
Bachelor’s Thesis

Gamma-Hadron Separation with Deep

Clustering - Learning to Detect

Gamma-Particles with Unsupervised

Representation Learning

Max Glogau

August 2021

Gutachter:

Prof. Dr. Katharina Morik

M. Sc. Lukas Pfahler

Technische Universität Dortmund

Fakultät für Informatik

Lehrstuhl für Künstliche Intelligenz (LS-8)

https://www-ai.cs.tu-dortmund.de

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goal . 2

1.3 Structure . 2

2 Theoretical Background 3

2.1 Artificial neural networks . 4

2.1.1 Layer . 5

2.2 Loss Function . 6

2.2.1 Mean Squared Error . 6

2.2.2 Cross-Entropy . 7

2.3 Backpropagation . 7

2.4 Gradient-based Optimization . 8

2.4.1 Gradient descent . 8

2.4.2 Stochastic Gradient descent 9

2.5 Batch Normalization . 10

2.6 Convolutional Neural Network . 11

2.6.1 Pooling Layer . 12

2.7 Traditional Clustering Approaches 13

2.7.1 K-means . 14

2.7.2 Mini-batch k-means . 15

3 Methods 17

3.1 Deep Clustering . 17

3.2 Online Deep Clustering . 18

3.3 Self-Labeling . 19

3.4 Other Related Work . 20

CONTENTS

4 Dataset 21

5 Implementation 25

6 Experiments 27

6.1 Hyperparameter . 29

6.2 Training on FACT Data . 31

6.3 Cluster Comparison . 32

6.3.1 Metrics . 32

6.3.2 Comparison . 34

6.4 Supervised Training . 36

6.5 Significance . 38

6.6 Visualization . 40

7 Conclusion 45

A Hyperparameter 47

B Cluster Comparison 51

C Significance test 53

Chapter 1

Introduction

1.1 Motivation

In astrophysics, machine learning is often deployed to analyze certain events occur-

ring in the real world. One field of research is the observation of cosmic events.

The First G-APD Cherenkov Telescope(FACT) has the goal of capturing images of

particle showers of gamma rays. The resulting images can then be used to derive

cosmic events from the energy and angle of a particle. The problem with analyzing

gamma rays is the background noise, mainly produced by cosmic rays from hadrons,

which gives no conclusion on a direct origin source. This is called the gamma-hadron

separation problem. The traditional approach to solve this only records data if a

certain energy threshold is reached. Afterward, a complex machine learning pipeline

is executed to separate gamma rays from background noise. The recent approach

to tackle this problem is the use of deep learning directly on the recorded datas-

tream [3]. The deep learning model can accurately predict gamma events, better

than the traditional approach, and also uses fewer resources.

The most widely used deep learning models are convolutional neural networks,

trained with manually annotated datasets. To improve the generalization of these

models further, the most obvious way would be the use of larger datasets to train

the neural networks. The problem with larger datasets arises in the manual work,

necessary to annotate the examples. Another problem with the supervised approach

is the training when labeling training data is di�cult. One way to label the data

is through complex simulations, which are often laborious to set up. Consequently,

it would be best to omit the labeling part and let the model learn the features au-

tonomously. This does not only save manual labor to annotate examples or to set

1

2 CHAPTER 1. INTRODUCTION

up a simulation but also saves researchers time to focus on more important tasks.

This is where unsupervised learning is beneficial. The most promising approach to

train neural networks without supervision is a combination of clustering and feature

learning. The basic principle of this approach is to group features into clusters and

use these clusters as supervision to the neural network.

1.2 Goal

Without pre-defined features to search for, or even without labels, we need a method

to learn data representations autonomously. Learning these representations is the

key to a successful classification of gamma events. Therefore, the goal of this thesis

is to test the approach of combining deep neural networks with clustering on images

from the FACT telescope. We will train three methods that use this approach, evalu-

ate the obtained clusters and neural networks, and compare the results to each other.

As we are specifically interested in their performance on the gamma-hadron separa-

tion problem, we compare these methods, by making use of a simulated dataset with

labels, as well as a significance test using additional information about the real data.

By combining traditionally supervised neural networks and unsupervised clustering

methods, we also want to know how these new approaches compare to the original

methods. Thus, we will compare the derived clusterings of the data to a standard

clustering method and test the trained neural networks against a fully supervised

one. The following Section will give a brief overview of the structure of this thesis.

1.3 Structure

We start by giving some information about the theoretical background for this the-

sis in Chapter 2, including neural networks and traditional clustering approaches.

The next Chapter 3 covers the unsupervised clustering methods used for our later

comparison. It is followed by Chapter 4, where we take a deeper look at the used

datasets. After a summary of the implementation process in Chapter 5, we present

the conducted experiments in Chapter 6 and close with a summary of this thesis in

Chapter 7.

Chapter 2

Theoretical Background

There is no universal definition for machine learning, but there are several definitions

that give a broad description of the field. Murphy [18] defines machine learning as

a set of methods that can find patterns in a dataset or use these patterns to make

predictions or decisions. Another much broader definition by Mitchell [17] is that

”Machine Learning is the study of computer algorithms that improve automatically

through experience”. Therefore the computer is not explicitly programmed to solve

some specific task but rather learns to solve it through an iterative process.

The main subclasses of machine learning are supervised and unsupervised learn-

ing. There is another commonly used subclass, reinforcement learning, where the

algorithm interacts with the environment to learn through measures like punishment

and reward. This type of machine learning algorithm is not further dealt with in

this thesis and is only mentioned for completeness.

In supervised learning, the algorithm learns to map an input xn to a label yn.

Each input xn contains multiple features. The simplest forms of features are n-

dimensional vectors with attributes describing the input. More complex cases are

images, sentences, or other complex structures. The name is derived from an in-

structor giving the labels as supervision to the learning algorithm, but is also used

when labels are generated automatically [10] [18].

