.
– The “à trous” wavelet transform for isotropic features.
– The bi-orthogonal wavelet transform for features with a

small anisotropy, typically with a width equals to half the
length.

– The ridgelet wavelet transform for anisotropic features with
a given length (i.e. block size).

– The curvelet transform for anisotropic features with differ-
ent length and width equals to the square of the length.

Section 5 will show how several transforms can be used simul-
taneously, in order to benefit of the advantages of each of them.

4. Contrast enhancement

Because some features are hardly detectable by eye in an im-
age, we often transform it before display. Histogram equaliza-
tion is one the most well-known methods for contrast enhance-
ment. Such an approach is generally useful for images with a

poor intensity distribution. Since edges play a fundamental role
in image understanding, a way to enhance the contrast is to en-
hance the edges. For example, we can add to the original image
its Laplacian (I′ = I + γ∆I, where γ is a parameter). Only fea-
tures at the finest scale are enhanced (linearly). For a high γ
value, only the high frequencies are visible.

Since the curvelet transform is well-adapted to represent
images containing edges, it is a good candidate for edge en-
hancement. Curvelet coefficients can be modified in order to
enhance edges in an image. The idea is to not modify curvelet
coefficients which are either at the noise level, in order to not
amplify the noise, or larger than a given threshold. Largest co-
efficients corresponds to strong edges which do not need to be
amplified. Therefore, only curvelets coefficients with an abso-
lute value in [Tmin, Tmax] are modified, where Tmin and Tmax

must be fixed. We define the following function yc which mod-
ifies the values of the curvelet coefficients:

yc(x) = 1 if x < Tmin

yc(x) =
x − Tmin

Tmin

(
Tmax

Tmin

)p

+
2Tmin − x

Tmin
if x < 2Tmin

yc(x) =
(Tmax

x

)p

if 2Tmin ≤ x < Tmax

yc(x) = 1 if x ≥ Tmax. (10)

p determines the degree of non-linearity. Tmin is derived from
the noise level, Tmin = cσ. A c value larger than 3 guaranties
that the noise will not be amplified. The Tmax parameter can be
defined either from the noise standard deviation (Tmax = Kmσ)
or from the maximum curvelet coefficient Mc of the relative
band (Tmax = lMc, with l < 1). The first choice allows the user
to define the coefficients to amplify as a function of their signal
to noise ratio, while the second one gives an easy and general
way to fix the Tmax parameter independently of the range of
the pixel values. Figure 8 shows the curve representing the en-
hanced coefficients versus the original coefficients.

The curvelet enhancement method consists of the following
steps:

1. Estimate the noise standard deviation σ in the input im-
age I.
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Fig. 8. Enhanced coefficients versus original coefficients. Parameters
are Tmax = 30, c = 5 and p = 0.5.

2. Calculate the curvelet transform of the input image. We get
a set of bands w j, each band w j contains Nj coefficients and
corresponds to a given resolution level.

3. Calculate the noise standard deviation σ j for each band j of
the curvelet transform (see Starck et al. 2002 more details
on this step).

4. For each band j do
– Calculate the maximum M j of the band.
– Multiply each curvelet coefficient w j,k by yc(| w j,k |).

5. Reconstruct the enhanced image from the modified curvelet
coefficients.

Example: Saturn image

Figure 9 shows respectively a part of the Saturn image, the
histogram equalized image, the Laplacian enhanced image and
the curvelet multiscale edge enhanced image (parameters were
p = 0.5, c = 3, and l = 0.5). The curvelet multiscale edge
enhanced image shows clearly better the rings and edges of
Saturn.

