
DSEA Rock-Solid
Regularization and Comparison

with other Deconvolution Algorithms

– Master’s Thesis –

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science

by

Mirko Bunse
Dortmund, July 2018

Supervisors:

Prof. Dr. Katharina Morik
Dr. Christian Bockermann

Technische Universität Dortmund
Fakultät für Informatik
Lehrstuhl für Künstliche Intelligenz, LS VIII
D-44221 Dortmund





– Abstract –

Deconvolution reconstructs the distribution of a physical quantity from
related quantities. The present work surveys popular deconvolution meth-
ods with a comprehensive benchmark targeted on Cherenkov astronomy.
Meanwhile, a novel unified view on deconvolution is established from the
perspective of machine learning. Within this view, the essential building
blocks of deconvolution methods are identified, opening the subject to sev-
eral directions of future work. Particular attention is turned to Dsea, the
Dortmund Spectrum Estimation Algorithm, which employs a classifier to
reconstruct the sought-after distribution. An improved version of this al-
gorithm, Dsea+, is proposed here. This version is more accurate and it
converges faster than the original Dsea, thus matching the state of the art
in deconvolution.
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Chapter 1

Introduction

Obtaining the distribution of a physical quantity is a frequent objective in experimental
physics. A reliable estimate of such distribution can tell us a lot about the related phe-
nomena, allowing us to reconcile our scientific assumptions with the results obtained in an
experiment. In cases where the distribution of the relevant quantity cannot be measured
directly, it has to be reconstructed from distributions of related but different quantities
that are measured, instead. This reconstruction is called deconvolution.

Cherenkov astronomy is a deconvolution use case which studies the energy distribution
of cosmic γ radiation to reason about the characteristics of celestial objects emitting such
radiation. One prominent tool in this field are Imaging Air Cherenkov Telescopes (IACTs),
which are placed at high altitudes on the surface of our planet. Since it is not viable to
detect high-energy γ particles directly there, IACTs record Cherenkov light emitted by
a cascade of secondary particles, instead. Such cascades, called air showers, are induced
by γ particles interacting with Earth’s atmosphere. Since the γ radiation is not directly
measured by the telescopes, deconvolution is applied to reconstruct the energy distribution
from the related Cherenkov light recorded by IACTs. Figure 1.1 presents this setup.

Atmosphere

Telescope

γ Particle

Air Shower

Cherenkov Light

Reconstruction

Figure 1.1: A γ particle hitting Earth’s atmosphere produces a cascade of secondary particles, the
air shower. This shower emits Cherenkov light, which is measured by an IACT. The distribution
of γ particles is reconstructed from IACT measurements [1].
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2 CHAPTER 1. INTRODUCTION

1.1 The Deconvolution Problem

The task of deconvolution is to estimate a density function f : Y → R of a physically
relevant quantity. Formally, this quantity is a random variable Y with the state space Y.
The most prominent quantity in Cherenkov astronomy is the energy of γ particles, of which
the Cherenkov light is observed by an IACT. Researchers reason about the characteristics
of a monitored γ ray source by interpreting the density function of its particle energies.
Estimating any density f can be complicated by the following deficiencies, which may be
inherent to the respective experimental setup [2]:

Transformation When Y cannot be measured directly, one has to measure a related
but different quantity X instead. Only with sufficient knowledge about the relation
between X and Y , f can be reconstructed from the density g : X → R of the
measured quantity. In case of IACTs, the features of the observed light cone, e.g. its
shape and size, are measurable quantities that are related to the particle energy Y .

Finite resolution The measurement accuracy may be limited, resulting in measure-
ments that do not perfectly resemble the actual values of the measured quantity X.
For example, when an IACT observes an air shower only partially, it may fail to
capture the exact shape and size of the corresponding light cone.

Background noise Additional events may be recorded which do not originate from
the respective process under study. For example, not every observed air shower is
induced by a γ particle emitted by the monitored γ ray source.

Limited acceptance The detector may fail to recognize some of the events that
occur in the process under study. For example, IACT observations are dropped
when it is not sufficiently certain that they are induced by a γ particle.

A reliable estimate of the relevant density f is only obtained, if these deficiencies
are rectified, i.e. if f is appropriately reconstructed from the measured density g. In
Cherenkov astronomy, this boils down to reconstructing the density of γ particle ener-
gies from IACT measurements. The procedure of reconstructing f with respect to the
experimental deficiencies is called deconvolution, being also known as “unfolding” or “un-
smearing”. The name of this procedure is motivated by g being modeled as a convolution
of f with a detector response function R : X × Y → R.

g(x) =
∫

Y
R(x | y) · f(y) dy (1.1)

The detector response R provides the link between X and Y , representing the background
knowledge about their relation. Specifically, R(x | y) represents the conditional probability
of measuring some x ∈ X when the actual value of the relevant quantity is y ∈ Y. To
obtain f , this model of g has to be inverted—it has to be “deconvolved”. This is done by
fitting f to the model of g, when g and R are given.
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Readers familiar with deconvolution may have already noticed that the nomenclature
in Equation 1.1 is slightly different from the notation that is conventional in particle
physics. Specifically, the roles of the letters x and y are switched here for compliance
with the notation that is common in machine learning. Here, y refers to the value of
the target variable and x is the observed value. This notation also clarifies the relation
between the deconvolution problem and classification. The difference between these two
tasks is merely that deconvolution aims at estimating the density of Y while classification
estimates each y ∈ Y individually. A mapping between the nomenclatures motivated by
physics and machine learning is given in Section A.1.

1.2 Deconvolution with DSEA

The present thesis turns particular attention to the Dortmund Spectrum Estimation Al-
gorithm (Dsea) [3, 4], which translates the deconvolution problem into a multinomial
classification task. The labels of this task are half-open ranges Yi = [ ti, ti+1[ ⊆ Y with
the range boundaries ti ∈ Y. Each of the Yi corresponds to one of the I components in
a discrete estimate f̂ = (̂f1, . . . f̂I) of the continuous target density f . Dsea trains a ma-
chine learning modelM which predicts the range Yi that each observation x ∈ X belongs
to. The model is then used to obtain confidence values cM( i |xn) for the labels, given
each of the N individual observations. Equation 1.2 averages these confidence values, thus
obtaining f̂ as a density of confidences over the labels. This density is reported to be a
suitable discrete estimate of f [3, 4]. It is updated multiple times by iteratively adapting
the weights of the training examples that inducedM.

f̂i = 1
N

N∑

n=1
cM( i |xn) ∀ 1 ≤ i ≤ I (1.2)

Figure 1.2 presents the density of a toy data set, as it is estimated by Dsea after three
iterations. The toy data consists of the relevant quantity Y and ten additional attributes
that are used to predict that quantity. We see that there is good agreement between this
result and the true (discrete) density f . Figure 1.3 presents the distance between the true
f from Figure 1.2 and f̂ (k), which is the estimated density in iteration k. From the distance
increasing with k, it is apparent that Dsea diverges from the true f after having found an
appropriate estimate like f̂ (3). This undesirable property of the algorithm is also observed
on other data sets.

Besides Dsea, there are several other deconvolution algorithms. Two of the most
popular approaches are the Regularized Unfolding [5, 2], which maximizes the likelihood
of the estimated density f̂ , and the Iterative Bayesian Unfolding [6, 7], which iteratively
applies Bayes’ rule starting from an initial guess f̂ (0). Unfortunately, it is not clear which
of these methods is most suitable for IACTs.
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Figure 1.2: The deconvolution result f̂ (3) is obtained after the third iteration of Dsea. It
accurately resembles the true density f . The toy data set used to obtain this result is described in
Subsection 4.2.1. It is employed throughout this thesis.
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Figure 1.3: The distance of the Dsea estimate f̂ (k) from the true density f is presented over the
iteration number k. Here, high values indicate a low accuracy of the k-th estimate. The algorithm
diverges from the optimal solution f after achieving the suitable estimate f̂ (3) already presented
in Figure 1.2. The distance metric employed here is the Earth Mover’s Distance (Emd), which is
described in Section 4.1. This metric is used throughout this thesis.
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1.3 Goals and Outline

Since Dsea diverges from the true density after a few iterations, it has to be stopped
in time. Usually, the practitioner makes an educated guess about the right number of
iterations by trying the algorithm on simulated data first, before applying Dsea to the
actual observations. A stopping criterion proposed for Dsea is rarely used in practice
because it is parametrized based on simulated data in a similar fashion. If Dsea did not
diverge that much, it would be less critical to find a suitable stopping criterion. Stopping
the divergence relates to the concept of regularization, which limits the freedom of an
algorithm to achieve more robust results. In short, the first goal of the thesis is to:

G1 Stop Dsea from diverging from the true density.

It is still unclear, which of the existing deconvolution methods is best suited for
Cherenkov astronomy. Moreover, a unified notation of these methods is still missing,
making it hard to identify the building blocks that make an algorithm suitable for this use
case. The second goal therefore is to:

G2 Find out, which algorithm is best suited for deconvolution in IACTs.

The remainder of this thesis is structured as follows: Chapter 2 describes Dsea and
two other popular deconvolution algorithms, namely the Regularized Unfolding and the
Iterative Bayesian Unfolding. These algorithms are presented in a unified view that is
given from the perspective of machine learning. Improvements to Dsea are proposed in
Chapter 3 and a comprehensive evaluation of the algorithms is presented in Chapter 4.
This evaluation is specifically targeted at the use case of Cherenkov astronomy, for which
conclusions are drawn in Chapter 5. Figure 1.4 presents this outline, loosely mapping the
chapters to the goals mentioned above.

2. Deconvolution Algorithms
– G2 –

3. Regularized DSEA
– G1 –

4. Comparative Evaluation
– G2 –

1. Introduction

5. Conclusion

Figure 1.4: The outline of the present thesis addresses the two goals. Solid arrows indicate that
one chapter strongly depends on the other. Dashed arrows express that there is some dependency
between chapters, but that the one chapter can be understood independently from the other.
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Chapter 2

Deconvolution Algorithms

Literature proposes a multitude of algorithms for deconvolution. The novel algorithmic
framework Dsea is unique among these algorithms because it translates the deconvolution
problem into a multinomial classification task, thus opening deconvolution to the field of
machine learning and the rapid advances being made in that field. Section 2.1 presents
the original version of Dsea, which is improved in the next chapter.

Classical deconvolution algorithms follow another approach than Dsea, solving a dis-
crete reformulation of the continuous deconvolution problem instead of applying classifi-
cation. This discrete deconvolution problem is introduced in Section 2.2, providing the
basis for the Iterative Bayesian Unfolding and the Regularized Unfolding. These popular
representatives of classical algorithms are presented in sections 2.3 and 2.4. Their results
are compared to those of Dsea later in this thesis. Section 2.5 gives a rough outlook on
some additional deconvolution algorithms, which are not further investigated here.

2.1 The Dortmund Spectrum Estimation Algorithm DSEA

Dsea reconstructs the density f of the target quantity Y from predictions which a classifier
makes about this quantity. The following subsections present how these predictions are
made and how they are used to reconstruct f . Dsea improves its estimate of f by
iterating the reconstruction, updating the density of the training set that is used to obtain
the classifier. The update is realized by weighting the individual training examples.

Dsea has some outstanding advantages over the classical deconvolution algorithms.
Besides relating deconvolution to classification, it enables researchers to assess the con-
tribution of each individual observation to the deconvolution result. For example, this
feature of the method makes deconvolution in a sliding window over a time frame pos-
sible. In Cherenkov astronomy, such time-dependent deconvolution is indispensable for
astronomers to reason about γ ray sources that change their emission over time.

7
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2.1.1 Deconvolution as a Classification Task

Classification is the task of mapping observations x ∈ X to a finite set of labels. Such
mapping is inferred from the training set Dtrain =

{
(xn, yn) ∈ X × Y : 1 ≤ n ≤ N ′

}
,

in which the target value y ∈ Y is given for N ′ observations. It is then applied to the N
unlabeled observations in Dobs =

{
xn ∈ X : 1 ≤ n ≤ N

}
, for which a label is required.

In order to translate the deconvolution problem into a classification task, a set of suitable
labels has to be defined from the continuous state space Y of the target quantity.

A set of labels is generally obtained by a discretization function df : Y → {1, 2, . . . , I},
which partitions the pre-image of the continuous target density f : Y → R into a set
of I distinct sub-spaces Yi ⊆ Y. These sub-spaces are then used as the labels of the
classification task, so that a classification algorithm can learn to predict the sub-space
an individual observation x ∈ Dobs belongs to. For particle energy densities, Y is one-
dimensional and its discretization reduces to a quantization of the target values. The
function df is thus defined by I+1 strictly ordered interval boundaries ti ∈ Y, as indicated
by Figure 2.1. It assigns each event ( x, y ) ∈ Dtrain to the interval Yi that y ∈ Y is
in, so that a classification algorithm can learn to predict the interval that an individual
observation belongs to.

Yi = [ ti, ti+1[ ∀ 1 ≤ i ≤ I (2.1)

In order to solve the deconvolution problem with a set of predictions given by a clas-
sifier, the target density f has to be reproduced from these predictions. Equation 2.2
presents the concept of such reproduction, estimating a discrete variant f = (f1, . . . fI) of
the continuous density f by the probability of each label Yi. Here, Y ≡ i is short for
df (Y ) = i. The computation of f within this concept is given in the following subsection.

fi = P (Y ≡ i ) =
∫

Yi
f(y) d y ∀ 1 ≤ i ≤ I (2.2)

t1 t2 t3 tI tI+1

Y1 Y2 . . . YI

Y

f

Figure 2.1: The continuous pre-image Y of the target density f is split into I distinct intervals
Yi ⊆ Y, which are used as the labels of the classification task. The density f is estimated from the
density of these labels, which corresponds to a histogram of the target quantity Y .



2.1. THE DORTMUND SPECTRUM ESTIMATION ALGORITHM DSEA 9

All experiments in this thesis are conducted with equidistant interval boundaries
ti = t1 + ∆ · (i− 1) ∀ i ≥ 2, so that each interval Yi has the same width ∆ ∈ R.
These boundaries are favored here because a density f over the resulting labels directly
forms an equidistant histogram of Y . Therefore, and since the classical deconvolution
methods also estimate equidistant histograms, equidistant interval boundaries are well
suited for comparing Dsea with these other methods.

2.1.2 Reproducing the Target Density from Confidence Values

Equation 2.3 computes an estimate of the probability fi = P (Y ≡ i ). Dsea estimates
the conditional probabilities P̂ (Y ≡ i |X = x) in this equation with confidence values
cM( i |xn) obtained from a trained classifier M. Such value represents the confidence of
M that the observation x ∈ Dobs belongs to the label Yi. Moreover, P̂ (X = x) = 1

N

∀ x ∈ Dobs is imposed because each observation in Dobs occurs exactly once. Equation 2.4
applies these considerations to reproduce an estimated density f̂ from confidence values
obtained for the observed data set Dobs.

P̂ (Y ≡ i ) =
∑

x∈X
P̂ (Y ≡ i |X = x) · P̂ (X = x) ∀ 1 ≤ i ≤ I (2.3)

f̂i = 1
N

N∑

n=1
cM( i |xn) (2.4)

Note that f could also be estimated with the relative frequencies P̂ (Y ≡ i) = N̂i
N of

predictions, N̂i being the number of observed events for which Yi is the predicted label.
However, this approach does not account for the uncertainty of the classifier, which is only
expressed through the confidence values. Ignoring this uncertainty produces deconvolution
results with inferior quality, compared to the reproduction from Equation 2.4 [3].

2.1.3 Classification Algorithms

The classification algorithm used to obtain the confidence values is basically arbitrary.
However, the predictive quality of the classifier—and particularly the appropriateness of
its confidence values—plays a crucial role in the quality of the estimated density.

