
Smart Control of Monte Carlo Simulations
for Astroparticle Physics

Mirko Bunse,1 Christian Bockermann,1 Jens Buss,2 Katharina Morik,1
Wolfgang Rhode,2 and Tim Ruhe 2

1A.I. Group, Computer Science Dept., TU Dortmund, Germany
2Chair for Experimental Physics 5, Physics Dept., TU Dortmund, Germany

firstname.lastname@udo.edu

Abstract. Imaging Air Cherenkov Telescopes, such as VERITAS and MAGIC, rely
on models for signal separation and energy estimation. These models are fit to simulated
airshowers, each of which is associated with a single initial particle of known type and
energy. Simulating an airshower from such primary particles requires the execution
of fine-grained stochastic processes to emulate the behaviour of millions of secondary
particles.

In this work we explore the smart control of simulator runs to reduce the overall
runtime of data generation whilst producing the most useful example set for model
fitting. We give an overview of the approach and provide an evaluation using data from
the widely used CORSIKA shower simulation.

1. Introduction

Cherenkov astronomy studies high-energy gamma radiation from celestial objects to
reason about the characteristics and properties of the radiation’s sources. Gamma ra-
diation as well as cosmic ray hadrons (mainly protons) induce a cascade of secondary
particles when entering the Earth’s atmosphere. Gamma-rays fully retain their direc-
tional information on their trajectory to Earth; hadrons do not. Distinguishing gamma-
induced showers from showers induced by hadronic particles is thus a central task in
Cherenkov astronomy (Petry & MAGIC Telescope Collaboration 1999; Kieda & VER-
ITAS Collaboration 2004; Anderhub et al. 2013).

The application of machine learning models, such as neural networks or random
forests, is a prominent approach to tackle this problem (Bock et al. 2004; Bockermann
et al. 2015). These models are fit to sets of training data which contain examples that
either belong to the gamma class or to the hadron class. Since such labeled data is
not naturally available, it has to be synthetically generated based on knowledge about
particle interactions in the atmosphere. Simulation programs like CORSIKA (Heck
et al. 1998) and AIRES (Sciutto 2005) use Monte Carlo simulations to produce labeled
data closely resembling the real data observeable by a telescope. These simulations
involve computations that are inherently costly due to their Monte Carlo nature and the
underlying models of particle interaction.
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We propose the smart control of simulations in order to reduce the cost of the
overall training set by generating only those examples that are most informative with
respect to signal classification. The idea is based on the following formalization: Given
some simulation process g, which is parameterized by a vector p ∈ P of settings, each
application of g produces a new synthetic observation (x, y) ∈ X × Y , i.e.

g : P → X × Y,

where X is the set of real-valued vector representations of the simulated shower (usually
after the application of a preprocessing step) and Y is the set of class labels. Each use
of g comes at some cost by means of computing resources and simulation time. Since
this cost can depend on the input vector, we may refer to it as c(p) ∈ R. For simplicity,
however, this paper is limited to a uniform cost model c(p) = 1∀p ∈ P. A set of
parameter vectors P ⊂ P yields a data set T = ∪p∈P g(p) used to train a prediction
model m : X → Y . In this work we explore different strategies to select a sequence of
input vectors ⟨p⟩ yielding a cost-quality tradeoff between simulation time and model
accuracy.

2. Related Work

Smart control of data generation stems from active class selection problems (Lomasky
et al. 2007). For these problems, training data can be generated from an arbitrary dis-
tribution of labels y ∈ Y , given a limited budget. Active class selection is the task of
chosing that distribution of Y that produces the most cost-efficient training set. Smart
control of data generation is a more general task; it considers any parameter in the gen-
eration of data and is not limited to the class label. The active selection of training
examples goes back to active learning (Settles 2010). However, this well-studied field
does not consider the generation of novel examples. Here, we extend the strategies
presented by Lomasky et al. (2007) to sample from P and not only from Y .