5. Morphological component analysis

5.1. Introduction

The content of an image is often complex, and there is not a
single transform which is optimal to represent all the contained
features. For example, the Fourier transform better represents
some textures, while the wavelet transform better represents
singularities. Even if we limit our class of transforms to the
wavelet one, decision have to be taken between an isotropic
wavelet transform which produce good results for isotropic ob-
jects (such stars and galaxies in astronomical images, cells in
biological images, etc.), or an orthogonal wavelet transform,
which is better for images with edges. This has motivated the
development of different methods (Chen et al. 1998; Meyer
et al. 1998; Huo 1999), and the two most frequently discussed
approaches are the Matching Pursuit (MP) (Mallat & Zhang
1993) and the Basis pursuit (BP) (Chen et al. 1998). A dictio-
naryD being defined as a collection of waveforms (ϕγ)γ∈Γ, the

general principe consists in representing a signal s as a “sparse”
linear combination of a small number of basis such that:

s =
∑
γ

aγϕγ (11)

or an approximate decomposition

s =
m∑

i=1

aγiϕγi + R(m). (12)

Matching pursuit (Mallat & Zhang 1993; Mallat 1998) method
(MP) uses a greedy algorithm which adaptively refines the sig-
nal approximation with an iterative procedure:

– Set s0 = 0 and R0 = 0.
– Find the element αkϕγk which best correlates with the resid-

ual.
– Update s and R:

sk+1 = sk + αkϕγk

Rk+1 = s − sk. (13)

In case of non orthogonal dictionaries, it has been shown (Chen
et al. 1998) that MP may spend most of the time correcting mis-
takes made in the first few terms, and therefore is suboptimal
in term of sparsity.

Basis pursuit method (Chen et al. 1998) (BP) is a global
procedure which synthesizes an approximation s̃ to s by mini-
mizing a functional of the type

‖s − s̃‖2`2
+ λ · ‖α‖`1 , s̃ = Φα. (14)

Between all possible solutions, the chosen one has the min-
imum l1 norm. This choice of l1 norm is very important.
A l2 norm, as used in the method of frames (Daubechies 1988),
does not preserve the sparsity (Chen et al. 1998).

In many cases, BP or MP synthesis algorithms are compu-
tationally very expensive. We present in the following an al-
ternative approach, that we call Combined Transforms Method
(CTM), which combines the different available transforms in
order to benefit of the advantages of each of them.

5.2. The combined transformation

Depending on the content of the data, several transforms can
be combined in order to get an optimal representation of all
features contained in our data set. In addition to the ridgelet
and the curvelet transform, we may want to use the à trous al-
gorithm which is very well suited to astronomical data, or the
undecimated wavelet transform which is commonly used in the
signal processing domain.

Other transform such wavelet packets, the Fourier trans-
form, the Pyramidal median transform (Starck et al. 1998), or
other multiscale morphological transforms, could also be
considered. However, we found that in practice, these four
transforms (i.e. curvelet, ridgelet, à trous algorithm, and un-
decimated wavelet transform) furnishes a very large panel of
waveforms which is generally large enough to well represents
all features contained in the data.
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Fig. 9. Top, Saturn image and its histogram equalization. Bottom, Saturn image enhancement the Laplacian method and by the curvelet
transform.

In general, suppose that we are given K linear transforms
T1, . . . , TK and let αk be the coefficient sequence of an object x
after applying the transform Tk, i.e. αk = Tkx. We will suppose
that for each transform Tk we have available a reconstruction
rule that we will denote by T−1

k although this is clearly an abuse
of notations.

Therefore, we search a vector α = α1, . . . , αK such that

s = Φα (15)

where Φα =
∑K

k=1 T−1
k αk. As our dictionary is overcomplete,

there is an infinity of vectors verifing this condition, and we
need to solve the following optimization problem:

min ‖ s − φα ‖2 +C(α) (16)

where C is a penalty term. We easily see that chosing C(α) =
‖ α ‖l1 leads to the BP method, where the dictionaryD is only
composed of the basis elements of the chosen transforms.

Two iterative methods, soft-CTM and hard-CTM, allowing
us to realize such a combined transform, are described in this
section.