Two exemplary classification algorithms are presented here, Naive Bayes and the Ran-
dom Forest. The Naive Bayes classifier has a clear probabilistic meaning and it relates
Dsea to the Iterative Bayesian Unfolding presented in Section 2.3. In fact, Subsection 2.3.4
proves that Dsea and the Iterative Bayesian Unfolding are equivalent under certain con-
ditions. In Cherenkov astronomy, the Random Forest is more popular than the Naive
Bayes classifier. Moreover, preliminary studies revealed that it also predicts the energy of
γ particles more accurately than the Naive Bayes.
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Naive Bayes

The Naive Bayes classifier is based on Bayes’ theorem and the simplifying (“naive”) as-
sumption that all features are conditionally independent from each other [8]. Bayes’
theorem is applied to model the posterior probabilities of the labels, given a particular
observation. These probabilities are used as the confidence values, as presented in Equa-
tion 2.5. The Naive Bayes classifier predicts the label to which the highest confidence
value is assigned.

cM( i |xn) = P̂ (Y ≡ i | X = xn)

= P̂ (X = xn | Y ≡ i ) · P̂ (Y ≡ i )
∑I
i′=1 P̂ (X = xn | Y ≡ i′ ) · P̂ (Y ≡ i′ )

(2.5)

The prior probability P̂ (Y ≡ i ) in Equation 2.5 is estimated by the relative frequency
N ′i
N ′ in the training set Dtrain, where N ′i is the number of training examples with the
label Yi. The conditional probability P̂ (X = xn | Y ≡ i ) in this equation is where
the naive independence assumption is applied. This assumption states that Equation 2.6
holds for multi-dimensional observations x ∈ X consisting of D features. The conditional
probability is thus given by the product of independent feature-wise probabilities.

P̂ (X = xn | Y ≡ i ) =
D∏

d=1
P̂ (Xd = xn; d | Y ≡ i ) (2.6)

For a nominal feature with a finite set of discrete values, such conditional feature-
wise probability is estimated by the relative frequencies in the training set, similar to
estimating P̂ (Y ≡ i ). In case of a numerical feature, the conditional probability has to
be estimated by some continuous probability density, instead. A common simplification is
to assume the Normal distributionN : R→ R presented in Equation 2.7. This distribution
is characterized by its mean µ ∈ R and its standard deviation σ ∈ R, which are easily
estimated for each combination of a label and a feature.

N (x ; µ, σ ) = 1√
2π σ

e−
(x−µ)2

2σ2 (2.7)

Numerous improvements of the Naive Bayes classifier have been proposed, ranging
from pre-processing steps which mitigate the independence assumption to extensions of
the model that allow to represent other probability distributions. However, the basic
version presented above is used here due to its simplicity. All experiments employ the
ScikitLearn implementation further documented online1.

1http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html

http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
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Random Forest

The Random Forest is an ensemble method which aggregates the predictions from multiple
randomized decision tree classifiers [9]. It is a popular tool in Cherenkov astronomy, being
used for classification [10, 11] and for regression tasks [12, 13], in which it delivers out-
standing predictive accuracies. The experiments conducted here use the implementation
from ScikitLearn, which is described online2 and in the following.

There are multiple methods randomizing the individual trees in the forest [9]. Here,
the classical bagging approach [14] is employed, where each classifier T ∈ M in the en-
semble M is trained on a bootstrap sample of the training data. Each such sample is
obtained by randomly drawing training examples with replacement. The predictions of
the trained classifiers are then aggregated by voting. Namely, the aggregated prediction
of the ensemble M is the label which is predicted by most of the ensemble members.
Equation 2.8 presents the confidence of a bagging ensembleM for the label Yi, which is
the relative number of votes T (x) for that label.

cM( i |x) =

∣∣∣
{ T ∈ M : T (x) = i

}∣∣∣
∣∣M

∣∣ (2.8)

The individual decision trees in a Random Forest create an increasingly fine partition
of the feature space with an increasing label purity in each fragment of that partition.
For example, Cart trees [15] measure the impurity of each such fragment with the Gini
Diversity Index G defined in Equation 2.9. This index represents the probability of a ran-
dom event with label Yi being incorrectly labeled with a different Yi′ randomly assigned
according to the label density f inside the respective fragment. Evaluating G for each pos-
sible split in the feature space allows to choose that partition which consists of maximally
pure fragments. Usually, G is only evaluated for a random subset of possible splits in order
to increase the randomness of the ensemble.

G(f) =
I∑

i=1
fi ·

∑

i′ 6=i
fi′ = 1−

I∑

i=1
f2
i (2.9)

2.1.4 The Iterative Procedure

The confidence values returned for observations in Dobs are determined by the density
of labels in Dtrain. For instance, the confidence of a Naive Bayes classifier explicitly
incorporates an estimate P̂ (Y ≡ i ) of that prior density. However, practitioners of
deconvolution generally want the estimated target density f̂ to be independent from the
prior density because the ultimate goal of deconvolution is to infer f̂ from observations,
not from prior assumptions.

2http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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In order to mitigate the influence of the prior density inherently present in Dtrain, Dsea
iterates the reproduction of f by updating the training set density with the latest estimate
of the density in Dobs. Such update is performed by weighting each of the N ′ events in
Dtrain with a corresponding weight scalar wn ∈ R. These weights are accounted for in
the training ofM. Thus, they determine the confidence values subsequently obtained for
the observations in Dobs. Even though the iterative procedure improves Dsea’s estimates
in the first few iterations, it also decreases the quality of the deconvolution result after a
suitable estimate has been found. This divergence from the optimal solution is already
presented in Section 1.2, motivating the improvements proposed later in this thesis.

Algorithm 2.1 presents Dsea in its current state. Given are a training set Dtrain to infer
the classifier from and a set of unlabeled observations Dobs, for which the target density f
is estimated with the discrete density f̂ returned by Dsea. Moreover, the total number of
iterations K is pre-specified, usually being chosen from test deconvolutions on simulated
data. Originally, a convergence criterion based on the χ2 distance between iterations has
been proposed [4], but this criterion is rarely used in practice. The prior f̂ (0) of the target
density can also be specified by the practitioner. By default, it weights the training set
uniformly, retaining the inherent density of Dtrain. Line 2 of Algorithm 2.1 performs the
weight update of the current iteration. In line 4, the current estimate of the target density
is reproduced from confidence values.

Input:
Observed data set Dobs =

{
xn ∈ X : 1 ≤ n ≤ N }

Training data set Dtrain =
{

(xn, yn) ∈ X × {1, 2, . . . , I} : 1 ≤ n ≤ N ′ }

Number of iterations K
Prior density f̂ (0) (default: f̂ (0)

i = 1
I ∀ 1 ≤ i ≤ I)

Output:
Estimated target density f̂ = f̂ (K)

1: for k ∈ {1, 2, . . . ,K} do

2: ∀ 1 ≤ n ≤ N ′ : w
(k)
n ← f̂ (k−1)

i(n)

3: InferM from Dtrain weighted by w(k)
n

4: ∀ 1 ≤ i ≤ I : f̂ (k)
i ← 1

N

∑N
n=1 cM( i |xn)

Algorithm 2.1: The Dortmund Spectrum Estimation Algorithm Dsea [4]. Here, the convergence
check based on the χ2 distance between iterations is omitted due to its rare application in practice.
Instead, the total number K of iterations is pre-specified. The classifierM is inferred by a machine
learning algorithm plugged into the method.



2.2. THE CLASSICAL DISCRETE DECONVOLUTION PROBLEM 13

2.2 The Classical Discrete Deconvolution Problem

Classical methods like the Iterative Bayesian Unfolding and the Regularized Unfolding
solve a discrete variant of the continuous deconvolution problem from Equation 1.1, in-
stead of applying classification. This discrete variant presented in Equation 2.10 is a linear
system of equations where f , g, and R from the continuous problem are replaced by their
discrete versions. The relation between the discrete and continuous case is clarified by
Equation 2.11, which equivalently presents the discrete problem for the individual com-
ponents of the observed density g = (g1, . . .gJ) ∈ RJ . Classical deconvolution methods
differ from Dsea in that they estimate f = (f1, . . . fI) ∈ RI by solving Equation 2.10
instead of reproducing f from predictions.

g = R f (2.10)

⇔ gj = ∑I
i=1 Rij fi ∀ 1 ≤ j ≤ J (2.11)

The vector f usually represents a histogram of the continuous target density f , being
defined by I + 1 equidistant interval boundaries ti ∈ Y. Such histogram is introduced
already in Subsection 2.1.1, but it should be noted that the intervals Yi ⊆ Y of that his-
togram are not used as labels here. Namely, classical deconvolution methods do not predict
the intervals of individual observations. The Regularized Unfolding also supports other
discretization schemes for f , of which the most prominent one presented in Section A.2
is based on B-spline coefficients. However, the most recent publication on the method
abandoned such other schemes in favor of equidistant histograms [2]. The discretization of
the detector response function R and the observed density g are presented in the following.
Subsequently, the difficulty of solving the discrete deconvolution problem is reflected.

2.2.1 The Detector Response Matrix

The detector response function R : X × Y → R embodies the practitioner’s knowledge
about the detector. However, that knowledge does often not suffice to obtain such con-
tinuous function analytically. For example, it is not feasible to analytically obtain R for
IACTs, which involve atmospheric processes that are highly random. Instead, a discrete
version R ∈ RI×J of R is estimated from the training set Dtrain.

The structure of R is presented in Equation 2.12. Each component R i j of that matrix,
conceptually defined in Equation 2.13, represents the conditional probability of observing
an event in the sub-space Xj ⊆ X when the value of the relevant quantity Y is in the
sub-space Yi ⊆ Y. For IACTs, this could be the probability of observing an air shower of
a specific size or orientation when the initial γ particle of that shower is in a particular
energy interval. The definition of the observable sub-spaces Xj ⊆ X is given in the
following subsection.
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R =




R 1 1 . . . R I 1
... . . .

R 1 J R I J


 (2.12)

R i j = P (X ≡ j |Y ≡ i )

=
∫

Yi

∫

Xj
R(x | y) dx d y ∀ 1 ≤ i ≤ I, 1 ≤ j ≤ J

(2.13)

The matrix R is estimated from Dtrain, in which the values x ∈ X and y ∈ Y of
each individual observation are known. Equation 2.14 computes the components of such
estimate, where Nij is the number of events (x, y) ∈ Dtrain for which x ∈ Xj and y ∈ Yi.

R̂ i j = Nij∑J
j′=1Nij′

∀ 1 ≤ i ≤ I, 1 ≤ j ≤ J (2.14)

2.2.2 Clustered Observable Quantities

A one-dimensional discrete version g = (g1, . . .gJ) ∈ RJ of the observed density function
g : X → R is obtained by partitioning the continuous pre-image X of g into a set of J
distinct sub-spaces Xj ⊆ X . Each gj is then defined similar to the fi in Equation 2.2,
being estimated by its relative frequency ĝj = Nj

N in the observed data set Dobs. Here, Nj

refers to the number of observed examples in the respective sub-space.

However, the domain X of g is usually multidimensional—unlike the domain of the
target density f discretized in Subsection 2.1.1. For IACTs, X comprises multiple ge-
ometric features of air showers, like their shape and their size. Therefore X needs to
be clustered in order to obtain a finite set of multidimensional sub-spaces. A Clustering
dg : X → {1, 2, . . . , J} maps each vector-valued observation x ∈ X to the index j of the
sub-space which the observation belongs to, effectively discretizing the multi-dimensional
feature space in a single dimension. Equation 2.15 and Equation 2.16 define the properties
of such clustering, namely distinct clusters and completeness.

Xj ∪ Xj′ = ∅ ∀ j 6= j′ (2.15)

J⋃

j=1
Xj = X (2.16)

A suitable clustering of X can reduce the condition number of the detector response
matrix R, which indicates the difficulty of the discrete deconvolution problem. In other
words, a suitable clustering facilitates the reconstruction of f . This issue is presented in
the following subsection, motivating a supervised clustering approach.
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2.2.3 The Difficulty of Classical Deconvolution

The first problem faced in solving the discrete deconvolution problem from Equation 2.10
is that the detector response matrix R can usually not be inverted, what would provide
the most straightforward estimate f̂unfeasible = R−1g of the target density. This issue is
circumvented by the naive estimator presented in Equation 2.17, replacing R−1 with the
Moore-Penrose pseudo-inverse R† defined in Equation 2.18. The advantage of R† over
R−1 is that it always exists—even for rectangular matrices. It is based on the singular
value decomposition of R = U S VT , where S = diag(σ1, . . . σI) ∈ RI×J is a diagonal
matrix consisting of the singular values of R in decreasing order. Let r be the index of the
last non-zero singular value in S. The naive estimator corresponds to a minimum-norm
least-squares solution of the discrete deconvolution problem [16]. It is naive because it
exhibits a huge variance, as we will see.

f̂naive = R† g (2.17)

R† = V S†UT where S† = diag
(
σ−1

1 , . . . σ−1
r , 0, . . . 0

)
(2.18)

The naive estimator effectively transforms the original deconvolution problem to the
surrogate problem presented in Equation 2.19. Equation 2.20 then obtains the solution of
the original problem from the surrogate solution f̂ ′. This view on the naive estimator is
employed here to trace back the difficulty of deconvolution to the condition of R.

g′ = S f ′

where g′ = UT g and f ′ = VT f
(2.19)

f̂naive = V f̂ ′ where f̂ ′ = S†g′ (2.20)

Imagine the last singular values of R to be extraordinarily small compared to the first
singular values. The inverse of these last values is accordingly large and their respective
components in g′ consequently contribute a lot to f̂ ′ (see Equation 2.20). Small changes
in these components thus result in huge changes in the estimated target density. In
other words, the naive estimator has an immense variance, when the singular values of
R vary. The difficulty of deconvolution is thus given by the condition number κR from
Equation 2.21, which expresses the range spanned by the singular values of R. Classical
deconvolution methods aim at reducing the variance of their estimates by introducing a
small bias, which is an approach referred to as regularization. A high condition number
of R requires a strong regularization, which produces highly biased results.

κR = σ1
σI

(2.21)
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Figure 2.2a shows that the condition number decreases with an increasing number of
clusters used to obtain g on a toy data set. The naive estimator accordingly produces
increasingly good results, which can be seen in Figure 2.2b. A suitable clustering of X
thus facilitates deconvolution in classical methods.

Three different approaches to clustering are applied in this experiment, the first one
using only that single feature which is most strongly correlated with the target variable Y .
The second approach is k-means, a classical unsupervised method for clustering. The third
approach trains a Cart decision tree classifier [15] (also see Section 2.1.3) and it interprets
the leaves of such tree as clusters. This method, already being proposed for Cherenkov
astronomy [17], thus relates to supervised clustering, a problem recently described [18].
Further research down this lane promises a reduction of the inherent complexity of the
discrete deconvolution problem. The present thesis focuses on the Cart discretization,
which produces the best results so far.
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(a) The difficulty of the discrete problem is in-
dicated by the condition number κR of the de-
tector response matrix R ∈ RI×J . This num-
ber decreases with an increasing number J of
clusters. k-means and the Cart discretization
produce less difficult problems than a univari-
ate equidistant quantization of the single most
correlated feature.
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(b) The distance between the true target den-
sity f and the estimate f̂ obtained by the naive
estimator gets smaller as more clusters are used
to obtain g ∈ RJ . This observation is consis-
tent with the decreasing difficulty of the prob-
lem, which is already indicated by the left sub-
figure. Low values of the distance metric Emd
from Section 4.1 indicate a high quality of f̂ .