A simple supervised learning algorithm consists of one layer where a linear function,

mapping input data to output data, is optimized. The concept of layers is further

described in Section 2.1 in the context of neural networks.

3

4 CHAPTER 2. THEORETICAL BACKGROUND

In a supervised learning environment, the supervision signal can be a set of previ-

ously defined features that have to be detected to predict a class a�liation. It can

also be the task of the algorithm to find features that represent the data. This type of

learning is referred to as feature or representation learning. Representation learning

is characterized by an algorithm that has to automatically learn feature represen-

tations to predict the labels of the dataset. This type of machine learning is more

prominent in the unsupervised domain, as we often do not have labels to begin with.

An unsupervised learning algorithm only gets inputs X, intending to find patterns

or other information within the data. One important example for the unsupervised

learning of representations is clustering. Clustering algorithms have the goal of par-

titioning the dataset into groups with high intragroup similarity and low intergroup

similarity [10] [18]. Clustering in general and a clustering algorithm, k-means, are

further described in Section 2.7.

There are other subclasses like semi-supervised learning, where a learning algorithm

can be partially supervised and partially unsupervised. Therefore a clear distinction

between both of them is not always possible.

The term deep learning can be derived from the deep structure of the model. The

model gathers knowledge from experience by learning complex concepts out of sim-

pler ones, which are built on each other. Therefore many layers are used to represent

these concepts, hence the name deep learning. [10]

After this short introduction to machine learning, we continue this Chapter by defin-

ing artificial neural networks. We then describe the training process as well as some

structural additions to these types of models. The last Section of this Chapter covers

traditional clustering approaches.

2.1 Artificial neural networks

Artificial neural networks, often just neural networks, are a composition of many

units, called artificial neurons, which are inspired by biological neurons in the human

brain. These units are typically functions, which map an input vector to a scalar.

The input vector itself is a composition of function outputs of other units. A layer

is a composition of many parallel acting units, which form a function, mapping a

2.1. ARTIFICIAL NEURAL NETWORKS 5

vector to a vector. A neural network is therefore a framework, consisting of multiple

chained functions. A basic type of neural network is the feedforward network. It

takes an input xn and learns to map it to a label yn. The goal ist to approximate

the optimal mapping yn = f
⇤(xn) to a su�cient degree by learning the parameter

✓ of the function y = f✓(xn). The name arises from the nature of the model, where

input data is feed through the network without information going back into the

model. Therefore the function f
(i) representing layer i can only get input values

from previous functions f (k)
, k < i. Neural networks with information going back to

the network are called recurrent neural networks. A network is called a deep neural

network when it consists of multiple layers. The number of layers denotes the depth

of the network. The last layer or output layer gives the approximated value of yn.

It is the only layer that is directly specified by the input xn. The learning algorithm

has the task to define the parameters of the other layers to best resemble the function

f
⇤. These are called hidden layers. The distinction from what number of layers the

neural network is called deep is not clearly defined [10].

2.1.1 Layer

Linear Layer

Linear layers are used as output units of the network. Let h(x) be the output features

of previous hidden layers. The linear layer performs an a�ne transformation to

produce an output vector y that corresponds to the labels predicted by the network.

It can be described by a matrix-vector multiplication of a weight matrix W and the

addition of a bias vector b as the following equation:

z = W
>
h+ b (2.1)

Although this type of layer is usually used as an output layer, it can also be used as

a hidden layer inside the network [10].

Activation

This layer can be described as an element-wise function u(z), also called an activation

function, applied to an a�ne transformation, which is the same as applying u(z) to

a linear layer.

u(z) = u(W>
h+ b) (2.2)

Commonly used are rectified linear units (ReLu), which apply the function u(z) =

max{0, z} as activation. In most cases, the activation function is chosen to be non-

6 CHAPTER 2. THEORETICAL BACKGROUND

linear, but linear functions can also be applied [10]. Another popular transformation

is the sigmoid activation function:

�(z) =
1

1 + e�z
(2.3)

2.2 Loss Function

To optimize a learning function, we have the goal to minimize or maximize some error

or loss measurement. These functions are called loss or cost functions and usually

measure some distance between the approximated value and the real value. Some

authors may use these terms separately, but we adopted the notation of Goodfellow

et al. [10] to use both of them interchangeably. Finding the optimum of a loss

function occurs through gradient-based optimization, which is further described in

Section 2.4. First, we name some popular loss functions which find application in

this and later Chapters.

2.2.1 Mean Squared Error

The mean squared error (MSE) is a simple and commonly used loss function. It uses

the sum over the squared euclidean distance over every example of the training set

divided by the number of training examples. First we define the euclidean distance

or L2 norm between two points p = {p1, p2, ..., pM} and q = {q1, q2, ..., qM} as:

deuc(p, q) =

vuut
MX

i=1

(pi � qi)2 = kp� qk2 (2.4)

From there follows the squared euclidean distance by squaring each summand:

dsqe(p, q) =
MX

i=1

(pi � qi)
2 = kp� qk22 (2.5)

The MSE can be then written as the following equation, with N being the number

of training examples, yn the label of training example xn, and f✓(xn) the estimated

label for the training example:

MSE =
1

N

NX

n=1

kyn � f✓(xn)k22 (2.6)

2.3. BACKPROPAGATION 7

2.2.2 Cross-Entropy

Let p(yn|xn) be the probability of some function f✓(xn) predicting the corresponding

label yn. The cross-entropy loss is defined as:

CE = � 1

N

NX

n=1

log p(yn|xn) (2.7)

The probability distribution over a discrete space can be obtained by applying the

softmax function to a class label prediction. The softmax function can be seen as a

generalization of the sigmoid function � [10]. It is defined as:

softmax(zn) =
e
zn

P
i e

zi
(2.8)

The cross-entropy is sometimes also referred to as the negative log-softmax function.