5.3. Soft-CTM

Noting T1, ..., TK the K transform operators, a solution α is ob-
tained by minimizing a functional of the form:

J(α) =‖ s −
K∑

k=1

T−1
k αk ‖22 +λ

∑
k

‖ αk ‖1 (17)

where s is the original signal, and αk are the coefficients ob-
tained with the transform Tk.

An simple algorithm to achieve such an solution is:

1. Initialize Lmax, the number of iterations Ni, λ = Lmax,
and δλ =

Lmax
Ni

.
2. While λ >= 0 do
3. For k = 1, ..., K do

– Calculate the residual R = s −∑
k T−1

k αk.
– Calculate the transform Tk of the residual: rk = TkR.
– Add the residual to αk: αk = αk + rk.
– Soft threshold the coefficient αk with the λ threshold.

4. λ = λ − δ, and goto 2.

Figure 10 illustrates the result in the case where the input image
contains only lines and Gaussians. In this experiment, we have
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Fig. 10. Top, original image containing lines and gaussians. Botton left, reconstructed image for the à trous wavelet coefficient, bottom right,
reconstructed image from the ridgelet coefficients.

initialized Lmax to 20, and δ to 2 (10 iterations). Two trans-
form operators were used, the à trous wavelet transform and
the ridgelet transform. The first is well adapted to the detec-
tion of Gaussian due to the isotropy of the wavelet function
(Starck et al. 1998), while the second is optimal to represent
lines (Candès & Donoho 1999b). Figure 10 top, bottom left,
and bottom right represents respectively the original image, the
reconstructed image from the à trous wavelet coefficient, and
the reconstructed image from the ridgelet coefficient. The addi-
tion of both reconstructed images reproduces the original one.

In some specific cases where the data are sparse in all
bases, it has been shown (Huo 1999; Donoho & Huo 2001)
that the solution is identical to the solution when using a ‖ . ‖0
penalty term. This is however generally not the case. The prob-
lem we met in image restoration applications, when minimiz-
ing Eq. (17), is that both the signal and noise are split into the
bases. The way the noise is distributed in the coefficients αk

is not known, and leads to the problem that we do not know
at which level we should threshold the coefficients. Using the
threshold we would have used with a single transform makes
a strong over-filtering of the data. Using the l1 optimization
for data restoration implies to first study how the noise is

distributed in the coefficients. The hard-CTM method does not
present this drawback.

5.4. Hard-CTM

The following algorithm consists in hard thresholding the
residual successively on the different bases.

1. For noise filtering, estimate the noise standard deviation σ,
and set Lmin = kσ. Otherwise, set σ = 1 and Lmin = 0.

2. Initialize Lmax, the number of iterations Ni, λ = Lmax

and δλ =
Lmax−Lmin

Ni
.

3. Set all coefficients αk to 0.
4. While λ >= Lmin do
5. for k = 1, .., K do

– Calculate the residual R = s −∑
k T−1

k αk.
– Calculate the transform Tk of the residual: rk = TkR.
– For all coefficients αk,i do

– Update the coefficients: if αk,i , 0 or | rk,i |> λσ
then αk,i = αk,i + rk,i.

6. λ = λ − δλ, and goto 5.
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Fig. 11. Upper left, galaxy SBS 0335-052 (10 µm), upper middle, upper right, and bottom left, reconstruction respectively from the ridgelet,
the curvelet and wavelet coefficients. Bottom middle, residual image. Bottom right, artifact free image.

Fig. 12. Upper left, galaxy SBS 0335-052 (20 µm), upper right, addition of the reconstructed images from both the ridgelet and the curvelet
coefficients, bottom left, reconstruction from the wavelet coefficients, and bottom right, residual image.
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Fig. 13. Top left, HST image of A370, top right coadded image from the reconstructions from the ridgelet and the curvelet coefficients, bottom
left reconstruction from the à trous wavelet coefficients, and bottom right addition of the three reconstructed images.