Rodriguez-Lujan et al. (2014) present a problem equivalent to what we introduce
here as smart generation of data. They sample actively from a parameter space P to
select examples for the calibration of a gas sensor array. Such an array is learning
to predict the type of gas it senses inside a test chamber. In their case, P consists of
the label, i.e., the type of gas, and an additional parameter, the concentration of that
gas. Examples are generated by injecting the configured gas into the chamber and
recording the sensor’s response. The same level of freedom is present in the simulation
of air showers; the label and additional parameters can be chosen arbitrarily for the
production of each training example. Unfortunately, the sampling method presented by
Rodriguez-Lujan et al. (2014) is not practical. It requires multiple example generation
runs in every iteration. The induced cost is huge because only the best run is maintained
in each step. In contrast, we propose to select examples before they are simulated.

3. Smart Control of Data Generation

We iteratively choose parameter vectors, of which each p ∈ P provides a good trade-off
between its cost c(p) ∈ R and its expected utility u(p) ∈ R for the prediction task.
Dividing the parameter space P into ranges of parameters R ⊆ P allows us to assess
u(p) by u(R) if p ∈ R, assuming that R is sufficiently homogeneous. u(R) can then
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Figure 1. The Simulation g, parameterized by batches of inputs P ⊂ P, produces
sets of labeled instances T = ∪p∈P g(p) that are used to train a model m. The batch
of each next iteration is chosen based the expected utility and cost.

evaluate the existing model m0 (trained on T0 ⊂ X × Y) on an existing evaluation test
set ER = ∪e∈Rg(e). In each iteration, the most promising parameter batch P ⊂ P is
selected, T = ∪p∈P g(p) is generated from that batch, and a new model m is trained on
T0 ∪ T . Figure 1 shows this overall outline of our smart control framework.

The active class selection strategies proposed by Lomasky et al. (2007) find pro-
portions w(y) of classes y ∈ Y that optimize m. We extend these strategies to weight
parameter ranges R ⊆ P instead. Each parameter batch P is then sampled according to
the range weights w(R) := 1

u(R) · (
∑

R′⊆P
1

u(R′) )
−1, i.e., according to the inverse relative

utility of the existent model m for R. In our case, each R spans a range of logarithmic
particle energies for a single particle type. The extended strategies are as follows:

• Uniform Each range has the same utility u(R) := 1. We use this uniform weight-
ing as a baseline because it does not evaluate the model as proposed.

• Inverse Use the predictive accuracy as utility function u(R) := Acc(R). The
weights represent the relative inverse accuracy then. This strategy is motivated
by the assumption that low accuracy is due to insufficient training data in the
respective range.

• Improvement Like the inverse method, but based on the improvement of accu-
racy during the last iteration u(R) := Acc(R) − lastAcc(R).

• Redistricting Count the number of examples nR for which the prediction changed
during the last iteration and let u(R) := 1

nR
. The idea behind this strategy is that

examples close to the decision boundary may be more informative than others.
Ranges in which predictions frequently change are assumed to contain many
examples close to that boundary.

4. Experiments

We evaluate the control strategies on data generated with CORSIKA (Heck et al. 1998)
for FACT (Anderhub et al. 2013). A large set of that data was produced beforehand; we
sample from that collection instead of running the costly simulation during the experi-
ments. This setup directly translates to actually controlling the simulation in a practical
application. We compare the strategies by their predictive accuracy on a separate test
set. That set is uniformly distributed over the parameter ranges so that the accuracy is
not biased towards any of the ranges.

Each strategy is plugged into our framework for 100 runs. We assess the mean
accuracy of each strategy relative to the accuracy of our baseline, the uniform control
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Figure 2. Mean accuracy of 100 experiments each – relative to the uniform control
strategy. Squares and triangles show significant results. Dot marks show results that
are not significant.

strategy. The significance of the results is computed via a t-test under the null hypoth-
esis stating that the respective strategy performs equally good as the baseline. Figure 2
presents the results for the two strategies that outperformed the uniform control strategy.
The Improvement strategy performed significantly worse.

5. Conclusion

Monte Carlo simulations allow us to parametrize the generated examples. The smart
control framework proposed here leverages this concept to produce example sets that
are better suited for model fitting than uninformed production strategies. Our experi-
ments suggest that smart control can outperform a uniform distribution of simulation
parameters. The benefit is significant, but rather small – about 0.5% in accuracy on a
uniformly distributed test data set.
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