2.3 Backpropagation

During training, we are interested in the gradients of a loss function l with respect to

all learnable parameters. The backpropagation algorithm [24] is an e�cient way to

let the information from the cost function go back through the network to calculate

the gradients. It makes use of the chain rule of calculus to compute the gradient

of a function from known gradients of other functions. The following illustration

describes the chain rule applied to scalar functions. The rule is also applicable to

the multidimensional case, where the input to a function is vector-valued and the

derivates are calculated for every entry of the vector [10].

If we have a chained function f(g(x)), the derivative of f with respect to x can

be written as equation 2.9.
@f(g(x))

@x
=

@f

@g

@g

@x
(2.9)

To make use of this property, the backpropagation algorithm stores the derivatives

of f with respect to all other variables. Let x = f(w), y = f(x) and z = f(y).

We can calculate @z
@y directly by taking the derivative of z with respect to y. The

derivative with respect to x follows as:

@z

@x
=

@z

@y

@y

@x
(2.10)

If we want to calculate @z
@w , we can write this as equation 2.11 by also applying the

chain rule.
@z

@w
=

@z

@y

@y

@x

@x

@w
(2.11)

8 CHAPTER 2. THEORETICAL BACKGROUND

We can now see that to arrive at equation 2.11, we only need to calculate the deriva-

tive of x with respect to w, as everything else has already been calculated. The same

reasoning applies to 2.10 and @z
@y . The simple way of storing previously calculated

derivatives makes backpropagation an e�cient way to calculate the gradients needed

to optimize the network.

The described algorithm only calculates the gradients. To optimize the network

parameters, we make use of gradient-based optimization as described in the follow-

ing Section.

2.4 Gradient-based Optimization

Recall from Section 2.2 that we want to find the minimal or maximal value of a

loss function l. From now on, we only focus on the aspect of minimization because

maximizing l can be rephrased as minimizing �l.

2.4.1 Gradient descent

Finding the minimum of a di↵erentiable function analytically is straightforward in

the sense that there are rules we can apply to find a local optimum. In machine

learning, we often deal with functions that are not fully di↵erentiable or otherwise

complicated to evaluate. Therefore we have to use numerical computation to find

the optimal values for the learnable parameters. The gradient descent algorithm

uses step-wise optimization of the parameters ✓ of a function to derive at a local

optimum or near a local optimum to minimize said function. This can be illustrated

by using the definition of the di↵erence quotient f(x+µ)�f(x)
µ . When µ approachs

zero, the di↵erence quotient becomes the derivative of f(x) as descibed in equation

2.12.

f
0(x) = lim

µ!0

f(x+ µ)� f(x)

µ
(2.12)

If µ is small enough we can approximate the change of f(x) by solving equation 2.12

for f(x+ µ):

f(x+ µ) ⇡ f(x) + µf
0(x) (2.13)

By replacing µ with �✏ sign(f 0(x)) we can clearly see that the new value of f(x +

µ) is smaller then f(x), thus moving x by a small amount into the direction of

the negative derivative reduces the value of f . The same reasoning applies to the

multidimensional case, where f depends on multiple variables and, instead of a

2.4. GRADIENT-BASED OPTIMIZATION 9

derivate, makes use of the gradient rf . Most gradient descent algorithms vary the

variables of the function by the negative gradient multiplied with some small value

✏. With rf(x) being the gradient of f(x) with respect to the vector x, a gradient

step can be described as:

x
0 = x� ✏rf(x) (2.14)

The small value ✏ is called the learning rate and determines the step size of a gradient

step [10].

2.4.2 Stochastic Gradient descent

The training of neural networks often involves a lot of input data. Networks for

image detection are often trained with millions of images. Calculating the gradient

of the loss function for every input image would be computationally expensive. Thus

other methods are deployed in practice, which only sample a subset of the data to

compute the optimized weights of the network. Stochastic gradient descent (SGD),

sometimes also referred to as mini-batch stochastic gradient descent, is the most

prominent algorithm to achieve this goal. In every step of the algorithm, a minibatch

is selected randomly from the training examples, which is then used to compute the

gradients and perform the gradient step. In practical applications, the learning rate

✏ has to be decreased every other epoch to handle the noise introduced by sampling

the minibatch. Even though SGD is much faster than using gradient descent on the

whole dataset, it can still be a slow training process. To accelerate the training, some

implementations make use of the concept of momentum. It is described by updating

the parameters with a streaming average of previous gradients, which results in a

bigger step size if successive gradients point in the same direction. Let l✓(xn, yn) be

a loss function depending on the parameters ✓, inputs xn 2 X and labels yn 2 Y ,

the gradient step with momentum can be described as equation 2.15. v corresponds

to the streaming average, which can also be interpreted as the velocity at which the

parameters change. Note that X and Y are not the whole dataset and corresponding

labels, but only a minibatch of size b. m 2 [0, 1) is a momentum coe�cient and b

the mini-batch size [10].

v mv � ✏r✓
1

b

bX

n=1

l✓(xn, yn) (2.15a)

✓ ✓ + v (2.15b)

10 CHAPTER 2. THEORETICAL BACKGROUND

2.5 Batch Normalization

Optimization methods such as stochastic gradient descent accelerate the training

process of a neural network, but as mentioned before, it can still be very slow.