For an exact representation of the data, kσ must be set to 0.
Choosing kσ > 0 introduces a filtering. If a single transform is
used, it corresponds to the standard k-sigma hard thresholding.

It seems that starting with a high enough Lmax and a high
number of iterations would lead to the l0 optimization solution,
but this remains to be proved.

5.5. Experiments

5.5.1. Experiment 1: Infrared Gemini data

Figure 11 upper left shows a compact blue galaxy located
at 53 Mpc. The data have been obtained on ground with the
GEMINI-OSCIR instrument at 10 µm. The pixel field of view
is 0.089′′/pix, and the source was observed during 1500s. The
data are contaminated by a noise and a stripping artifact due
to the instrument electronic. The same kind of artifact
pattern were observed with the ISOCAM instrument (Starck
et al. 1999).

This image, noted D10, has been decomposed using
wavelets, ridgelets, and curvelets. Figure 11 upper middle, up-
per right, and bottom left show the three images R10, C10, W10

reconstructed respectively from the ridgelets, the curvelets, and

the wavelets. Image in Fig. 11 bottom middle shows the resid-
ual, i.e. e10 = D10 − (R10 + C10 + W10). Another interesting
image is the artifact free one, obtained by subtracting R10 and
C10 from the input data (see Fig. 11 bottom right). The galaxy
has well been detected in the wavelet space, while all stripping
artifact have been capted by the ridgelets and curvelets.

Figure 12 upper left shows the same galaxy, but at 20 µm.
We have applied the same decomposition on D20. Figure 12
upper right shows the coadded image R20+C20, and we can see
bottom left and right the wavelet reconstruction W20 and the
residudal e20 = D20 − (R20 +C20 +W20).

5.5.2. Experiment 2: A370

Figure 13 upper left shows the HST A370 image. It contains
many anisotropic features such the gravitationnal arc, and the
arclets. The image has been decomposed using three trans-
forms: the ridgelet transform, the curvelet transform, and the
à trous wavelet transform. Three images have then been recon-
structed from the coefficients of the three basis. Figure 13 upper
right shows the coaddition of the ridgelet and curvelet recon-
structed images. The à trous reconstructed image is displayed
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Fig. 14. Top left, galaxy NGC 2997, top right reconstructed image from the à trous wavelet coefficients, bottom left, reconstruction from the
ridgelet coefficients, and bottom right addition of both reconstructed images.

in Fig. 13 lower left, and the coaddition of the three images can
be seen in Fig. 13 lower right. The gravitational arc and the ar-
clets are all represented in the ridgelet and the curvelet basis,
while all isotropic features are better represented in the wavelet
basis.

5.5.3. Experiment 3: Elongated–point like object
separation in astronomical images

Figure 14 shows the result of a decomposition of a spiral galaxy
(NGC 2997). This image (Fig. 14 top left) contains many com-
pact structures (stars and HII region), more or less isotropic,
and large scale elongated features (NGC 2997 spiral part).
Compact objects are well represented by isotropic wavelets,
and the elongated features are better represented by a ridgelet
basis. In order to benefit of the optimal data representation of
both transforms, the image has been decomposed on both the
“à trous” wavelet transform and on the ridgelet transform by us-
ing the same method as described in Sect. 5.4. When the func-
tional is minimized, we get two images, and their coaddition is
the filtered version of the original image. The reconstructions
from the à trous coefficients, and from the ridgelet coefficients

can be seen in Fig. 14 top right and bottom left. The addition
of both images is presented in Fig. 14 bottom right.

We can see that this Morphological Component Analysis
(MGA) allows us to separate automatically features in an image
which have different morphological aspects. It is very different
from other techniques such as Principal Component Analysis
or Independent Component Analysis (Cardoso 1998) where the
separation is performed via statistical properties.

Acknowledgements. We are grateful to the referee for helpful com-
ments on an earlier version.
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