Figure 2.2: The difficulty of the discrete deconvolution problem decreases with an increasing
number J of clusters used to obtain the discrete observed density g ∈ RJ . The values of J lie on
a logarithmic scale here.
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2.3 Iterative Bayesian Unfolding

The Iterative Bayesian Unfolding (Ibu) [6, 7] is a method solving the classical deconvolu-
tion problem from Section 2.2. It obtains an estimated target density f̂ by applying Bayes’
theorem to the observed density g and the conditional probabilities embodied by the de-
tector response matrix R. Bayes’ theorem is applied multiple times, each time updating
the prior density with the respective latest estimate. Repeating this update reduces the
influence of the initial prior density, what is desired by practitioners, who usually want to
infer f̂ from observations and not from prior assumptions.

Basically, the components of the estimated target density f̂ are given by Equation 2.22,
where P̂ (Y ≡ i | X ≡ j ) is an estimate of the conditional probability of the target
value being in the sub-space Yi when the measured value is in the sub-space Xj . This
estimated conditional probability is obtained from Bayes’ theorem, which is presented in
Equation 2.23. Note that each probability P̂ (X ≡ j | Y ≡ i ) of the other conditional
direction is already given by the corresponding component Rij of the detector response
matrix. The probabilities P̂ (Y ≡ i ) of the intervals in Y represent a prior assumption
about the target density f .

f̂i =
J∑

j=1
P̂ (Y ≡ i | X ≡ j ) · gj (2.22)

P̂ (Y ≡ i | X ≡ j ) = P̂ (X ≡ j | Y ≡ i ) · P̂ (Y ≡ i )
∑I
i′=1 P̂ (X ≡ j | Y ≡ i ) · P̂ (Y ≡ i )

(2.23)

2.3.1 Iterative Reduction of the Prior’s Influence

Since the goal of deconvolution is to estimate f from observations, it is generally assumed
that the prior P̂ (Y ≡ i ) is not sufficiently accurate. It is thus desirable to reduce the
strong influence of P̂ (Y ≡ i ) on the deconvolution result. Ibu achieves such reduction
by repeating the reconstruction, each time replacing the prior with the estimate f̂ (k−1)

from the previous iteration. Equation 2.24 summarizes this update, bringing together
Equations 2.22 and 2.23. The initial prior f̂ (0) is specified by the practitioner.

f̂ (k)
i =

J∑

j=1

Rij f̂ (k−1)
i∑I

i′=1 Ri′j f̂ (k−1)
i′

· gj (2.24)

An example deconvolution with an inappropriate prior is visualized in Figure 2.3. The
initial prior f̂ (0) of this deconvolution is uniform, obviously not matching the true target
density f presented in dashed lines. Applying Bayes’ theorem a single time maintains
f̂ (0) to some degree, yielding the rather flat estimate from Figure 2.3a. Repeating the
reconstruction according to Equation 2.24 produces a more accurate estimate of f .
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(a) A single iteration of the algorithm retains
the uniform prior f̂ (0) to some degree.
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(b) The true density f is more tightly resem-
bled after five iterations.

Figure 2.3: Ibu reduces the influence of the initial prior f̂ (0) by applying Bayes’ theorem multiple
times. In this deconvolution on the toy data from Subsection 4.2.1, a uniform prior was used. This
prior does not reflect the double-peak structure of the true density f .

2.3.2 Smoothing and Early Stopping

Publications on Ibu report that the deconvolution result is unsatisfactory if the prior
is updated too often [6, 7]. This behavior is similar to the divergence observed with
Dsea. Ibu mitigates this divergence by smoothing the respective latest estimate f̂ (k−1)

before using it as a prior in the k-th iteration. Such smoothing is performed by fitting
some analytic form to f̂ (k−1). This form is then used as a prior, replacing the actual
f̂ (k−1). Second-order polynomials are presented as a suitable default for such analytic
form. However, it is noted that other forms may be more appropriate for the specific
scenario at hand. It should also be noted that the smoothing is neither performed on
the initial prior f̂ (0), nor on the last estimate. Since the operation biases the algorithm
towards smooth solutions, it is referred to as a kind of regularization.

Another kind of regularization feasible in Ibu is early stopping. However, publications
on the Ibu recommend to stop only when the difference between two subsequent estimates
f̂ (k) and f̂ (k−1) is sufficiently small, i.e. when no regularizing effect results from stopping
the iterative procedure. The change between estimates is measured by a χ2 distance and
the algorithm stops when this distance is smaller than some ε > 0. Unfortunately, the
given reference [6, 7] does not state which particular χ2 distance to use, even though
several of them exist. In our experiments, we use the χ2

Sym distance from Equation 2.25.
Subsection C.3.3 provides more information on this distance measure.

χ2
Sym( f̂ , f ) = 2 ·

I∑

i=1

(
f̂i − fi

)2

f̂i + fi
(2.25)
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2.3.3 The Algorithm

Ibu is specified in Algorithm 2.2. It produces a discrete estimate f̂ of the target density,
given the observed density g and the detector response matrix R. An initial prior f̂ (0)

can also be given, being uniform by default. The smoothing can be omitted or replaced
by another smoothing operation that employs a more appropriate analytic form.

Input:
Discrete observed density g ∈ RJ

Detector response matrix R ∈ RI×J

Discrete prior density f̂ (0) (default: f̂ (0)
i = 1

I ∀ 1 ≤ i ≤ I )
ε > 0, the minimal χ2

Sym distance between subsequent iterations

Output:
Estimated discrete target density f̂ ∈ RI

1: k ← 0

2: repeat

3: k ← k + 1

4: if k > 1 then f̂ (k−1) ← low-order polynomial fit of f̂ (k−1) (optional)

5: ∀ 1 ≤ i ≤ I : f̂ (k)
i ← ∑J

j=1
Rij f̂ (k−1)

i∑I

i′=1 Rij f̂ (k−1)
i′

· gj

6: until χ2
Sym

(
f̂ (k), f̂ (k−1)) ≤ ε

7: return f̂ ← f̂ (k)

Algorithm 2.2: The Iterative Bayesian Unfolding [6] without acceptance correction. Here, the
probabilistic symmetric χ2

Sym distance from Equation 2.25 defines the stopping criterion. The
smoothing in line 4 can be omitted or be replaced by fitting f̂ (k−1) to another analytic form.

2.3.4 Relation between IBU and DSEA

When Dsea employs a Naive Bayes classifier trained on a single nominal attribute, it is
equivalent to Ibu. Since Dsea is open to other classification algorithms and arbitrary
mixtures of multiple nominal and numerical attributes, it is therefore more general than
the Iterative Bayesian Unfolding. To see this relation between the two algorithms, let us
recap the reconstruction rule of Dsea previously presented in Equations 2.4 and 2.5.

f̂Dsea
i = 1

N

N∑

n=1
cM( i |xn)

cM( i |xn) = P̂ (X = xn | Y ≡ i ) · P̂ (Y ≡ i )
∑I
i′=1 P̂ (X = xn | Y ≡ i′ ) · P̂ (Y ≡ i′ )
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Let X consist of a single nominal attribute with J discrete values. Without loss of
generality, this means X = {1, 2, . . . , J}. Moreover, let Dj = {x ∈ Dobs | x = j } be
the set of observed examples with the attribute value j. Grouping the N observations
xn ∈ Dobs by their attribute values corresponds to a mere re-ordering of the observations.

f̂Dsea
i = 1

N

N∑

n=1

P̂ (X = xn | Y ≡ i ) · P̂ (Y ≡ i )
∑I
i′=1 P̂ (X = xn | Y ≡ i′ ) · P̂ (Y ≡ i′ )

= 1
N

J∑

j=1

∑

x∈Dj

P̂ (X = x | Y ≡ i ) · P̂ (Y ≡ i )
∑I
i′=1 P̂ (X = x | Y ≡ i′ ) · P̂ (Y ≡ i′ )

In this form, all terms in the inner sum are equal to each other because all x ∈ Dj
have the same value. Since this value is j, X = x can be written as X ≡ j. Moreover, let
Nj be the number of examples in Dj . The nested sum can then be simplified.

f̂Dsea
i = 1

N

J∑

j=1
Nj ·

P̂ (X ≡ j | Y ≡ i ) · P̂ (Y ≡ i )
∑I
i′=1 P̂ (X ≡ j | Y ≡ i′ ) · P̂ (Y ≡ i′ )

Recall that Ibu estimates gj from the relative number Nj
N . Moreover, each conditional

probability P̂ (X ≡ j | Y ≡ i ) is given by the corresponding component Rij of the
detector response matrix. P̂ (Y ≡ i ) is a component of the prior on f also written as f̂ (0)

i .
Rewriting the Dsea update rule under these considerations yields the update rule of Ibu
from Equation 2.24. Dsea is thus equivalent to Ibu, if a single nominal feature is used to
train a Naive Bayes classifier.

f̂Dsea
i =

J∑

j=1

Rij f̂ (0)
i∑I

i′=1 Ri′j f̂ (0)
i′
· gj

This equivalence does not hold if multiple features or a single numerical feature are
used in Dsea because the probabilities are computed differently, then. Moreover, the
algorithms are not equivalent if another classifier than Naive Bayes is employed. In the
sense that Dsea is able to use multiple features to train an arbitrary classifier, Dsea is
thus more general than the Iterative Bayesian Unfolding. This relation is first given here,
not being published before.
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2.4 Regularized Unfolding

The Regularized Unfolding (Run) [5, 2] is another method solving the discrete deconvolu-
tion problem from Section 2.2. It basically performs a maximum likelihood fit to estimate
the target density, assuming that the absolute number ḡj = N · gj of events is Poisson-
distributed in each observed sub-space Xj . Regularization is employed in order to produce
sufficiently stable results in spite of the large variance found in un-regularized solutions.
Subsection 2.2.3 already presented this variance as the difficulty of classical deconvolution.

In Run, the practitioner controls the amount of regularization by the number of degrees
of freedom ndf of the solution, what results in a crucial difference between the algorithm
and the standard maximum likelihood method. In order to achieve a fixed ndf , one has
to adapt the actual regularization strength τ—a factor in the objective function—in each
iteration of the algorithm. Usually, this factor has a fixed value, instead.

2.4.1 Likelihood Maximization

The likelihood L of a discrete target density f , given the outcome g of the measurement,
is defined as the conditional probability of g given f . Maximizing L therefore corresponds
to finding the f under which the observed density g is most likely. Such estimate f̂maxL

is presented in Equation 2.26. Run makes two simplifying assumptions about L to find
such estimate by equivalently minimizing the loss function from Theorem 2.1.

f̂maxL = arg max
f

L(f |g) where L (f |g) = P (g | f) (2.26)

Theorem 2.1 The minimizer of the loss function ` : RI → R maximizes the likelihood
L under the following two assumptions.

` (f) =
∑

j

RT
•j f̄ − ḡj ln

(
RT

•j f̄
)

Assumption 1 The components gj of the observed density are statistically indepen-
dent from each other, i.e. P(g | f) = ∏J

j=1 P(gj | f).

Assumption 2 The absolute number ḡj = N · gj of observations is Poisson-distri-
buted in each observed sub-space Xj ⊆ X . A Poisson distribution Pλ models the
probability of observing such absolute number r in a fixed time interval, in which the
average rate of observing an event is λ. This rate is respectively given by λj = RT

•j f̄ ,
where f̄ = N · f is the frequency distribution of the target quantity. The following
equation formalizes this assumption.

P(gj | f) = P(RT
•j f̄)
(
ḡj
)

where Pλ(r) = e−λ
λr

r! r ∈ N0

Proof. ` is obtained by plugging the two assumptions into Equation 2.26 while omitting
terms that are constant with respect to f . The full proof is given in Section A.3.
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A minimizer of ` is found with the Newton method from numerical optimization [19],
which evaluates a local quadratic model ˆ̀(k) of ` in each iteration k. The minimizer
of each local model is chosen as the next estimate f̂ (k+1), which eventually reaches a
(local) minimizer of the actual function `. Equation 2.27 presents such local model where
` = ∇ ` (̂f (k)) ∈ RI is the gradient and H = ∇2 `

(̂
f (k)) ∈ RI×I is the Hessian of ` at the

latest estimate f̂ (k). Run works similar to the Newton method, minimizing the regularized
loss function presented in the following section.

ˆ̀(k)(f) = 1
2 fTH f − fT (H f̂ (k) − `) (2.27)

2.4.2 Regularization

To regularize the minimizer of ` means to minimize the regularized loss function `r (f) =
` (f) + r (f) instead of `, thus reducing the variance of the estimate by biasing it towards
smooth solutions. Equation 2.29 defines the regularization term r(f), being conveniently
re-written as a matrix product which models the non-smoothness of f . The regularization
strength τ ∈ R is a meta-parameter usually chosen by the practitioner.

ˆ̀(k)
r (f) = ˆ̀(k)(f) + r (f) (2.28)

r (f) = τ

2 ·
I−1∑

i=2
(− fi−1 + 2 · fi − fi+1)2 = τ

2 · fTC f (2.29)

Up to this point, Run performs a standard maximum likelihood fit with usual regu-
larization. However, it does not fix the value of τ . Instead, the practitioner chooses an
effective number of degrees of freedom ndf of the solution, which is then forced upon the
estimate f̂ by adapting τ in every iteration. The changing value of τ makes the difference
between Run and the standard maximum likelihood method. Theorem 2.2 reveals the
relation between τ and ndf by re-formulating the local model.

Theorem 2.2 Consider the eigen-decomposition H = UDUT of the Hessian H from
Equation 2.27 and define D− 1

2 = diag
( 1√

D11
, . . . 1√

DII

)
. Let the transformed curvature

matrix C′ = D− 1
2 UTC U D− 1

2 have the eigen-decomposition C′ = U′D′U′T .

The regularized local model ˆ̀(k)
r from Equation 2.28 can be rewritten in the following form

to be interpreted as a surrogate function of f ′′ = U′ TD 1
2 UT f . Its actual minimizer is

f̂ = U D− 1
2 U′ f̂ ′′, when f̂ ′′ is the minimizer of this surrogate form.

ˆ̀(k)
r (f) = 1

2 f ′′T
(
I + τ ·D′ ) f ′′ − f ′′T

(
U D− 1

2 U′
)T (H f (k) − `

)

Proof. Theorem 2.2 directly follows from the given definitions. The full proof is given in
Section A.3.
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Theorem 2.3 The minimizer f̂ ′′ of the reformulated model from Theorem 2.2 is given by
the following equation, where ˆ̂f ′′ is the un-regularized minimizer obtained for τ = 0.

f̂ ′′i = 1
1 + τ D′ii

ˆ̂f ′′i where ˆ̂f ′′ =
(
U D− 1

2 U′
)T (H f (k) − `

)

Proof. The equation is obtained by setting the gradient of the reformulated local model
to zero. Its full derivation is given in Appendix A.3.

The sum of the regularizing factors 1
1 + τ D′ii

from Theorem 2.3 is considered the effective
number of degrees of freedom ndf of the minimizer f̂ , as defined in Equation 2.30. In case
of τ = 0, each of the I components of ˆ̂f ′′ fully contributes to the solution and thus ndf = I.
Accordingly, the total contribution of ˆ̂f ′′ to f̂ is reduced whenever τ is greater than zero.
Conversely, the value of τ has to be adapted so that the value of ndf—which is fixed by
the practitioner—is actually attained. Moreover, τ ’s value has to be changed in every
iteration because f̂ ′′ only minimizes the local model. According to the Newton method,
this model determines the next estimate of the Run algorithm. Multiple iterations are
required to find a local minimizer of `r that represents the final estimate of Run.

ndf =
∑

i

1
1 + τ D′ii

(2.30)

2.4.3 The Algorithm

Algorithm 2.3 plugs together the concepts presented in the previous two subsections, iter-
atively minimizing a local model ˆ̀(k)

r of the regularized loss function `r. The regularization
strength τ (k) of each iteration is accordingly chosen based on the reformulation of ˆ̀(k)

r from
Theorem 2.2. The algorithm returns an estimate f̂ of the discrete target density, its input
being the detector response matrix R, the discrete observed density g, and the desired
ndf chosen by the practitioner. Moreover, a minimal difference ε > 0 of losses between
iterations is given, which is used to stop the algorithm eventually.