If a parameter changes during training, the distribution of the inputs to the next

layer also changes. This leads to the need for lower learning rates and predefined

parameters, resulting in a lengthy training process. Additionally, some activation

functions tend to saturate during training, leading to a vanishing gradient and thus

to problems in the optimization of those units. Let us consider the sigmoid activation

function �(z). The derivative with respect to z becomes:

�
0(z) =

e
�z

(1 + e�z)2
=

e
z

(1 + ez)2
(2.16)

We can see clearly, that �0(z) approaches zero for high absolute values of z. Thus,

training will proceed slowly, which is also amplified throughout the network, and

the problem becomes worse with increasing depth. Batch normalization [15] (BN)

reduces these issues by normalizing the input to a layer. Each feature gets normalized

independently. Let xkn be the k-th feature of the input example xn. Normalization

occurs through the following equation, with E[xk] and V ar[xk] being the mean and

variance of the k-th feature of the whole training set:

x̂
k
n =

x
k
n � E[xk]p
V ar[xk]

(2.17)

This could reduce the expressive power of the network, which is addressed through

the use of a shifting parameter �
k and a scaling parameter �

k, resulting in the

following equation:

y
k
n = �

k
x̂
k
n + �

k (2.18)

Though most networks use a mini-batch-based optimization strategy, batch nor-

malization can also be applied to this setting. Algorithm 1 shows the process of

calculating the normalized output. K is the number of feature dimensions or the

number of units in the layer and ✏ is a small constant that is added for numerical

stability [15].

2.6. CONVOLUTIONAL NEURAL NETWORK 11

Algorithm 1 Batch Normalization applied to a mini-batch

1: Input: mini-batch dataset X = {x1, .., xb}
2: Output: normalized output features Y = {y1, .., yb}
3: for k 2 {1, ...,K} do

4: µ 1
b

Pb
n=1 xn . mini-batch mean

5: � 1
b

Pb
n=1(xn � µ)2 . mini-batch variance

6: for xn 2 X do

7: x̂
k
n

xk
n�µp
��✏

. normalize

8: y
k
n �

k
x̂
k
n + �

k
. scale and shift

9: end for

10: end for

2.6 Convolutional Neural Network

Another type of neural network is the convolutional neural network (CNN). A CNN

is a neural network that utilizes a mathematical operation named convolution. It

is used in applications where the input data has a kind of grid structure like the

processing of images or time series. The mathematical definition of the convolution

operation of two absolutely integrable functions x(t) and w(t) is:

s(t) = (x ⇤ w)(t) =
Z 1

�1
x(u)w(t� u)du (2.19)

From there, the definition of the discrete convolution follows as:

s(t) = (x ⇤ w)(t) =
1X

u=�1
x(u)w(t� u)du (2.20)

In the context of machine learning x(t) can be seen as the input and w(t) as a

weighting function, also called the kernel. In machine learning, both the input

and the kernel are often described by multidimensional matrices of data entries

and learnable parameters, respectively. Equation 2.20 can therefore be written as

equation 2.21, where S(i, j) denotes the output matrix at position (i, j), I the input

matrix and K the kernel.

S(i, j) =
X

m

X

n

I(m,n)K(i�m, j � n) (2.21)

=
X

m

X

n

I(i�m, j � n)K(m,n) (2.22)

The convolution operation is commutative, which leads to equation 2.22. It is a

little more simple to implement equation 2.22 due to less variation in the range of m

12 CHAPTER 2. THEORETICAL BACKGROUND

and n. The commutative characteristic can be seen as flipping the kernel relative to

the input so that the decreasing and increasing indices are exchanged. Not flipping

the kernel yields the following equation, called the cross-correlation:

S(i, j) =
X

m

X

n

I(i+m, j + n)K(m,n) (2.23)

It is also called convolution without flipping the kernel in the context of neural net-

works. Which operation to use in the concrete application is not important, as the

parameters of the kernel have to be learned in both cases. A convolutional layer

in a neural network typically consists of more than one kernel to extract multiple

di↵erent features [10].

There are some benefits in using a CNN over a standard neural network. A CNN

uses sparse interactions between units. While the first layers of the network are

connected to only a couple of input units, the deeper layers could be linked to more

of them by indirect connectivity from higher layers. This is achieved by deploying a

kernel that is smaller than the input matrix. It leads to an improvement in memory

usage and better statistical e�ciency. The sharing of parameters further improves

the named benefits. Compared to a normal layer which uses matrix multiplication,

where a weight matrix with N ⇥M parameters has to be learned, the kernel only

has a fixed number of K parameters, with N being the number of inputs, M the

number of outputs, and K N the number of kernel entries. Another benefit is

the equivariance to translation. This means that for translative transformations like

shifting every input pixel one unit to the right, the convolution can be applied before

or after the transformation, resulting in the same output. Convolution reduces the

width of the input data by K+1, which leads to a smaller representation of the data

at each layer. It can be circumvented by reducing the kernel size, also leading to a

less informative representation. To control both the number of layers and the size

of the kernel independently, zero padding is used. By adding zeros to the borders of

the input, the size of the output can be the same as the input or larger [10].

2.6.1 Pooling Layer

Another type of layer, often used in combination with convolutional layers, is the

pooling layer. Pooling replaces the output unit with a summary of multiple other

units within some defined neighborhood, where the dimension remains the same. A

popular pooling function is max pooling, where the function outputs the maximum

inside a rectangular region around the current unit. Aside from the maximum,

2.7. TRADITIONAL CLUSTERING APPROACHES 13

other functions are used like the average value or the L
2 norm, shown in equation

2.4. The pooling layer leads to an output that is invariant to small input changes.

It is a useful property when we are interested in the presence of a feature but not its

exact location. Combining the pooling layer with the convolutional layer leads to

further improvements in terms of transformation invariance. Often, the convolution

is carried out with multiple kernel matrices to get di↵erent representations of the

input data. In combination with a pooling layer, a neural network can learn to be

invariant to larger transformations of the input. Applied to image data, this could

mean an invariance to rotations of an image. It is also possible to output fewer units

than inputs given to the pooling layer by only mapping the input onto every k-th

unit. k is called the stride between two output units, with k = 1 leading to the

same input and output size. Pooling layers are also beneficial when the input is not

of a fixed size. The input can therefore be mapped to a fixed smaller dimension,

by a variation in the pooling stride and width, with the width being the number of

inputs influencing one output unit [10].