The first estimate f (1) of Run is the least-squares solution presented in Equation 2.31,
where `LSq is the gradient and HLSq is the Hessian of `LSq at the zero vector. Equation 2.32
presents `LSq, which is the loss function associated to the method of least squares. f (1) is
a suitable starting point for the iterative algorithm, which requires some initial estimate.
The least-squares solution f (1) is obtained from every prior at which the gradient and the
Hessian of the convex function `LSq are computed. The zero vector is only chosen for
convenience.

f (1) = − H−1
LSq `LSq (2.31)

`LSq(f) = 1
2
∑

j

(
ḡj −RT

•j f̄
)2 (2.32)
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Input:
Discrete observed density g ∈ RJ

Detector response matrix R ∈ RI×J

ε > 0, the minimal difference between losses `r in subsequent iterations
ndf ≤ I, the desired number of degrees of freedom

Output:
Estimated discrete target density f̂ ∈ RI

1: k ← 1
2: f (1) ← − H−1

LSq `LSq

3: repeat
4: k ← k + 1
5: Decompose H = U D UT

6: C′ ← D− 1
2 UTCUD− 1

2

7: Decompose C′ = U′D′U′T

8: Choose τ (k) satisfying ndf = ∑
i

1
1+τ (k)D′ii

9: f̂ ′′ ← (
I + τ (k) ·D′)−1(UD− 1

2 U′
)T (Hf̂ (k−1) − `

)

10: f̂ (k) ← (
UD 1

2 U′
)̂
f ′′

11: until
∣∣`r( f̂ (k)) − `r( f̂ (k−1))

∣∣ ≤ ε

12: return f̂ ← f̂ (k)

Algorithm 2.3: Regularized Unfolding [2]. ` = ∇ `
(̂
f (k−1)) and H = ∇2 `

(̂
f (k−1)) represent

the gradient and the Hessian of the loss function ` from Theorem 2.1 at the latest estimate f̂ (k−1).
`LSq and HLSq accordingly denote the gradient and Hessian of the least squares loss at 0 ∈ RI .

2.4.4 Expansion and Reduction of the Problem

The most recent publication on Run suggests to perform an additional post-processing step
that reduces the dimension of a result f̂ ′ ∈ RI′ by averaging the values of neighboring bins
[2]. Here, we refer to this step as a reduction of the solution with the factor e ∈ N. Reducing
the solution means to obtain the low-dimensional result f̂ ∈ RI from Equation 2.33. The
publication suggests to fit f̂ ′ with Run, choosing ndf = I < I ′.

f̂i = 1
e
·
i′+e∑

i′= i

f̂i′ (2.33)

In order to obtain results with a final dimension equal to that of the other methods,
Run is applied to an expanded deconvolution problem with I ′ = e ·I discrete target values.
Reducing the result f̂ ′ of an expanded problem yields the initial dimension I, which is also
used in the other methods. Effectively, this expansion/reduction approach smooths the
final result f̂ in addition to the regularization already applied while fitting f̂ ′ with Run.
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2.5 Other Algorithms

In the scope of this work, Ibu and Run are presented as representatives of classical decon-
volution methods. They have been selected for this purpose due to their popularity and
due to their different motivations. However, more approaches to deconvolution exist, some
of which are roughly sketched in the following. These approaches are based on singular
value decomposition, on neural networks, and on a learning task formulated with respect
to densities instead of individual observations.

2.5.1 Singular Value Decomposition

The approach by Höcker and Kartvelishvili [20] is based on the singular value decompo-
sition (Svd) of the detector response matrix. A similar approach is presented already
with the naive estimator from Subsection 2.2.3. However, the Svd approach employs
regularization in order to achieve more robust results. The naive estimator does not reg-
ularize its estimate. Before applying regularization, Svd finds an un-regularized solution
to a surrogate problem. The regularized solution to the actual problem is then derived
from this un-regularized surrogate solution. These two steps are quite similar to the Run
algorithm. However, the computations are slightly different because Run performs an
eigen-decomposition instead of finding the singular values.

In addition to these aspects, some pre-processing steps are described for Svd, which are
not part of Run and the naive estimator. Therefore, the Svd approach may produce quite
different results, despite its similarities to these methods. Consequently, it is an important
direction of future work to study the effects of the pre-processing steps proposed for the
Svd deconvolution.

2.5.2 Neural Networks for Conditional Densities

The primary goal of the approach by Feindt [21] is to estimate the probability density of
each individual observation. In contrast, all other methods considered here estimate the
combined target density of an entire set of observations. However, Dsea is based on density
estimates for individual observations which are returned by the embedded classifier. One
direction of future work is thus to combine the neural network approach with Dsea by
embedding the neural net as a classifier.

Another aspect of the neural network approach to deconvolution is that continuous
density estimates are returned, instead of histograms. Dsea can presumably be extended
to deliver such continuous estimates, adapting this aspect from the neural network ap-
proach. However, continuous estimates run the risk of concealing the level of detail with
which an estimate is fit to the data.
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2.5.3 A Learning Task on Density Functions

The approach by Gagunashvili [22] is based on machine learning, like Dsea. However, it
does not embed a classifier to predict the target value of individual observations. Instead,
entire target densities are predicted from observed densities. This learning task is thus
quite different from the task to which Dsea translates the deconvolution problem. Ef-
fectively, it only learns the relation between the observed density and the target density,
which is then expressed in a detector response matrix, as usual. In the scope of the present
thesis, the detector response matrix is always learned from relative numbers, of which the
computation is straight-forward.

Having estimated the detector response, the approach by Gagunashvili obtains a simple
least squares solution to the discrete deconvolution problem. This step is similar to the
naive estimator from Subsection 2.2.3.

Improving the detector response matrix with machine learning is a relevant direction
of research. However, the approach by Gagunashvili requires multiple densities to learn
from. It thus requires a high volume of training data, which is costly in IACTs. Another
approach in the same direction is already presented here: Discretizing the feature space
with a decision tree improves the condition of the detector response matrix with a method
from machine learning.



Chapter 3

Regularized DSEA

The original version of Dsea diverges from the true target density after having found a
suitable estimate. Since this behavior renders the choice of the iteration numberK critical,
it is the first goal of the present thesis to stop Dsea from diverging. With a less critical
choice ofK, it is more likely that the algorithm produces accurate results in practice, where
it is applied to previously unseen data for which the optimal K is not known. Section 3.1
tracks the cause of the divergence down to the re-weighting rule of Dsea, which intends to
adjust the example weights so that the weighted training set follows the observed density.
It is shown that the original re-weighting rule does not implement this intention. This
issue is solved by a corrected re-weighting rule, which stops Dsea from diverging. The
corrected algorithm Dsea+ converges to a suitable estimate of the true target density.

Going beyond this achievement, the algorithm is accelerated to converge faster and
more accurately. For this purpose, the notion of a scalable step between iterations is
introduced in Section 3.2. Building up on this concept, Section 3.3 develops an adaptive
step size strategy which results in the accelerated method. Dsea+ bundles these aspects,
being presented in Section 3.4. Two additional aspects are investigated in Appendix B.
However, they do not improve Dsea significantly, and they are therefore excluded from
the powerful deconvolution tool presented here.

3.1 Correct Re-weighting of Training Examples

The re-weighting in Dsea intends to adjust the density of the weighted training set to the
respective latest estimate f̂ of the observed target density. However, the original update
rule fails to implement this intention if the training set is not uniformly distributed. This
defect results from the actual, un-weighted density f t ∈ RI of the training set not being
accounted for. Instead of weighting each xn ∈ Dtrain with the estimated probability f̂i(n) of
its respective bin i(n) = df (yn), each example has to be weighted with the ratio between

27
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Figure 3.1: The original and the corrected weighting are applied to a trivial training set, of which
each example is presented in one row of the left table. The two bar plots present the weighted
histograms of this set, clarifying that only the corrected weighting is appropriate.

this estimated probability and the corresponding probability in the un-weighted training
set. Such corrected update rule is presented in Equation 3.1. It replaces the second line
of the original Dsea stated in Algorithm 2.1.

w(k)+
n = f̂ (k−1)

i(n) / f ti(n) ∀ 1 ≤ n ≤ N (3.1)

Figure 3.1 illustrates the inadequacy of the original weight update with a simple exam-
ple. The table in this figure presents a trivial training set consisting of three observations
in two bins Y1 and Y2. Accordingly, the training set density f t =

( 1
3 ,

2
3
)
is not uniform.

Now imagine that same density to be estimated for the observed data, i.e. f̂ = f t. Since
both densities already match, all weights should have the same value so that the weighted
training set is effectively un-weighted. Otherwise, the weighted training density would not
match f̂ , which is the unfortunate case with the original update rule of Dsea. Normal-
izing the bin weights obtained from this rule produces the weighted training set density
( 1

5 ,
4
5
) 6= f̂ , which is displayed in the left bar plot in Figure 3.1. Equation 3.1 produces

the right bar plot, which correctly resembles the estimate f̂ .

Figure 3.2 shows that the corrected update rule stops Dsea from diverging. This effect
is particularly noticeable on training sets that are not uniformly distributed.
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Figure 3.2: The corrected update rule stops Dsea from diverging. This observation is made with
two training sets sampled from toy data. The left plot utilizes a uniform training set density, for
which the improvement is expectedly small. A non-uniform training set is used on the right, where
the original Dsea diverges dramatically and the improvement is significant.
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3.2 Scalable Steps

The notion of a scalable step between iterations is based on the following concept: By
iteratively updating the estimate f̂ , a suitable approximation of the true density f is
searched for in the space of all possible solutions. The difference between two subsequent
estimates corresponds to a step p(k) ∈ RI taken through this search space. Equation 3.2
defines this step, which is also referred to as the search direction of the k-th iteration. The
original Dsea takes the full step in each iteration, moving from one estimate to the other.
Dsea+ extends this original algorithm by scaling each p(k) with a corresponding factor
α(k) ≥ 0. This extension is formalized in Equation 3.3, which computes the improved
estimate f̂ (k)+ from a scaled step. The benefit of this extension is that the practitioner
can control the speed of convergence by choosing a suitable step size. Note that the
original estimate f̂ (k) is directly obtained by setting α(k) = 1.

p(k) = f̂ (k) − f̂ (k−1) (3.2)

f̂ (k)+ = f̂ (k−1) + α(k) · p(k) (3.3)

This concept of a scalable step requires an appropriate strategy for choosing α(k) in
each iteration. Table 3.1 reviews some simple strategies considered here, the last two of
which depend on the iteration number k. Each of these strategies is parametrized by a
single scalar also presented in the table. Such parameter controls the convergence speed
of the algorithm. An adaptive strategy, which evaluates the improvement of the estimate
in the given search direction, is presented in the following section.

strategy parameter step size

constant factor α > 0 α(k) = α

multiplicative decay (slow) 0 < η < 1 α(k) = k (η−1)

exponential decay (fast) 0 < η < 1 α(k) = η (k−1)

Table 3.1: Some simple strategies determine the step size α(k). η is referred to as the decay rate.
Each parameter controls the speed of the convergence in Dsea+.

Scalable steps render the choice of the final iteration number K less critical than it is in
the original algorithm. A simple constant stepsize α < 1 already approaches the optimal
solution more slowly than the original Dsea, thus providing a larger range of suitable
iterations. The decaying step sizes have the additional benefit of effectively stopping the
algorithm gradually by approaching zero over time. Therefore, a maximum number of
iterations does not have to be specified with one of these strategies. Instead, the χ2

stopping criterion already proposed for Dsea [4] becomes feasible.
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Figure 3.3: Two constant step sizes are compared to the original Dsea with step size one. The
constant step size strategy does not stop Dsea from diverging, which is indicated by the Earth
Mover’s Distance slightly increasing with k. However, the constant step sizes stretch the range
of suitable iterations. For reference, the results obtained with an optimal step size are given.
This optimal size is chosen with full knowledge about the true density f , which is not available in
practice. It thus produces the best estimates theoretically obtainable with the stepsize extension.

Figure 3.3 presents an experiment on toy data, in which different constant step sizes
are applied. These step sizes do not regularize Dsea, but they stretch the range of suitable
iterations to stop at. Compared to the original algorithm, it is therefore less critical to
select a total number K of iterations. On the other hand, more iterations of Dsea are
performed with these strategies, leading to an increased run time.

The convergence of the two decay strategies is presented in Figure 3.4, where the same
toy data set is used. Apparently, the decay rate η is a critical parameter for the fast
exponential decay. For the multiplicative strategy, this parameter appears less critical.
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Figure 3.4: The two decay strategies are compared to the original Dsea. Exponential decay
(right) converges much faster than the multiplicative decay strategy (left). It even stops too early,
if not configured appropriately. The original Dsea and the optimal step size are presented already
in Figure 3.3.
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3.3 Adapting the Step Size

Configuring the simple step size strategies is already less critical than specifying the iter-
ation number K in the original Dsea. However, making the wrong choice—for example
due to differences between the simulated data and the observed data—can lead to decon-
volution results that are not optimal. Instead of fixing α(k) to a constant value or decay
rate, the following strategy therefore adapts the step size to the previous estimate f̂ (k−1)

and to the search direction p(k). This adaptive strategy accelerates the convergence while
improving the accuracy of the deconvolution result.

The adaptive strategy minimizes the regularized objective function `r known from
the Run algorithm (see Section 2.4) in the direction of search. Thus, it maximizes the
likelihood of the next estimate in the direction determined by Dsea. In contrast, Run
attempts to maximize the likelihood in the I-dimensional space of all possible solutions,
not only in this single direction.

α
(k)
Run = arg min

α ≥ 0
`r
(

f̂ (k−1) + α · p(k)
)

(3.4)

Equation 3.4 is parametrized with the regularization strength τ ≥ 0 contained in `r.
However, this parameter has almost no impact on the step size. In contrast to Run, τ is
therefore not changed in every iteration. Moreover, τ = 0 is a reasonable default value,
which corresponds to no regularization of the adaptive step size. Note that the adaptive
strategy is inspired by a usual algorithmic pattern in numerical optimization, where the
basic algorithm selects a search direction and a sub-routine called line search selects an
appropriate step size for this direction [19].

Figure 3.5 presents the adaptive strategy on the toy data set. This strategy (almost)
attains the the optimal step size for different values of τ . Remarkably, it takes a first
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Figure 3.5: The adaptive step size strategy is compared to the original Dsea. Convergence
happens quickly and in a remarkable proximity to the true solution f . Note that the y axis scale
is logarithmic in this plot.
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step that is larger than one, thus approaching the optimal solution faster than the original
Dsea. Moreover, the algorithm stops as soon as the adaptive strategy does not expect
any further improvement of the estimate, thus saving resources by not wasting iterations.

3.4 The Extended Algorithm

Algorithm 3.1 plugs together the aforementioned aspects, which are the corrected re-
weighting of training examples and the step size, which is adaptively chosen by maximizing
the likelihood in the direction of search. The convergence is checked with the χ2

Sym distance
between subsequent iterations. This distance is small whenever α(k)

Run is.

Input:
Observed data set Dobs =

{
xn ∈ X : 1 ≤ n ≤ N }

Training data set Dtrain =
{

(xn, yn) ∈ X × {1, 2, . . . , I} : 1 ≤ n ≤ N ′ }

τ ≥ 0, the regularization strength employed in the stepsize adaption (default: 0)
ε > 0, the minimal χ2

Sym distance between subsequent iterations (default: 10−6)

Prior density f̂ (0) (default: f̂ (0)
i = 1

I ∀ 1 ≤ j ≤ J)

Output:
Estimated target density f̂ ∈ RI

1: k ← 0
2: repeat

3: k ← k + 1

4: ∀ 1 ≤ n ≤ N ′ : w
(k)+
n ← f̂ (k−1)

i(n) / f ti(n)

5: InferM from Dtrain weighted by w(k)+
n

6: ∀ 1 ≤ i ≤ I : p
(k)
i ← 1

N

∑N
n=1 cM( i |xn) − f̂ (k−1)

i

7: α
(k)
Run ← arg minα≥ 0 `r

(
f̂ (k−1) + α · p(k) )

8: f̂ (k)+
i ← f̂ (k−1) + α

(k)
Run · p(k)

9: until χ2
Sym

(
f̂ (k), f̂ (k−1)) ≤ ε

10: return f̂ ← f̂ (k)

Algorithm 3.1: The improved Dortmund Spectrum Estimation Algorithm Dsea+ corrects the
re-weighting of the training examples and adapts the step size α(k)

Run in each iteration. The algorithm
stops when the χ2

Sym distance is below a given threshold ε, which is reached when α(k)
Run is small.
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Comparative Evaluation

The goal of the present chapter is to find the best deconvolution method among the ones
presented. This goal is specifically targeted at Cherenkov astronomy, being approached
with data sets from two different IACTs. All algorithms are trained with multiple densities
of the training set and their configuration is optimized over a comprehensive grid of meta-
parameters. All experiments are conducted on multiple random bootstrap samples.

Section 4.1 introduces, how the quality of individual deconvolution results is mea-
sured. The data sets utilized in the experiments are presented afterwards, in Section 4.2.
Section 4.3 describes the overall experimental setup, which employs bootstrapping and
two different training densities to assess the robustness of the deconvolution results. The
methods are compared with each other in Section 4.4.

4.1 Assessing the Quality of Deconvolution Results

The accuracy of deconvolution is assessed by measures of statistical distance. Such distance
is a quantity of dissimilarity between probability density functions. The quality of a
deconvolution result f̂ is captured by such quantity being evaluated between f̂ and the
respective true density f of the deconvolved data set. A large distance between f̂ and
f indicates that f̂ is not accurate. There is a plethora of statistical distance measures,
many of which have similar semantics [23]. In the scope of this thesis, the Earth Mover’s
Distance (Emd) [24] is favored, which naturally extends the ground distance between
individual examples to densities of example sets. The Emd is therefore particularly well
suited for the evaluation of deconvolution results. This measure, which is also referred to
as Wasserstein metric [25], is presented in the following.

Equation 4.1 defines the distance δEmd as the minimum cost of transforming one his-
togram into the other. Such transformation is defined by a set F of flows fii′ between the
bins i, i′ ∈ {1, 2, . . . , I} of the histograms f and f̂ . Each flow induces some cost cii′ · fii′

33
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depending on the cost per element cii′ between the bins i and i′. The metric cii′ is referred
to as the ground distance, giving the dissimilarity of individual examples from these bins.

δEmd
(

f̂ , f
)

= min
F

∑

fii′∈F
cii′ · fii′ (4.1)

subject to fii′ ≥ 0
∑I
i′=1 fii′ = fi
∑I
i=1 fii′ ≤ f̂i′ ∀ i, i′ ∈ {1, 2, . . . , I}

Finding the minimum in Equation 4.1 requires to optimize the flow F between the
two histograms. Such optimization corresponds to a bipartite network flow problem called
transportation problem. Figure 4.1 illustrates this problem with the structure of the cor-
responding graph. The optimization is constrained so that applying the flow to a discrete
probability density function correctly results in another density function. It should be
noted that the original Emd [24] is more general than the δEmd presented here because
it is defined over signatures instead of histograms. Signatures are variable-length descrip-
tions of densities, which are more versatile than histograms but not required here. Note
that Equation 4.1 omits the normalization factor ∑fii′∈F fii′ proposed in [24] because it
is equal to 1 for any probability density function.
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Figure 4.1: Bipartite network of bins in f and f̂ with flows fii′ ∈ F in between. Only some of the
flows are annotated here for visibility, but flows are present between all pairs of bins. The Emd
minimizes the total cost of all flows, which is a sum of individual costs cii′ ·fii′ . Such minimization
is constrained by the equalities and inequalities placed next to the nodes.

Solving the linear optimization problem imposed by Equation 4.1 is computationally
expensive. However, limiting the Emd to special cases can enable researchers to develop
more efficient algorithms computing this distance. The ordinal Minimum Distance of Pair
Assignments (Mdpa) [26] is one such algorithm which is limited in the following ways
when compared to the general Emd:

• Mdpa only applies to univariate histograms

• Both histograms in consideration must have the same number I of bins

• The absolute distance between bin indices is used as the ground distance, namely
cii′ = |i− i′| ∀ i, i′ ∈ {1, 2, . . . , I}.
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Mdpa coincides with the Emd if these properties are met, which holds for all experi-
ments conducted here. Accordingly, Algorithm 4.1 computes the Emd efficiently—it only
requires a single pass over all bins to do so. The idea behind this algorithm is that exam-
ples in the univariate histograms f and f̂ can only be shifted leftwards or rightwards. The
excess shifted over the i-th bin is captured in the corresponding variable e(i). The sum of
absolute shifts is the Emd under the limitations given above [26].

By the way, in the analogy that gave the Emd its name, one density is seen as a pile of
dirt and the other one is seen as holes accordingly placed. The Earth Mover’s Distance is
the minimum amount of work required to fill all holes, which is induced by moving some
of the dirt. The further some dirt has to be moved, the more work is required.

Input:
Univariate discrete density functions f and f̂ , each with I ∈ N bins.

Output:
δEmd = ∑I

i=1
∣∣ e(i) ∣∣

1: e(0) ← 0
2: for i ← {

1, 2, . . . , I
}
do

3: e(i) ← e(i−1) + fi − f̂i

Algorithm 4.1: The ordinal Minimum Distance of Pair Assignments (Mdpa) [26]. This algorithm
computes the Earth Mover’s Distance δEmd for univariate discrete density functions with the same
number of bins I ∈ N if the ground distance is the absolute distance between bin indices, i.e.
cii′ = |i− i′| ∀ i, i′ ∈ {1, 2, . . . , I}.

In addition to the Earth Mover’s Distance, multiple other distance measures are eval-
uated in the experiments to provide results that are comparable with other studies. Any
other study, which may use one of these additional measures, but not the Emd, can thus
be related to the present thesis. These additional measures are defined in the Section C.3.
Plots of their experimental values are not presented here, due to the particular suitability
of the Emd for quality assessment in deconvolution. However, all distances are provided
for all experiments with the supplementary material of this thesis. Notably, all metrics
produce plots with similar interpretations. The following distance measures are considered
in addition to the Emd:

• δKL – the Kullback-Leibler divergence

• δH – the Hellinger distance

• δχ2
P

– Pearson’s χ2 divergence

• δχ2
Sym

– the probabilistic symmetric χ2 distance
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δ
(

f̂ , f
)

δ
(

f̂ ′, f
)

δEmd 0.708 < 0.943

δKL 0.03 ≈ 0.029
δH 0.081 ≈ 0.08
δχ2

P
0.079 ≈ 0.075

δχ2
Sym

0.026 ≈ 0.025

Y

P

f
f̂
f̂ ′

Figure 4.2: The selected distances are compared to each other on discrete variants f̂ , f̂ ′, and
f of the continuous functions displayed on the left. f̂ and f̂ ′ resemble f quite well, except for
their respective bumps. The areas spanned by these two local divergences are equal, resulting
in approximately equal values in most distance measures. δEmd is the only distance that takes
different values because it appropriately considers the position of local divergences.

Compared to these classical distance measures, the Emd is the only distance taking the
position of local divergences into account. Figure 4.2 indicates this property by evaluating
δEmd and the other distance measures between some example densities. The only distance
which takes different values for the two presented divergences is the Emd. Since the right
bump is further away from the main part of the density function, this property is desired
for distance measures that evaluate particle energy densities. Namely, a practitioner would
consider the density with the right bump to be less accurate than the other one, if f is the
true density. The Emd is therefore particularly suitable for the evaluation of deconvolution
algorithms in the IACT domain.

4.2 Data Sets

The deconvolution methods are evaluated on multiple data sets. First of all, a set of toy
data is presented here, which is already used to obtain the plots presented in the previous
chapters. This toy data is synthetically generated and therefore available in abundance.
Due to its arbitrary volume and due to the absence of unintended noise, this data set is
primarily used to study the improvements already proposed for Dsea. However, it is also
used in the final comparison of methods, which is conducted later in this chapter.

The other two data sets come from the IACT domain, for which the best deconvolution
method among the presented ones is searched. These two data sets have been simulated
for two different telescopes. They differ in the number of available examples and in the
range of the energy density that is deconvolved.
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4.2.1 Toy Data Set

The target density of the observed toy data set is a mixture of two Gaussian components,
which is already presented as the true density f in Figure 1.2 and in Figure 2.3. In
contrast to this observed data, the separate training data set is uniformly distributed
in the target quantity. Using two different densities for training and deconvolution is
motivated by the idea that a deconvolution method should produce a result which is
independent from the density assumed for training. This desired property is checked by
choosing an inappropriate training density on purpose.

The target quantity values of each data set are drawn at random, according to their
respective density. These values are then used to generate ten observable quantities for
both data sets. The values of these observable quantities are generated according to
Equation 4.2, which defines the value of the k-th quantity in the n-th example based on
the target value yn ∈ Y previously drawn. The scalar N ( yn, σk) ∈ R in this definition
refers to a single value sampled from a Gaussian density with the standard deviation σk
and the mean yn. The real-valued parameters ok, fk, σk, and ek of each quantity are
randomly chosen beforehand. They are identical for the observed data and the training
set, so that the relation between the target quantity and each observable is fixed.

xn,k = ok + fk · N
(
yn, σk

) ek ∀ 1 ≤ k ≤ 10, 1 ≤ n ≤ N (4.2)

Figure 4.3 presents the densities of three of the ten observable quantities in the training
and deconvolution data sets. Due to the flat target density of the training set, the double-
peak structure of the deconvolved density is not present there. It remains to be noted
that the generation according to Equation 4.2 is slightly different from what has been
published for a similar data set used to evaluate Dsea elsewhere [27]. However, the
generation presented here strictly implements the computation taken out by the author
of this publication1.
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Figure 4.3: The pre-images of the observable quantities X1, X2, and X3 have two slight peaks
in the deconvolution data set, which are not present in the uniformly distributed training data.

1Source code is available to users authorized by Tim Ruhe: https://bitbucket.org/tim_ruhe/dsea

https://bitbucket.org/tim_ruhe/dsea
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4.2.2 IACT Data Sets

The following presentation introduces two data sets which have been simulated for different
IACTs. An overview of their common data analysis chain is given before the differences
between the two data sets are identified.

Analysis Chain

The atmospheric processes involved in Cherenkov astronomy form an air shower from each
initial γ particle, being already introduced in Chapter 1. An IACT records a raw video
sequence from the Cherenkov light emitted by each shower. Each video sequence is then
processed in the analysis steps presented in Figure 4.4.

The first step in this analysis chain is to calibrate each video sequence and to identify
pixels that belong to the observed shower. In the subsequent step, features are extracted
from each calibrated observation. These features represent the observations on a higher
level of abstraction, which facilitates the following analysis steps. One popular choice in
Cherenkov astronomy is to extract the Hillas parameters [28] of the observation, which
describe geometrical features like the orientation and the size of a shower.

The third step discards observations that do not picture a γ particle. This step is
mandatory because most of the observed showers are actually induced by other particles
which do not come from the celestial object under study. Only for γ rays it is certain that
an observed particle really originates from the monitored object. Any particle of another
type may have a different origin and it therefore has to be excluded from the measurement.
The separation of γ particle observations from other showers is usually performed with
machine learning models trained on simulated data. Ideally, the separation results in a
pure sample of γ observations, which are represented by their previously extracted features.

The last step of the analysis chain proposed by [1] is to estimate the energy of each
individual γ particle. However, this step is usually omitted in deconvolution. Instead,
the energy density of the entire γ sample is estimated, based on the output of the signal
separation step. Deconvolution adopts each feature as one observable quantity.

Calibration,
Cleaning

Feature
Extraction

Signal
Separation

Energy
Estimation( )

Figure 4.4: The analysis chain of an IACT calibrates the raw observations and represents them
by their features. It then obtains a pure set of γ particle observations [1]. The last of these steps is
usually not performed for each individual event. Instead, the energy density of the entire γ sample
is estimated by deconvolution.
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FACT and MAGIC

The First G-APD Cherenkov Telescope (FACT) [29] is the first IACT making use of
G-APD photo-multiplier diodes. Unlike photo-multiplier tubes, which are used in other
IACTs and which require a dark night sky background to observe γ radiation, these diodes
can also be operated in moonlit nights. This robust design is particularly useful when a
celestial γ ray source has to be monitored for several months straight. One of the major
goals of the FACT telescope is therefore to monitor Active Galactic Nuclei, which have
to be monitored continuously for long periods of time. However, FACT is a comparably
small device, which only has a reflective surface of roughly 10m2. Due to its modest size,
FACT can only observe a rather small energy range.

The other IACT considered here is the Major Atmospheric Gamma Imaging Cherenkov
(MAGIC) telescope [30, 31]. Actually, MAGIC is a stereoscopic system consisting of two
independent telescopes. Its stereoscopic design allows the instrument to estimate certain
properties of air showers with a particularly high precision. For example, the height of
the first particle interaction is reconstructed more accurately with two telescopes, which
can assess the distance of this first interaction more precisely than a single telescope can.
Each of the two reflectors spans 17m in diameter, yielding a total reflective surface that
is about 45 times higher than that of FACT. Due to this large surface, MAGIC is able to
detect a much wider range of particle energies.

Figure 4.5 compares the two data sets that are simulated for FACT and MAGIC. It
shows that the MAGIC telescope detects a much wider energy range than FACT, which is
due to the different scales of the two instruments. Also, the slope of the density is higher
in FACT than it is in MAGIC. Last but not least, the MAGIC data set consists of more
examples than the FACT data set.
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f
FACT
MAGIC

FACT MAGIC

γ set size 215,416 ex. 443,381 ex.
min(E) 102.4 GeV 101.0 GeV
max(E) 104.2 GeV 104.5 GeV

Figure 4.5: The two IACT data sets are compared with each other. The density f of γ particle
energies spans a range that is broader for MAGIC than it is for FACT. Moreover, the MAGIC
data contains more than twice as many γ particles as the FACT data set.
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4.3 Evaluation Strategy

A fair and reliable comparison of deconvolution methods requires an appropriate evaluation
strategy, which is presented in the following. This strategy assesses the quality of the
deconvolution results repeatedly on different sub-samples of the data, allowing to compare
the mean performance and the variance of the investigated methods. Bootstrapping is
used here, for this purpose.

Since deconvolution methods should be robust to inappropriate training set densities,
each experiment is conducted on two training sets, which have different target densities.
Comparing the results obtained with these training sets allows to assess the effect of
inappropriately distributed training data.