2.7 Traditional Clustering Approaches

As mentioned at the beginning of this Chapter, the objective of a clustering algo-

rithm is to partition a dataset into subsets or clusters, where similar data points are

in the same cluster. This type of clustering is known as centroid-based clustering. In

centroid-based clustering methods, each cluster is represented by a centroid or clus-

ter center µ, typically the mean of all assigned data points. It can be described as

the following optimization problem, where xn denotes a datapoint, d(p, q) a distance

measure, and µn the nearest centroid to the datapoint xn.

8xn 2 X, minimize d(µn, xn) (2.24)

In the following two paragraphs, we will describe the most widely used centroid-based

clustering method k-means and a variation of the k-means algorithm mini-batch k-

means.

14 CHAPTER 2. THEORETICAL BACKGROUND

2.7.1 K-means

The k-means algorithm initializes the centroids of k clusters with random values. It

then assigns every training example xn to its nearest centroid µ, which is determined

by a distance measure dsqe, the squared euclidean distance.

After all xn are assigned to a cluster, the centroids are calculated as the mean of

all assigned examples. This process is continued until convergence is reached, which

means the cluster assignments do not change anymore [10]. The pseudo-code for

k-means can be seen in Algorithm 2.

Algorithm 2 k-Means

1: Input: dataset X, number of clusters k

2: Output: k clusters

3: for µ 2M do . Initialize all centroids µ

4: µ random value in range of training examples

5: end for

6: repeat

7: for xn 2 X do

8: assign each xn to nearest cluster µ

9: end for

10: for µ 2M do

11: µ mean of all assigned training examples

12: end for

13: until convergence is reached

2.7. TRADITIONAL CLUSTERING APPROACHES 15

2.7.2 Mini-batch k-means

There are stochastic gradient descent based algorithms, which reduce computation

time but also produce lower quality clusters. An algorithm that reduces computation

time by several orders of magnitude and also preserves cluster centers is mini-batch

k-means [25]. Mini-batch k-means clusters the given inputs by forming mini-batches,

randomly drawn from the dataset in every iteration. The next step is analog to k-

means, where each sample is assigned to its nearest centroid. The centroids are

then updated on a per-sample base, which further reduces convergences time [25].

Algorithm 3 gives a more detailed description of mini-batch k-means.

Algorithm 3 Mini-batch k-Means

1: Input: number of clusters k, mini-batch size b, iterations t, data set X

2: Output: k clusters

3: for µ 2M do . Initialize all centroids µ

4: µ xn randomly picked from X

5: end for

6: v 0

7: for i = 1 to t do

8: S b examples randomly picked from X

9: for xn 2 S do

10: d[xn] argmin

µ2M
deuc(µ, xn) . Cache the center nearest to xn

11: end for

12: for x 2 S do

13: c d[xn] . Get cached center for this x

14: v[c] v[c] + 1 . Update per-center counts

15: ⌘ 1
v[c] . Get per-center learning rate

16: c (1� ⌘)c+ ⌘xn . Take gradient step

17: end for

18: end for

16 CHAPTER 2. THEORETICAL BACKGROUND

Chapter 3

Methods

3.1 Deep Clustering

In [4], Caron et al. propose Deep Cluster (DC), a method to learn a convolutional

neural network with labels found by a standard clustering algorithm. To achieve

this, the algorithm iteratively finds clusters of features and uses these to update the

weights of the neural network.

The network is learned similarly to supervised training, where the goal is to find good

general-purpose features. In supervised training, the features are learned through a

mapping function f✓(xn). To predict the correct labels from f✓, a classifier gW is

used on top of the extracted features. To learn the parameters W and ✓ together,

the cost function in equation 3.1 has to be minimized.

To initialize the network, the parameters ✓ are sampled from a Gaussian distribution.

Although the produced features are not good, the accuracy of the network with ran-

dom weights is above the chance level. The features are then clustered by k-means

to derive pseudo-labels yn for the next step. These labels are used to minimize the

cost function, which uses the negative log-softmax function l. Minimization occurs

through the use of mini-batch stochastic gradient descent and backpropagation.

min
✓,W

1

N

NX

n=1

l(gW (f✓(xn)), yn) (3.1)

The training consists of alternating between the clustering and minimization of the

cost function until the clusters stabilize. A fraction of images are still constantly

reassigned to other clusters, but this has no impact on the training.

It exists several trivial solutions, which are caused mainly by empty clusters and

trivial parametrization. To prevent empty clusters, a non-empty cluster is selected

17

18 CHAPTER 3. METHODS

randomly whenever an empty cluster occurs. The previous empty cluster gets a new

centroid based on the other cluster’s centroid with a random small change. Then all

points of the non-empty cluster are assigned between both clusters based on their

nearest centroid. The other problem of trivial parameterization occurs whenever the

majority of images are assigned to very few clusters. The worst-case would be every

input getting the same predicted output. It is avoided by sampling images based on

a uniform distribution between pseudo labels. The same e↵ect would be achieved

by adapting the loss function in equation 3.1 so that each contribution of an input

is re-weighted proportional to 1
Nc

. Nc denotes the number of assigned samples to

cluster c [4].

3.2 Online Deep Clustering

Online Deep Clustering (ODC) [27] is very similar to Deep Clustering, by using the

same approach of representation learning and clustering, but instead of alternating

between these two tasks, Online Deep Learning updates the labels and network

parameters rather continuously. ODC introduces two dynamic memories. One is

for centroids, which are the mean of all assigned samples, similar to a standard

clustering algorithm. The other one is a memory for samples, storing extracted

features and pseudo-labels for the whole dataset. The memories are initialized by

a global clustering method, k-means. The function f✓, which is used for feature

extraction, and the linear classifier gW are initialized randomly. The first step is

to extract the features from the input samples. This works in the same way as in

Deep Clustering. Then the network parameters are updated through mini-batch

stochastic gradient descent with the pseudo-labels stored in the sample memory.