4.3.1 Bootstrapping

When evaluating a predictive method like a classifier or deconvolution method, one is
typically interested in the accuracy exhibited in practice, on previously unseen data. This
accuracy can only be assessed by using distinct sets of training and test data, the last
of which is used for estimating the accuracy that the trained model exhibits on novel
examples. However, a single split into training and test sets can produce varying results
because usually, there are some splits that are easier to solve than others. This problem
led to two major evaluation strategies for predictive methods, which are bootstrapping and
cross validation. Both strategies repeat the split into training and test data and aggregate
the accuracy of the method exhibited on all test sets. The two strategies primarily differ
in the way they perform the split.

In each iteration b, bootstrapping randomly splits the complete pool of data into two
distinct sets DIb

b and DOob
b , which are referred to as “in-bag” and “out-of-bag” data.

When evaluating a classifier with a single data pool, these sets are used as the training
and test set, as presented in Figure 4.6a. Each DIb

b is obtained by drawing N examples
with replacement, where N is also the size of the complete pool. Due to the replacement,
some of the examples in the pool are drawn multiple times and others are not drawn at all.
In contrast, each DOob

b consists of the examples which are not drawn in iteration b. Each
DOob
b is therefore distinct from the corresponding DIb

b . The probability of an individual
example to be in DOob

b , i.e. to be drawn zero out of N times, is given in Equation 4.3.
This probability is also the size of DOob

b relative to the entire data pool, because each
example has the same chance to be in DOob

b . The e0 bootstrap used here estimates the
true quality of a model by the mean quality over all bootstrap iterations.

P (example is in DOob
b ) =

(
1− 1

N

)N N→∞= 1
e
≈ 0.368 (4.3)
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(a) Bootstrapping repeatedly splits a
pool of data into B disjunctive “in-bag”
and “out-of-bag” data sets DIb

b and DOob
b .

Usually, a classifier is evaluated by using
each set DIb

b for the training and each
corresponding DOob

b for validation. The
quality values obtained in all iterations
are aggregated then.
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2
...

...

obs1

obs2

test1

test2

f
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(b) Deconvolution deals with two data pools,
which may follow different target densities. Conse-
quently, both of these pools are bootstrapped sep-
arately. The in-bag sets of the training data and
the observed data are combined in the deconvolu-
tion and each result is validated with the corre-
sponding out-of-bag set of the observed data. The
out-of-bag training sets are discarded here.

Figure 4.6: Bootstrapping is used to evaluate classifiers and deconvolution methods.

In deconvolution, there are two separate data pools, one for training examples and
one for observations. These pools may have different sources and they may follow differ-
ent densities of the target quantity. For instance, IACTs require a simulated training set
because the true energy of a γ particle is only known for simulated data but never for ex-
amples actually observed with a telescope. The training set therefore comes from another
source, the simulation, than the data to which the deconvolution is applied. Particularly,
the observed data can follow another energy density than what is assumed for simulating
the training set. When evaluating deconvolution methods on simulated data only, this
situation is resembled by splitting the data into two distinct data pools. The toy data set
is generated in two separate pools, already (see Subsection 4.2.1).

The two data pools are bootstrapped separately here, as presented in Figure 4.6b.
Each iteration of this bootstrapping strategy combines an in-bag training set DIb′

b with
an observation set DIb

b , which is deconvolved. Note that the observable quantities of
DIb
b contribute to the deconvolution result. DIb

b should therefore not be used to assess
the deconvolution quality. Instead, the out-of-bag observation set DOob

b is used for this
purpose. The quality of the results is thus assessed on previously unseen data, while the
separation of the training pool and the observed data pool is maintained.
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data set Emd to f

toy data 3.23 · 10−02 ± 1.44 · 10−02

MAGIC 2.25 · 10−02 ± 1.02 · 10−02

FACT 1.76 · 10−02 ± 6.93 · 10−03

Figure 4.7: More examples provide a more appropriate true target density fN . Approximately
N = 18 394 examples (vertical line) are expected in each out-of-bag test set. The mean qualities and
the standard deviations of fN obtained with data sets of this size are presented in the table. These
values correspond to the best quality obtainable with deconvolution, when only 18 394 examples
are available to assess that quality.

In every experiment, the size of the observed data pool is fixed to N = 50 000 examples,
yielding an expected number of (1− 1

N )N ≈ 18 394 examples in DOob
b . Figure 4.7 displays

the error induced by using such finite pool for obtaining a “true” density fN . The y
axis of this plot presents the distance of fN to the density f that would be obtained
with all available examples. The table in this figure presents the values at N = 18 394,
representing the lower bounds on the quality that is possible in the evaluation experiments.
These bounds are only obtained with full knowledge about the target quantity in DOob

b .
The remaining error stems from the finite volume of the evaluation set alone.

Each experiment uses B = 20 bootstrap iterations. This number yields a reasonable
run time and it provides 5% and 95% quantiles, which are used to plot the variability of
each result.

4.3.2 Appropriate and Uniform Training Densities

In practice, the target density of the training set is usually different from the target density
of the observed data, which is estimated by deconvolution. Therefore, deconvolution
methods should be robust to inappropriate training set densities. In other words, the
density of the training set should not bias the deconvolution result.

This property is checked here by conducting each experiment with two different train-
ing sets, one of which is appropriately distributed, and one of which follows a uniform
target density. The first training set is referred to as “appropriate” because its target
density is identical to the density of the observed data. In contrast, the uniform density
of the other training set is quite different from the observed density and it is therefore
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considered inappropriate. The robustness of deconvolution methods is assessed by com-
paring the results obtained with these two training sets. A method that is not robust will
produce different results, each of which is biased towards the respective training density.
In contrast, robust methods will produce results that are approximately equal for both
training sets.

While the appropriate training set density is already inherent to the data, it is necessary
to sub-sample each training pool in order to obtain a uniform training density. Table 4.1
presents the volume of the resulting training pools for FACT, MAGIC, and for the toy
data. The size of the appropriate training set is the respective full volume containing all
examples that remain after randomly taking 50 000 examples to obtain the test pool.Sub-
sampling the uniform training data from this full volume reduces the number of examples
available for training. This effect is particularly drastic for the FACT data, which has a
large slope in the target density. The toy data has a basically arbitrary size because it is
generated with negligible effort.

All experiments conducted here use at most N ′ = 100 000 randomly chosen examples
for training, which are enough to train sufficiently accurate models. A fair comparison
between the two training sets is only possible with such limit. If otherwise all available
examples were used, the appropriate training set would have an additional advantage from
its large volume. This undesired advantage is later observed on the FACT data, which can
only provide 9 048 examples for the training with a uniform density. Compared to all other
experiments with N ′ = 100 000, such training set is below 10% in volume. Consequently,
poor estimates have to be expected for the uniform training density with FACT data.

data set training density training pool size

MAGIC appropriate 393,381 ex.

MAGIC uniform 126,900 ex.

FACT appropriate 165,416 ex.

FACT uniform 9,048 ex.

toy data appropriate arbitrary

toy data uniform arbitrary

Table 4.1: Sub-sampling the uniform prior reduces the number of training examples compared
to the full training pool, from which the appropriate training set is sampled. The toy data is
generated synthetically, so that arbitrary data set sizes can be obtained with negligible effort.



44 CHAPTER 4. COMPARATIVE EVALUATION

4.4 Model Selection

In order to find the best algorithm for deconvolution in the IACT domain, each deconvolu-
tion method is optimized by a grid search over a comprehensive grid of meta-parameters.
The results of the best configurations are then compared to each other.

The dense parameter grid is presented in Table 4.2. Since preliminary experiments
revealed that a target dimension I < J does not produce appropriate results in Run, the
grid excludes expansion factors e that let the expanded target dimension I ′ = e · I exceed
the observable dimension J . After omitting such configurations, the grid contains 1035
cells for the Toy data (I = 21) and 1053 cells for each of the IACT data sets (I = 12).

method parameter values

all convergence threshold ε 10−1, 10−2, . . . , 10−9

Dsea+ τ (regularization α(k)
RUN) 10−3, 10−4, . . . , 10−9, 0

Ibu and Run number J of clusters 21, 84, 147, 210

Ibu smoothing order 1, 2, . . . , 9, no smoothing

Run expansion factor e 1 (no expansion), 2, . . . , 6

Table 4.2: The grid of parameter values which is searched in the comparison experiment. Dsea
and Dsea+ employ a Naive Bayes classifier on the toy data and a Random Forest otherwise.
Expansion factors are omitted if they result in a target dimension I ′ = e · I greater than the
number J of clusters.

As already presented in the previous subsections, each configuration is applied to the
three data sets, each time being trained on the two different training set densities. Each
of these experiments is conducted in a 20-fold bootstrap, with which the variability of the
deconvolution results is assessed. All in all, this comprehensive setup conducts 125 640
deconvolution runs.

4.4.1 Experimental Results

The best configuration of each method is selected with the mean in-bag quality of the
deconvolution results. The observed out-of-bag sets thus remain unseen during the model
selection. The out-of-bag quality values are only evaluated for the final quality assessment
presented in Figure 4.8. This figure presents the best results obtained with the different
methods on the three data sets, using the two different training densities. The horizontal
lines represent the optimal values which are only obtained with full knowledge about the
target quantity in the out-of-bag set. This knowledge is never available.
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Figure 4.8: The accuracy of Dsea+, Ibu, and Run is assessed with the Earth Mover’s Distance
between the deconvolution results and the corresponding true densities. A high value thus indicates
a low quality of the respective result. Each bar is obtained with the best configuration of the
corresponding method evaluated on 20 bootstrap samples. The horizontal lines present the optimal
values that would only be obtained with full knowledge about the target quantity, which is never
available (see Figure 4.7).

First of all, the extended Dsea+ algorithm outperforms the original Dsea in each
of the experiments. This improvement is in the order of one magnitude with respect to
the Emd. Dsea+ yields an accuracy that is about equal to the quality of the classical
approaches Ibu and Run. Moreover, the variability of the results is about equal between
Ibu, Run, and Dsea+. The minor differences between the mean quality values stay within
the error bars. Thus, Ibu, Run, and Dsea+ are capable of producing results of equal
accuracy. Figure 4.9 shows the similarity of the estimates obtained with the different
methods.

Ibu, Run, and Dsea+ are robust to the inappropriate training set density. Namely,
each method performs equally well on both considered densities. Exceptionally, all of these
methods are inaccurate with the uniform density on the FACT data set.
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Figure 4.9: The deconvolution results of Dsea+ (left) and Run (right) are remarkably similar
on the uniform training density of the MAGIC data set. This observation extends to the other
methods, data sets, and training set densities.
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The reason for the extraordinarily low accuracy on the uniform density with FACT is
the small size of the corresponding training set. Due to the uniform sub-sampling, only
about 10% of the data is available for training, compared to all other experiments (see
Table 4.1). Dsea+ suffers most from this small volume. Apparently, more data is required
for reliably fitting the embedded classifier than for directly fitting the target density with
maximum likelihood (Run) or with Bayes’ rule (Ibu).

4.4.2 Influence of the Meta-Parameters

The meta-parameter grid employed for model selection allows us to assess the influence
of the individual parameters. This is done for Dsea+, Ibu, and Run. The non-adaptive
step size strategies proposed for Dsea are also investigated.

Dsea+ is configured with the regularization strength τ used in the step size adaption
and with the convergence threshold ε. Figure 4.10 fixes ε to two different values, thus
focusing on the influence of τ . It becomes apparent, that equally accurate results are
obtained with all regularization strengths. Consequently, maximizing the likelihood of the
estimate in the search direction of Dsea+ does not require regularization at all. Moreover,
the influence of the convergence threshold is small, as well. Dsea+ can thus be applied
“safely” without extensively optimizing these meta-parameters. Namely, optimizing them
will not improve the results significantly, compared to the default parameter values, which
already produce accurate results.

The effect of the different meta-parameter values in Ibu and Run is investigated in
Figure 4.11. One can see that both methods are only marginally influenced by the number
J of observable clusters, even though a large value of J yields slightly better results than
low values. This effect is observed for all smoothing orders and regularization strengths.
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Figure 4.10: The accuracy of Dsea+ is almost constant with respect to the regularization strength
τ . Moreover, the convergence threshold ε only exhibits a small influence on the accuracy. This
observation is made here with the uniform training density on MAGIC data. It perfectly extends
to the other data sets and training set densities.
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Figure 4.11: The influence of meta-parameters is assessed for Ibu (left) and Run (right). For
Ibu, these parameters are the order of the polynomial smoothing and the number J of observable
clusters. Apparently, smoothing can only improve the result marginally and only if a high smooth-
ing order is chosen. If no smoothing is applied, the choice of J only has a small influence. Run
works best with a large expansion factor, i.e. with a high amount of regularization.

Surprisingly, the smoothing of Ibu exhibits a negative impact on the accuracy. Only
high polynomial orders perform well in the experiments conducted here. However, these
high orders contradict the intention behind the smoothing, which is to approximate the
prior to regularize the estimates. In fact, the target densities estimated here are not
accurately reproduced by low-order polynomials. A smoothing with low-order polynomials
consequently regularizes the estimates towards mistaken prior assumptions. Apparently,
smoothing is only beneficial with an analytic form that represents an appropriate prior.

Run is configured by the expansion factor, which determines the strength of the regu-
larization. High factors, corresponding to strong regularization, generally perform best in
the experiments conducted here. However, the improvement is rather small.
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Figure 4.12: Small constant step sizes and fast decay rates (for which η is small) require small
convergence thresholds ε in order to produce accurate results. This observation is made on all
non-adaptive step-size strategies.
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Figure 4.12 displays the influence of different constant step sizes and decay rates for
the non-adaptive step size strategies in Dsea+. Even though these strategies are not
considered in the comparison from the previous subsection, they are also optimized over
a meta-parameter grid in order to assess the influence of their parameters. The figure
shows that small step sizes—either constantly small or rapidly decaying—require small
convergence thresholds in order to produce accurate results.

Naturally, small thresholds require many iterations in the non-adaptive step size strate-
gies. This expectation is validated in Figure 4.13, where the required iteration numbers
are plotted against the convergence threshold. While many iterations are required by the
constant step sizes, it can be seen that even the smallest thresholds are reasonable with
the adaptive step size. With this adaptive strategy, there is no additional iteration after
ε = 10−6 is reached. Since a classifier has to be trained in each iteration of Dsea / Dsea+,
a considerable run time has to be expected for every single iteration. Therefore, only a
reasonably small number of iterations should be performed. The adaptive step size from
Dsea+ meets this goal by providing accurate estimates after a few iterations.

Summarizing the experimental results, one can see that Dsea+ produces accurate
estimates without the need for an extensive meta-parameter tuning. In fact, it performs
well with all reasonable regularization strengths and convergence thresholds. This property
is great for the applied deconvolution in the field, where the resources for meta-parameter
tuning may not be available. In contrast, Ibu and Run produce insufficient results, if they
are not appropriately parametrized.
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Figure 4.13: The number of iterations required for attaining the different convergence thresholds
is presented for different constant step sizes (left) and for the adaptive step size in Dsea+ (right).
While the number of iterations constantly increases for the constant step sizes, there is a saturation
in the right plot. The adaptive strategy thus converges fully after ε = 10−6 is attained. Also note
that the two decaying step size strategies increase the number of iterations, similar to the constant
step size presented in the left plot. This experiment is conducted on the uniform training density
on MAGIC data, but it perfectly extends to the other densities and data sets.



Chapter 5

Conclusion

The present work surveyed existing deconvolution methods, on which a novel unified view
has been established from the perspective of machine learning. The suitability of these
methods for Cherenkov astronomy has been investigated quantitatively, in a comprehensive
benchmark. One of the considered methods is Dsea, which employs machine learning to
train an embedded classifier. The original version of this algorithm suffers from divergence,
but the present thesis proposed the improved version Dsea+. This improved version does
not diverge and its accuracy matches the state of the art in deconvolution. For Cherenkov
astronomy, Dsea+ and both methods from the state of the art are equally suited.

5.1 Contributions and Findings

The novel unified view on deconvolution rephrases the problem in the language of ma-
chine learning. Within that view, essential building blocks of the existing methods have
been identified. These blocks can now be studied independently. Moreover, they are ex-
changeable between the methods, yielding numerous possibilities for recombining them
in new algorithms. In contrast, existing studies have treated each deconvolution method
as a single monolithic instance, which does not open the problem to these directions of
future work.

The machine learning perspective already lead to the proof that Dsea/Dsea+ and the
Iterative Bayesian Unfolding are equivalent, if the Dsea classifier is accordingly chosen.
This proof is a result of the present work and it has not been published before.

Even though the original Dsea is already a promising approach, it suffers from di-
vergence. Here, this concern was tracked down to an inappropriate re-weighting of the
training examples. Resolving this issue lead to the novel algorithm Dsea+, which does not
diverge. Another aspect of Dsea+ is an adaptive step size, which approaches the optimal
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solution faster than the original Dsea. The adaptive step size also recognizes when to
stop the iterative procedure, thus saving resources by not wasting iterations.

The experimental comparison of Dsea+, the Iterative Bayesian Unfolding (Ibu), and
the Regularized Unfolding (Run) is the first evaluation of deconvolution methods that
employs different training set densities and a separate bootstrapping of the data pools.
Moreover, it is the first evaluation that assesses the quality of deconvolution results in
terms of the Earth Mover’s Distance, which is well motivated for this purpose. Thus,
the evaluation setup is exceptionally thorough. All results are fully reproducible with
the published Julia code, which is well documented and extensible with respect to the
implemented methods and the considered data sets.

The comprehensive evaluation revealed that the accuracy of Dsea+ matches the ac-
curacy of Ibu and Run, which represent the state of the art in deconvolution. This
achievement is highly valuable for Cherenkov astronomy, because Dsea+ is the only one
among these algorithms which returns the contribution of each individual observation to
the deconvolution result. This feature is required for a time-dependent deconvolution,
which is outlined in the following section.

For deconvolution without time dependency, the evaluation showed that Dsea+, Ibu,
and Run are equally suitable because they provide comparable accuracies on IACT data.
Moreover, they are robust to inappropriate priors of the target density. This robustness is
important for the reliability of deconvolution results. It was shown that the original Dsea
does not accomplish these qualities.

5.2 Outlook

Future work on deconvolution will be based on the novel unified view on the subject. This
view enables researchers to study the building blocks of existing algorithms separately.
Moreover, new deconvolution methods can be developed by recombining these blocks.
Some ideas in this direction are outlined in Subsection 5.2.1.

Other directions of future work will leverage the contributions of individual observa-
tions to the deconvolution result, which are only obtained with Dsea/Dsea+. Subsec-
tions 5.2.2 and 5.2.3 sketch two of these directions. The first direction aims at time se-
ries analyses, which detect concept shifts/drifts in a time-dependent deconvolution result.
Such result is obtained by aggregating over a sliding window of individual contributions.
The second direction employs these contributions to control the simulation that produces
the training data. It aims at saving resources while improving the deconvolution results.
Both directions are difficult to pursue with classical approaches, which do not return the
contributions of individual observations.
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5.2.1 Additional Approaches and Re-combinations

The present thesis presented Ibu and Run as two popular representatives of classical
deconvolution. However, more classical approaches to deconvolution exist, some of which
have already been mentioned here. Investigating these approaches in more detail can single
out additional building blocks of deconvolution methods. Particularly, the approach based
on neural networks should be studied in the unified view developed here. Neural nets
gained a lot of attention in the past years, due to their performance in image classification
and other modeling tasks. The rapid developments in this area are promising directions
for future work on deconvolution.

Having identified the essential building blocks of the existing deconvolution methods,
researchers are able to recombine these blocks in new algorithms. One example of such
recombination was already given here with the objective function of Run being employed
for the adaptive step size in Dsea+. The possibilities of other re-combinations are nu-
merous. One particular task of future work is to identify which building blocks work for
which kind of input data.

5.2.2 DSEA for Time Series Analyses

Some γ ray sources studied in Cherenkov astronomy change their emission over time.
Consequently, these sources are only modeled accurately with a deconvolution that takes
their time dependency into account. Indeed, the FACT telescope is specifically targeted at
measuring changes in the energy emission, thus rendering time-dependent deconvolution
indispensable.

Dsea/Dsea+ reconstructs the target density from the confidence values predicted
for individual observations. Instead of reconstructing the density of the entire data set,

. . .

contributions of individual observations, as returned by Dsea+

sliding window

estimated
density in
the window

Figure 5.1: Time-dependent deconvolution is performed in a sliding window, which aggregates
the contributions of individual observations. This window moves over the contributions, which
are ordered by the time of their observation. Each position of the window yields one estimated
density for this position. The individual contributions are not obtained with classical deconvolution
methods – only Dsea/Dsea+ provides this feature.
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a practitioner can aggregate the contributions of individual observations over a subset
of the data. If this subset is time-dependent, he obtains a deconvolution result that
reflects this time dependency. Figure 5.1 sketches such time-dependent aggregation over
a sliding window. First, Dsea+ deconvolves the entire data set, as usual. The embedded
classifier is then queried for the contribution of each individual item to the deconvolution
result. Instead of aggregating all of these contributions, only those in a sliding window
are aggregated, according to the usual reconstruction rule. Each position of the sliding
window thus yields an estimated density. The time-dependent changes of the observed
data set are reflected in the changes of these estimates.

Figure 5.2 presents a preliminary experiment on time-dependent deconvolution with
Dsea+. In this experiment, a concept shift is generated artificially by arranging two
subsets of the MAGIC data, one with low energy values and one with high energy values.
In the beginning, only low particle energies are observed. Suddenly, the concept changes
and only high energy values follow. Dsea+ deconvolves both groups together, returning
the contribution of each observation in the entire data set. In fact, it does not know about
the two artificial groups. The returned contributions are then aggregated in each position
of a sliding window, which moves over the ordered contributions. For simplicity, each
reconstructed density is represented only by its mode, i.e. the position of its peak. This
characteristic feature is plotted as the univariate time series presented in Figure 5.2. It
clearly shows the concept shift that was artificially generated and standard methods can
detect this shift automatically. This result promises that time-dependent deconvolution
can detect concept shifts and concept drifts reliably. Future work has to validate this
promise for Cherenkov astronomy and other areas of research.
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Figure 5.2: The mode of a time-dependent deconvolution result is studied as a univariate time
series. Clearly visible is the concept shift that is artificially introduced by arranging two groups of
observations. Standard methods can automatically detect the concept shift from this time series
representation.
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5.2.3 DSEA for the Smart Control of Monte-Carlo Simulations

Simulating the training data for IACTs requires the execution of the fine-grained stochastic
processes involved in air showers. Such execution is costly in terms of run time and energy
consumption. The smart control of Monte-Carlo simulations [32] aims at saving these
resources during the generation of training data while improving the accuracy of the
models that are fitted to the simulation output. The concept is based on the idea that a
simulation s is a process which produces training examples (x, y) ∈ X ×Y from simulation
parameters p ∈ P. This process is controlled by selecting those inputs p which produce
relevant examples for training.

s : P → X × Y (5.1)

Usually, a fixed distribution over P is assumed to sample simulation inputs from this
space. The simulation is run on a single batch of these inputs, producing a fixed set Dtrain

of training examples. The smart control of simulations generates examples in multiple
small batches P ⊂ P, introducing a feedback loop that evaluates the latest model to select
additional inputs for the next simulation run. Figure 5.3 presents this concept. It relates
to Active Class Selection [33], which employs a similar feedback loop for selecting the
labels for which additional observations are required.

P

Simulation s

Sample P

Deconvolution

Evaluation

Dtrain

Figure 5.3: The smart control of simulations [32] is adapted to the deconvolution problem. Each
run of the simulation is parametrized by an input batch P ⊂ P of parameters, from which it
produces additional training data Dtrain for the deconvolution algorithm. The input choice of the
next iteration is based on the evaluation of the current estimate.

Figure 5.4 presents a first experiment, in which Dsea+ is put in control of the example
generation. For simplicity, the toy data set is used here and P is identified with Y, i.e.
labels are chosen for which examples are generated (just like in Active Class Selection). The
baseline of this experiment is the uniform sampling, which imposes a uniform prior over
P. The smart control strategy leverages the latest estimate of Dsea+, generating training
data that follows the distribution of the observed data set. This estimate is weighted by
the redistriction strategy [33, 32], which favors labels for which many predictions changed
during the last iteration. Such weighting is only possible with Dsea+, from which the
embedded classifier is evaluated to produce the weights. The experiment suggests that the
smart control produces better deconvolution results than the uniform baseline. Validating
this observation remains for future work.
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Figure 5.4: The deconvolution result improves as more training data is generated. The uniform
strategy imposes a uniform prior over the parameter space P of the simulation. Since this strategy
does not adapt to the deconvolution result, it is used as the baseline of the experiment. The
second strategy aims at improving the deconvolution result by evaluating the embedded classifier
of Dsea+ on a separate validation set. Apparently, this strategy succeeds by slightly outperforming
the baseline.



Appendix A

Further Information on Classical
Deconvolution

Some additional aspects on classical deconvolution methods are collected here. First of
all, Section A.1 relates the conventional notation from particle physics to the notation
employed throughout this thesis. Subsequently, the B-spline discretization originally pro-
posed for Run is described in Section A.2. However, this discretization scheme is aban-
doned in the experiments conducted here. Finally, Section A.3 provides proof for the
theorems that motivate the Run algorithm.

A.1 Notation from Particle Physics

Most publications on deconvolution in particle physics refer to the early work of Blobel
[5], which outlines the deconvolution problem. By adapting the notation from this work,
they follow the conventional notation from the field [3, 2, 34, 6, 7, 22, 20]. Some slight
differences remain between the publications, but mapping their notation to Blobel’s work
is straight-forward.

The usual notation of the deconvolution problem is presented in Equation A.1. Struc-
turally, it is rather similar to the notation established in the present thesis. However, as
already pointed out, the roles of x and y are switched here. The usual notation represents
the values of the relevant quantity with x and the measured values with y. In contrast,
the present thesis chose y for the target quantity to comply with machine learning.

g(y) =
∫ b

a
A(y, x) f(x) dx + b(y) (A.1)

There are more subtle differences between the conventional notation from particle
physics and the notation established in the present work:
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• The interval in Equation A.1 is bounded by scalars a and b, which limit the notation
(strictly speaking) to the univariate case. Integrating over the pre-image Y of the
target density is thus more comprehensive. Some publications on deconvolution omit
the range of the integral, implicitly assuming a univariate pre-image.

• g and f of the conventional notation represent frequency distributions instead of den-
sities. Thus, the entire system is scaled with the number of observed examples. This
subtlety has to be considered during the maximum likelihood fit, which only models
the likelihood appropriately with absolute numbers of examples. In other methods,
like Ibu, the scale of the system does not make a difference. In the present thesis,
g and f represent probability density functions in order to relate the deconvolution
problem to probability theory.

• The additional summand b(y) represents the known (or previously estimated) back-
ground noise of the measurement at the observed value y. This background is simply
subtracted from the solution of the difficult integral part of the equation. Thus, the
background suppression is a trivial post-processing step in deconvolution, which is
omitted here due to its simplicity and separate applicability.

It may have been noticed that the present work favors the term “deconvolution” over
the term “unfolding”, which is the more conventional term in particle physics. This choice
has been made because “convolution” is the appropriate English term for the operation to
be inverted. The term “folding” is less common in English, rather being a direct translation
of the German term used for this operation.

A.2 B-Splines in the Regularized Unfolding

B-Splines are the original discretization scheme of the Run algorithm [5]. However, this
scheme is abandoned in the most recent publication on the method [2], which favors
equidistant histograms. Here, the B-Spline discretization is only given for completeness.
It is omitted in the experiments because the equidistant discretization is better suited for
comparing the considered deconvolution methods with each other.

Generally, Run discretizes the target density f : Y → R with a set of I orthogonal
basis functions pi : Y → R, which are fixed. In order to represent f from these basis
functions, the factors ai are fit to a set of data, according to Equation A.2. For example,
simple histograms match this general notion, being defined by pi(y) = 1 if Yi−1 ≤ y < Yi
and pi(y) = 0 otherwise. Plugging Equation A.2 into the deconvolution problem yields
Equation A.3, where the solution is represented by the factors ai [5].

f(y) =
I∑

i=1
ai pi(y) (A.2)
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g(x) =
I∑

i=1
aiRi(x)

where Ri(x) =
∫

Y
R(x | y) · pi(y) dy

(A.3)

The discrete deconvolution problem is thus altered according to Equation A.4, where
the vector a = (a1, a2, . . . , aI) contains the factors which determine the solution to this
problem. The matrix R′ is estimated similar to R from Subsection 2.2.1, i.e. from relative
frequencies in the training data set. However, each training example with the target value
y is weighted by pi(y) when considered in the i-th matrix column. Thus, R′ is a weighted
variant of R, the weights being determined by the basis functions. An estimate of f
is obtained from Equation A.2, plugging in the the vector â which is estimated from
Equation A.4.

g = R′ a (A.4)

Cubic B-Splines are one kind of orthogonal basis functions, which is chosen in the
original version of Run. These functions, pi(y) = Bi,4(y), are defined recursively by
Equation A.5, where ti is one of the I knots. k is referred to as the order of a spline.
B-Splines smoothly interpolate between the given knots.

Bi,k(y) = y − ti
ti+k−1 − ti

Bi,k−1(y) + ti+k − y
ti+k − ti+1

Bi+1,k−1(y)

Bi,1(y) =





1 ti ≤ y < ti+1

0 otherwise

(A.5)

A.3 Proofs for the Regularized Unfolding

The proofs of the theorems from Section 2.4 are presented in the following. These theorems
motivate the Run algorithm.

Proof of Theorem 2.1 The loss function ` is obtained by plugging the two assumptions
of the Run algorithm into the likelihood function L. Terms that are constant with respect
to f are omitted because they do not influence the maximization of L.

1) Minimizing the negative log-likelihood is equivalent to maximizing L:

f̂maxL = arg max
f

L(f |g)

= arg min
f

− lnL(f |g)

= arg min
f

− lnP (g | f)
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2) Run assumes independent components of the observed density and that the absolute
number ḡj in each component is Poisson-distributed with the rate RT

•j f . These assumptions
are plugged into the likelihood function:

− lnP (g | f) = − ln
J∏

j=1
P (gj | f)

= −
J∑

j=1
lnP (gj | f)

= −
J∑

j=1
ln e−(RT

•j f)
(
RT

•j f
)ḡj

ḡj !

= −
J∑

j=1
−RT

•j f + ḡj ln
(
RT

•j f
)
− ln(ḡj !)