This is done through minimization of the same cost function Deep Clustering uses.

The optimization problem follows therefore equation 3.1. Next, a gradient step is

performed for every sample to update the features in the sample memory. It is

described by the following equation, where F (xn) denotes the feature stored in the

memory corresponding to sample xn, m 2 (0, 1] is a momentum coe�cient.

F (xn) m
f✓(xn)

kf✓(xn)k2
+ (1�m)F (xn) (3.2)

3.3. SELF-LABELING 19

At the same time, each sample gets a new label based on its nearest cluster cen-

troid using the squared euclidean distance dsqe following equation 2.5. Lastly, the

centroids are updated through clustering and stored in the centroid memory, this

occurs only every k-th iteration, with k being predefined by the user.

ODC also needs to address trivial solutions like all clusters collapsing into some

huge clusters or trivial parametrization. Uniform sampling between pseudo-labels

would not be suitable for the method because it would require to re-sample the

entire dataset in each iteration, which is deemed costly and redundant by the au-

thor. Another approach is therefore used. As already stated in [4], the loss function

in equation 3.1 can be altered, by re-weighting the loss. The authors tested a re-

weighting proportional to 1p
Nc

on Deep Clustering, which held the same results

and was therefore adopted. To prevent empty clusters, a small cluster cs 2 Cs,

which is determined by a given threshold, is cleared by assigning all samples to

its nearest centroid of the remaining clusters C \ Cs. Further, the largest cluster,

cm = max{C \Cs} is split into two clusters by applying k-means. One of the clusters

is then randomly assigned as the new cluster cs. This is repeated until all cluster

sizes are greater than the given threshold [27].

3.3 Self-Labeling

The third algorithm is called Self-Labeling via simultaneous clustering and represen-

tation learning (SeLa) [2]. SeLa also alternates between learning a neural network

with pseudo labels and creating these pseudo labels, but adopts a slightly di↵er-

ent strategy from the first two algorithms. Both previously described approaches

minimize one function for the neural network and one for the clustering algorithm.

The goal of SeLa is to minimize only one cost function instead of two. This could

lead to a solution where all training examples are assigned to only one cluster. To

solve this issue, Asano et al. added a restriction that causes the labels to be equally

partitioned between all classes. To get a more clear formulation of the problem,

equation 3.1 can be rewritten as equation 3.3 to include a concrete loss function, the

cross-entropy loss from equation 2.7.

p(yn|xn) is the class probability of gW (f✓(xn)) predicting yn, which is obtain through

application of the softmax function (equation 2.8) to gW [2].

E(p, y1, ..., yN) = � 1

N

NX

n=1

log p(yn|xn) (3.3)

20 CHAPTER 3. METHODS

The next step is to encode the labels as posterior distribution q(y|xn) which results

in equation 3.4, with K being the number of distinct labels.

E(q, p) = � 1

N

NX

i=1

KX

y=1

q(y|xi) log p(y|xi) (3.4)

With the restriction of equally divided classes, the overall optimization problem can

be written as equation 3.5.

min
p,q

E(p, q) subject to 8y : q(y|xn) 2 {0, 1} and
NX

n=1

q(y|xn) =
N

K
(3.5)

It can be seen as an optimal transport problem, which is solved by a fast version of

the Sinkhorn-Knopp [7] algorithm.

3.4 Other Related Work

The work of Buschjäger et al. [3] is closely related to the objective of this thesis,

as they use the same dataset to conduct their experiments and aim at finding a

good performing model for gamma hadron separation. The main focus is training a

deep neural network and a binary neural network to compare these to the currently

deployed machine learning pipeline. Their findings show that deep models trained

on the raw photon counts perform significantly better, in terms of detection accuracy

on labeled data, than the state-of-the-art random forest model, which uses hand-

crafted features for detection. They also conduct the SLi&Ma significance test on

the real data taken by the FACT telescope, which is further explained at the end of

Chapter 6.

Chapter 4

Dataset

Detecting gamma rays from space is an important research area inside the field of

astrophysics. Celestial objects can be recognized by observing their emitted energy.

Cosmic gamma rays do not travel up to the surface of the earth. They scatter into

subatomic particles, which can again react with other particles to form a cascade-

like structure. Particles inside these structures travel at high velocities and emit

visible light, known as Cherenkov light. These particles, however, can be detected

by Cherenkov telescopes through large reflectors and high-speed cameras. [6]

The images we want to investigate were taken with the FACT telescope [1], which

consists of 1440 hexagonal detector plates. If a detector plate detects a specific

amount of energy, the camera of the telescope starts to record the light pulses. Each

image amounts to a time sequence of 150 nanoseconds and allows for a reconstruc-

tion of the energy and direction of the particles creating the Cherenkov light.

The telescope can operate in an additional mode, called the ’Wobble’ mode, which

uses the false source tracking method [9]. The camera gets oriented so that the

assumed gamma source is placed on a circle around the camera center. The sur-

rounding region is called the On region and aims at measuring the energy of the

gamma rays emitted by the source. All other regions on the circle are called O↵

regions and can measure the background radiation, as long as these regions are not

directed at a gamma source. The ’Wobble’ mode gets his name from the period-

ical changes of the On region [21]. As the earth rotates along its axis and moves

through space, we perceive it as the gamma source moving on a fixed trajectory,

making these periodical changes of On and O↵ regions necessary.

21

22 CHAPTER 4. DATASET

We make use of the publicly available real-world observations taken from the crab

nebula, a known gamma source [1]. We use the same dataset as Buschjäger et al. [3]

used in their work, which had already been pre-processed for the use of machine

learning. The sensors had to be calibrated to correct for environmental interfer-

ences. The images were reduced to a time series of 50 nanoseconds, focusing on the

most relevant part of the time series. They derived a baseline measurement con-

sisting of the energy of one photon hitting the sensors and subtracted this baseline

as often as possible from the actual image to obtain a photon count for each pixel.

The last preprocessing step was transforming the hexagonal grid into a rectangular

grid to use common neural network architectures. The resulting dataset consists of

3.972.043 images with a shape of 45 by 45. 757.993 of these images were taken in

the ’Wobble’ mode. An image of a detected particle in the original hexagonal shape

can be seen in Figure 4.1.

200 150 100 50 0 50 100 150 200
200

150

100

50

0

50

100

150

200

0

100

200

300

400

500

Figure 4.1: Image of a detected particle

Often we prefer labeled data, as supervised machine learning algorithms rely on

some kind of ground truth to make predictions or learn a feature representation.

As particles detected by a telescope come without labels, we desire a di↵erent kind

of labeled dataset. We make use of a simulated dataset, which is created by the

particle simulation software CORSIKA (Cosmic Ray Simulations for Kascade) [12].

CORSIKA uses a Monte Carlo simulation in combination with profound knowledge

of high energy and electromagnetic interactions. To create realistic data, the sim-

ulation software creates particle showers, which are then run through a simulation

of the telescope. A visualization of the simulated particle showers can be seen in

Figure 4.2. The resulting images are of the same shape as the real images, with an

equal distribution between gamma rays and background radiation. The data comes

23

in two variations, ”Di↵use” and ”Wobble”. In Chapter 6, where we conduct our

experiments, we mainly focus on the Di↵use dataset. We refer to it simply as the

simulation dataset and explicitly mention the use of the Wobble data. The simulated

data also comes in a version with so-called quality cuts. This means the developer

of the software filtered the dataset for images that do not resemble real live events.

We make no use of these quality cuts and train our models with the uncut dataset.

This leaves us with a total image count of 300.000, split into a training set with

200.000 and a test set with 100.000 images. The Dataset is provided to us in the

NumPy [11] format, which leaves us with a threedimensional array, with an entry

for every image.

24 CHAPTER 4. DATASET

(a) Gamma Shower (b) Proton Shower

Figure 4.2: Images of two simulated extensive air showers, taken from [8]. They are

both induced by a primary particle with an energy of 100 GeV. In the left image

the primary particle is a gamma particle, in the right image a proton. The colored

tracks correspond to the particles: Red: electrons, positrons or gamma, Green:

muons, Blue: hadrons

Chapter 5

Implementation

In this Chapter, we will briefly discuss the implementation process. The code for the

experiments was written in the programming language Python. The main additional

libraries used in the implementation process are the open-source deep learning frame-

work PyTorch [19], NumPy [11] and the machine learning library scikit-learn [20].

For the neural network that had to be trained for the clustering methods, we used

the implementation of a small VGG-type model by Buschjäger et al. [3], which was

slightly modified to suit the task at hand better. The concrete architecture is de-

scribed in the next Chapter. The algorithms described in Chapter 3 had already

been implemented by their respective authors. This thesis uses their published im-

plementations.

In the following paragraphs, we summarize the changes that had to be made to the

implementations in order to successfully apply them to our data.

Deep Cluster The Deep Cluster implementation1 had to be updated because it

used an older version of Python and Pytorch. The framework of the neural network

had to be adapted only structurally. The main di�culty was the dataset. The first

approach was to load the NumPy array and convert it into a PyTorch Tensor. This

worked fine for a small enough dataset. While trying to train the whole dataset

with nearly 4 million images, memory issues occurred. The solution to the problem

was only to load a mapping of the dataset. Thankfully NumPy arrays can be

directly loaded as a memory map. This method to load the dataset led to another

problem, the freezing of the training process after a couple of epochs, which could

be circumvented by setting the number of workers to load the data to 0.

1
https://github.com/facebookresearch/deepcluster

25

26 CHAPTER 5. IMPLEMENTATION

SeLa The SeLa implementation2 was structured very similar to Deep Cluster so

that most of the changes like the dataset and neural network could be adopted.

One problem in the implementation led to a very slow running time when only one

graphic processing unit (GPU) was used. Less than two GPUs always resulted in

the operations being carried out on the central processing unit (CPU). The program

was not written for only one GPU and had to be manually adapted.

Online Deep Cluster For Online Deep Cluster, the authors provided a library

containing multiple unsupervised representation learning algorithms3. This led to

some issues with the adaptability of the algorithm, mainly because of readability

issues, with methods being separated into a lot of subclasses. Again the dataset

and the neural network could be used with some changes. The neural network had

to be separated into smaller parts. For example, the feature extraction pipeline

was separated from the classification head and had to be initialized separately. The

core features of the dataset could be adopted, but multiple other files had to be

adapted, which had to do with the way we load the data and the structure of the

library. Similar to Deep Cluster, the ODC implementation had some conflicts with

the dataset, which was also solved by setting the data loader workers to zero.

Overall the implementations of Deep Cluster and SeLa were written clearly, while the

Online Deep Cluster implementation was more di�cult to comprehend, mainly be-

cause of the additionally used library, which handled a lot of the training process. For

k-means and mini-batch k-means we used the implementation from scikit-learn [20].

2
https://github.com/yukimasano/self-label

3
https://github.com/open-mmlab/OpenSelfSup

Chapter 6

Experiments

The main focus of this thesis is the examination of training methods involving unsu-

pervised representation learning. The in Chapter 3 proposed algorithms use feature

clustering to derive pseudo-labels for the training process of a deep neural network.

To generally examine these approaches and to compare the di↵erent algorithms, we

first need to define an assessment strategy. In general, evaluating unsupervised ma-

chine learning methods is di�cult because we do not have labels describing the data

or some other ground truth. We make use of the trained networks through supervised

re-learning of the classifier with a subset of the labeled simulation data. Therefore

the parameters of the layers used for feature extraction stay fixed. Another way to

analyze the methods is by the evaluation of the resulting cluster assignments.