3) The term ln(ḡj !) is constant with respect to f and can thus be omitted in the mini-
mization, yielding the loss function `. Minimizing this function is therefore equivalent to
maximizing the likelihood.

f̂maxL = arg min
f

− lnP (g | f)

= arg min
f

−
J∑

j=1
ḡj ln

(
RT

•j f
)
−RT

•j f = arg min
f

`(f)

�

Proof of Theorem 2.2 The surrogate form follows directly from the given definitions.
We start from the regularized local model which is minimized in each Newton iteration:

ˆ̀(k)
r (f) = 1

2 fTH f − fT (H f̂ (k) − `) + r(f)

1) The Hessian is eigen-decomposed into H = UDUT . The matrix U is thus orthogonal,
i.e. UTU = I. Moreover, let D− 1

2 = diag
( 1√

D11
, . . . 1√

DII

)
. The first transformation is

f = UD− 1
2 f ′ ⇔ f ′ = D 1

2 UT f .

⇒ ˆ̀(k)
r (f) = 1

2
(
UD− 1

2 f ′
)TH

(
UD− 1

2 f ′
) − (

UD− 1
2 f ′
)T (Hf (k) − `

)
+ r(f)

(
UD− 1

2 f ′
)TH

(
UD− 1

2 f ′
)

=
(
UD− 1

2 f ′
)TUDUT (UD− 1

2 f ′
)

=
(
UD− 1

2 f ′
)TUD

(
D− 1

2 f ′
)

=
(
UD− 1

2 f ′
)TUD 1

2 f ′

=
(
f ′TD− 1

2
T

UT )UD 1
2 f ′

=
(
f ′TD− 1

2 UT )UD 1
2 f ′

=
(
f ′TD− 1

2
)
D 1

2 f ′ = f ′T f ′
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r(f) = τ

2 fTCf = τ

2
(
UD− 1

2 f ′
)TC

(
UD− 1

2 f ′
)

= τ

2 f ′T
(
D− 1

2 UTCUD− 1
2
)
f ′

= τ

2 f ′TC′f ′

⇒ ˆ̀(k)
r (f) = 1

2 f ′T f ′ − (
UD− 1

2 f ′
)T (Hf (k) − `

)
+ τ

2 f ′TC′f ′

2) The second transformation is based on the eigen-decomposition of C′ = U′D′U′T . It
is defined as f ′ = U′f ′′ ⇔ f ′′ = U′T f ′. Note that U′TU′ = I.

ˆ̀(k)
r (f) = 1

2(U′f ′′)T (U′f ′′)− (UD− 1
2 U′f ′′

)T (Hf (k) − `
)

+ τ

2 (U′f ′′)TC′(U′f ′′)

= 1
2 f ′′T f ′′ − (

UD− 1
2 U′f ′′

)T (Hf (k) − `
)

+ τ

2 (U′f ′′)TU′D′U′T (U′f ′′)

= 1
2 f ′′T f ′′ − (

UD− 1
2 U′f ′′

)T (Hf (k) − `
)

+ τ

2 f ′′TD′f ′′

= 1
2 f ′′T

(
I + τ ·D′)f ′′ − (

UD− 1
2 U′f ′′

)T (Hf (k) − `
)

= 1
2 f ′′T

(
I + τ ·D′)f ′′ − f ′′T

(
UD− 1

2 U′
)T (Hf (k) − `

)

�

Proof of Theorem 2.3 The minimizer of the surrogate form is obtained by setting the
gradient of this form to zero.

∇f ′′ ˆ̀(k)
r (f) =

(
I + τ ·D′)f ′′ − (

UD− 1
2 U′

)T (Hf (k) − `
) != 0

⇒ (
I + τ ·D′)̂f ′′ =

(
UD− 1

2 U′
)T (Hf (k) − `

)

⇒ f̂ ′′ =
(
I + τ ·D′)−1(UD− 1

2 U′
)T (Hf (k) − `

)

For τ = 0, the un-regularized solution ˆ̂f ′′ =
(
U D− 1

2 U′
)T (H f (k) − `

)
is obtained. The

relation between the regularized estimate f̂ ′′ and ˆ̂f ′′ is therefore f̂ ′′ =
(
I + τ ·D′)−1̂̂f ′′.

Equivalently,
f̂ ′′i = 1

1 + τD′ii
ˆ̂f ′′i

�
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Appendix B

Additional Extensions for DSEA

With the aim of improving the original Dsea, some additional extensions have been devel-
oped during the work on this thesis. However, in contrast to the improvements presented
in Chapter 3, they do not enhance the algorithm. Therefore, they are omitted in the novel
algorithm Dsea+. Their concepts are documented here, along with the experimental
results that indicate their low performance.

The first additional extension is an intermediate smoothing of the prior, presented
in Section B.1. It adapts the smoothing of the Iterative Bayesian Unfolding. The sec-
ond extension employs the expansion/reduction strategy originally proposed for the Run
algorithm. Section B.2 considers this approach.

B.1 Smoothing

The smoothing operation applied in the Ibu algorithm aims at regularizing the decon-
volution results under the assumption that the solution is smooth. Here, this operation
is adapted to Dsea. As presented in Subsection 2.3.2, it fits an analytic form to the
respective latest estimate f̂ (k−1). This form is then used as the prior of the next iteration,
instead of the actual f̂ (k−1). The default analytic form of Ibu is a polynomial of some low
order, which is employed in the Dsea extension as well. Like in Ibu, neither the initial
prior, nor the last estimate are smoothed. The intention behind the smoothing extension
is to regularize Dsea towards smooth solutions.

Figure B.1 presents the experimental results obtained by smoothing the intermediate
Dsea estimates. Low- and high-order polynomials are investigated, ranging from the
order 2 to the order 12. All smoothings are compared to a solution obtained without the
smoothing extension. Apparently, this regular solution is more accurate than any of the
smoothed estimates. The only smoothing which competes with the non-smoothed solution
applies polynomials of the order 12, which almost do not smooth the estimates, at all.
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Figure B.1: Polynomials of several low and high orders are used to smooth the intermediate
estimates of Dsea. In this experiment on the toy data set, the best results are obtained without
smoothing. Low orders, which correspond to a strong smoothing, perform significantly worse.
Here, Dsea uses a constant step size of α(k) = 1.

This finding is consistent with the effect of the smoothing operation in Ibu. As pre-
sented in Subsection 4.4.2, the polynomial smoothing is not capable of improving the
estimates—at least not for the data sets considered here. However, using an analytic form
which represents more accurate assumptions than a low-order polynomial may produce
results that outperform non-smoothed estimates. For now, Dsea+ omits the smoothing
extension due to the lack of such an accurate analytic form.

B.2 Expansion and Reduction

Figure B.2 applies Dsea+ to different expansions of the deconvolution problem, following
the expand/reduce strategy proposed for the Run algorithm (see Subsection 2.4.4). The
experimental results from Subsection 4.4.2 show that this strategy improves the Run
estimates slightly. For Dsea+, such an improvement is not observed here.
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Figure B.2: Dsea+ is applied to several expansions of the deconvolution problem, which do not
improve the estimates in comparison to the non-expanded solution.



Appendix C

Experiments Handbook

The experiments presented in this thesis are centered around the novel Julia package
CherenkovDeconvolution.jl, which bundles the investigated deconvolution methods for
their application in the field. This package has been developed as a part of the present
work, being presented in Section C.1. The actual experiments are implemented in another
repository, which is presented in Section C.2. For reproducibility, both of these repositories
are publicly available and well documented.

Since other studies on deconvolution may use other measures of performance than
the Earth Mover’s Distance favored here, four additional quality measures are computed
for every experiment conducted in this thesis. These measures are defined in Section C.3.
Their results are available with the supplementary material, enabling comparisons between
the present study and others.

C.1 CherenkovDeconvolution.jl

The Julia package CherenkovDeconvolution.jl bundles the investigated deconvolution
methods for their application in Cherenkov astronomy and other use cases from experi-
mental physics. It is publicly available on GitHub1, where it is backed by an issue tracker
and a continuous integration platform to run the unit tests on. A little button on the web
site of the package always indicates if the latest test run has been successful. The code
coverage of the tests is assessed in another integrated tool. This collection of tools helps to
achieve a high reliability of the software. CherenkovDeconvolution.jl is licensed under
the GNU General Public License.

The documentation of the package is provided by an instructive “read-me” file and a
Jupyter notebook, which contains examples on how to use the package. Moreover, each

1https://github.com/mirkobunse/CherenkovDeconvolution.jl
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function is documented comprehensively. The API follows common patterns encountered
in Julia packages, which makes the software easy to use for Julia developers. However,
Julia’s clear syntax is also understandable for programmers who are new to the language.

Each deconvolution method is run with a single function call. For instance, ibu(

x_data, x_train, y_train) deconvolves the density of observations in the array x_data

with Ibu, the two other arrays representing the training data. Optional keyword arguments
are used to configure each deconvolution run. A collection of utility functions—e.g. the
decision tree clustering—supplements the package.

The embedded classifier from Dsea/Dsea+ is adapted from the popular ScikitLearn
library. Thus, a vast number of algorithms is readily available for classification.

Figure C.1: The Julia package on GitHub is well documented and easy to use. In addition to the
“read-me” file shown here, a Jupyter notebook provides examples on the usage of this package.
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C.2 Reproducing the Results

All experiments conducted in this thesis are implemented in a second GitHub repository2,
which is also publicly available. The documentation of this repository describes the setup
and the deployment of the experiments—locally and in a Docker cluster. Most of the in-
stallation is performed by the Julia package manager and a script written for this purpose.
The Docker setup is established by building a Docker image, which is also straight-forward.

Each experiment is configured with a YAML file. This means that entirely new sets of
experiments are easily obtained by reconfiguration. However, the provided configurations
are comprehensive already, producing reliable and generalizable results. Each YAML file
is read by an associated Julia function which conducts the experiment.

Each experiment returns a result file containing the deconvolution results produced
during the run. The quality metrics are computed subsequently from these estimated
densities. In a last step, the plots are generated from the quality metric files. This
three-step procedure provides the practitioner with a high level of versatility. Namely, the
evaluation can be changed without re-running the costly experiments.

Each plot is generated for all quality measures presented in the next subsection. All
in all, a tremendous amount of figures is generated by the experiments. In order to keep
track of these results, a graphical tool has been developed, with which multiple plots
can be viewed side by side. It allows you to tick and un-tick boxes which correspond to
experimental configurations to compare with each other.

Note that the IACT data sets must not be published with the experiments, due to
restrictions of the telescope collaborations.

Figure C.2: The experimental results are compared with each other in the inspection tool.

2https://github.com/mirkobunse/deconv-exp
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C.3 More Statistical Distance Measures

Given the vast number of statistical distance measures, evaluating multiple such distances
increases the level of comparability to other studies, which may only use a subset—or even
a single one—of these measures. The following measures are thus computed in addition
to the Earth Mover’s Distance presented in Section 4.1:

• The Kullback-Leibler divergence

• The Hellinger distance

• Pearson’s χ2 divergence

• The probabilistic symmetric χ2 distance

These distances are among the most prominent measures of statistical distance, be-
ing presented in the following subsections. They are computed with the Julia package
Distances.jl3, which strictly follows the definitions given here. All measures are evalu-
ated for each experiment. Their values are provided with the supplementary material of
this thesis. With all of these measures, similar interpretations of the experimental results
are obtained (see Figure C.4).

C.3.1 The Kullback-Leibler Divergence

The Kullback-Leibler divergence δKL [35] from Equation C.1 is interpreted as the amount
of information which is lost by using a discrete density function f̂ instead of a more
appropriate f . This interpretation is justified by information theory, a field that quantifies
how much information is contained in data. Since deconvolution results are evaluated by
comparing estimated densities with a corresponding true—i.e. more appropriate—density,
this interpretation fits our use case quite well. In other words, δKL quantifies the amount
of information gained if the practitioner knew the truth, compared to what he already
knows from the deconvolution result. A small value of δKL indicates that he can stick to
the estimate, even if he knew the corresponding true density.

δKL(̂f | f) =
I∑

i=1
f̂i ln f̂i

fi
(C.1)

Note that δKL is not symmetric, i.e. δKL( f̂ | f) 6= δKL( f | f̂). Thus, it does not qualify
as a metric distance. However, the asymmetry of δKL is acceptable for our evaluation
because f and f̂ have fixed roles which are never switched. Also note, that since δKL
divides by the bin values fi, it is usually assumed that fi > 0 ∀ 1 ≤ i ≤ I. We deal with
this issue by replacing zeros with a small value ε = 10−9, as suggested elsewhere [23].

3https://github.com/JuliaStats/Distances.jl

https://github.com/JuliaStats/Distances.jl
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C.3.2 The Hellinger Distance

The Hellinger distance δH has already been applied to assess the quality of Dsea in other
studies [4]. In contrast to the Kullback-Leibler Divergence, it has a geometric interpreta-
tion which provides a different point of view on the distance between probability density
functions. It is a true metric, which can be helpful in comparing densities which do not
take the roles of an estimate and the truth, e.g. in comparing multiple deconvolution
results with each other. δH is defined in Equation C.2, where the right hand side is often
multiplied by 2 [23, 25]. This factor is omitted here, so that δH is normalized to the unit
interval. A value of δH = 1 thus means no similarity at all and δH = 0 means perfect
similarity between f and f̂ .

δH (̂f , f) =

√√√√1−
I∑

i=1

√
f̂ifi (C.2)

The sum of geometric means, ∑I
i=1

√
f̂ifi in Equation C.2, is also referred to as the

Hellinger affinity or the Bhattacharyya coefficient [23, 25]. It is a measure of similarity
between discrete probability density functions which is motivated by the geometric con-
siderations displayed in Figure C.3. To understand this measure, let f

√
=
(√

f1, . . .
√

fI
)

and f̂
√

be defined accordingly. Since f and f̂ are densities, i.e. their respective values
sum up to one, we find that f

√
and f̂

√
are vectors on the unit sphere in an I-dimensional

space [36]. The angle α between these two vectors is a measure of similarity. For conve-
nience, we do not regard that angle directly, but it’s cosine, which is given by the sum
of geometric means, i.e. cos(α) = ∑I

i=1

√
f̂ifi [36]. Since this cosine also captures the

similarity between f and f̂ , δH is a measure of dissimilarity.

f̂
√

f
√

acos
(∑I

i=1

√
f̂ifi

)
= α

Figure C.3: The sum of geometric means
∑I
i=1

√
f̂ifi is the cosine of the angle α between the

vectors f
√

and f̂
√
. It is a measure of similarity between the densities f and f̂ , because the vectors

are projections of these densities onto the unit sphere. I = 2 in this illustration.
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C.3.3 χ2 Distances

The concept of χ2 distance is rather ambiguous. Several definitions are found in literature,
e.g., Pearson’s χ2

P divergence and multiple symmetric variants [23]. Moreover, different
authors have referred to identical variants with different names. For example, the definition
of Pearson’s χ2

P in [23] is referred to as Neyman’s χ2
N divergence in [25]. This ambiguity

is problematic if another scientific reference does not explicitly define which specific χ2

distance is used. For example, the Iterative Bayesian Unfolding from Section 2.3 suggests
to use some χ2 distance to define a stopping criterion without defining the particular
measure explicitly [6].

To achieve a high level of comparability in spite of these difficulties, two different χ2

distances are chosen here. The asymmetric χ2
P divergence defined in Equation C.3 is

regarded as the corner stone of χ2 distances, being directly motivated by the well-known
χ2 test. The probabilistic symmetric χ2

Sym distance from Equation C.4 is additionally
chosen due to its popularity. Both measures are defined according to [23].

χ2
P ( f̂ , f) =

I∑

i=1

(
f̂i − fi

)2

fi
(C.3)

χ2
Sym( f̂ , f) = 2 ·

I∑

i=1

(
f̂i − fi

)2

f̂i + fi
(C.4)

0 5 100 5 10
Dsea iteration k

Emd

0 5 100 5 10
Dsea iteration k

δKL

0 5 100 5 10
Dsea iteration k

δH

0 5 100 5 10
Dsea iteration k

χ2
P

0 5 100 5 10
Dsea iteration k

χ2
Sym

original Dsea
optimal α(k)

α(k) = 0.3k−1

α(k) = 0.6k−1

Figure C.4: All distance measures produce plots with similar interpretations. This is shown for
the exponential decay strategy from Figure 3.4, where convergence happens too early.
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