Before we further discuss methods of comparison, we display the architecture of the

neural network and talk again briefly about the dataset.

Architecture The architecture of our deep neural network is a small VGG type

model. It was chosen for two main reasons. One being the improved results reported

by Caron et al. [4] over other popular types of architectures. The other main reason

was the previous work from Buschjaeger et al. [3], which also used this type of model

and was provided for our experiments. As already stated, we modified the provided

implementation of the neural network slightly to better adapt to the given models.

The first three layers consist of one convolutional layer with a kernel size of 3 and

a stride of one, one batch normalization layer, and one rectified linear unit as acti-

vation layer. We repeat these three layers followed by one maximum pooling layer

with a kernel size of 2 and a stride of 2. This structure is what we will call blocks

for the rest of this chapter. The network consists of two of these blocks for feature

27

28 CHAPTER 6. EXPERIMENTS

extraction. The classifier consists of two linear, a batch normalization, and two ac-

tivation layers. The final layer is a linear layer, which is adapted to the number of

clusters we wish to train for. The architecture for a block size of two can be seen

in Table 6.1, which is what we used for most experiments after we found the best

hyperparameters.

Layer Output Size Kernel Size Stride

Convolutional 16⇥ 45⇥ 45 3⇥ 3 1⇥ 1

Batch Normalization 16⇥ 45⇥ 45 � �
Activation 16⇥ 45⇥ 45 � �
Convolutional 16⇥ 45⇥ 45 3⇥ 3 1⇥ 1

Batch Normalization 16⇥ 45⇥ 45 � �
Activation 16⇥ 45⇥ 45 � �
Max Pooling 16⇥ 22⇥ 22 2⇥ 2 2⇥ 2

Convolutional 32⇥ 22⇥ 22 3⇥ 3 1⇥ 1

Batch Normalization 32⇥ 22⇥ 22 � �
Activation 32⇥ 22⇥ 22 � �
Convolutional 32⇥ 22⇥ 22 3⇥ 3 1⇥ 1

Batch Normalization 32⇥ 22⇥ 22 � �
Activation 32⇥ 22⇥ 22 � �
Max Pooling 32⇥ 11⇥ 11 � �

Linear 512 � �
Batch Normalization 512 � �
Activation 512 � �
Linear 512 � �
Activation 512 � �

Linear number of clusters � �

Figure 6.1: Architecture of the network

Dataset As we already described the dataset in detail in Chapter 4, we will briefly

name how we split our dataset for the following experiments. We further divide the

simulated training set into a smaller set consisting of 100.000 images, which is mainly

used for training during the hyperparameter search. The other half of the images

6.1. HYPERPARAMETER 29

are used for the re-learning process of the classification head. We use 80.000 images

for training the classifier and 20.000 for validation. It is further denoted as the

label-mapping set.

The rest of this Chapter is organized in the following way: First, we derive the

hyperparameters for the training process. Then we train our models with the entire

FACT dataset and compare their accuracy using the simulation data. In the third

experiment, we compare the resulting clusterings of the models as well as k-means

and mini-batch k-means. This is followed by an experiment, where we train a su-

pervised neural network to compare it directly to our unsupervised algorithms. In

the last experiment, we evaluate our models on the FACT dataset, using the Li &

Ma significance test [16]. Additionally, we provide a visualization of some gamma

and hadron images, as predicted by our methods.

6.1 Hyperparameter

Hyperparameters are parameters of the model, which can not be found during train-

ing. The search for those parameters can be a tedious process because there exist

infinitely many options to choose from. The approach taken in this thesis is a com-

bination of an extensive search and manual search. First, we have to focus on which

hyperparameters we want to optimize. The structure of the neural network alone

is one large parameter that has to be found. Not all neural network architectures

perform equally well on di↵erent problems. To focus on the more important aspects

of this thesis, we use a predefined neural network as described at the beginning

of this Chapter and vary only the number of blocks. As mentioned in [4], some

amount of over-segmentation is beneficial for the learning process, so we adopt the

same approach in testing multiple numbers of clusters. The last parameter to find is

the learning rate, which probably has the most significant influence on the training

results as it controls the influence of the gradient steps taken in every iteration.

We decided to take a smaller subset consisting of 100.000 images randomly sampled

from the whole simulation training set to test for hyperparameters. One reason not

to train the network on real images from the crab nebula is that we do not know

the dataset’s distribution of gamma and non-gamma events. This could lead to a

bias in the training process and worse detection rates of gamma or hadron particles.

Another reason is to use the so trained models again for the supervised experiment

in Section 6.4, where training with real data is not possible because of missing labels.

30 CHAPTER 6. EXPERIMENTS

The first training run for each algorithm consisted of varying the block size and the

learning rate. We test 2,3,4, and 5 blocks and learning rates ranging from 0.1 to

0.00001. The number of clusters was held fixed at 32 clusters, which initially gave

a good accuracy. We evaluate the models by re-learning the classifier as mentioned

at the beginning of this Chapter and test the accuracy with 100.000 images of the

test dataset. Table 6.1 shows the results of the first search.

Learning Rate Blocks DC ODC SeLa

0.1 2 64.983 69.082 68.199

0.1 3 67.556 67.94 67.487

0.1 4 64.393 64.651 64.964

0.1 5 59.63 58.834 58.229

0.01 2 64.436 69.672 66.34

0.01 3 65.827 67.887 67.06

0.01 4 63.628 65.517 65.738

0.01 5 62.707 61.775 60.096

0.001 2 65.86 68.839 70.013

0.001 3 63.751 66.913 67.842

0.001 4 60.562 66.094 66.018

0.001 5 62.692 59.843 61.204

0.0001 2 65.669 67.684 69.284

0.0001 3 67.408 66.788 69.138

0.0001 4 63.822 65.33 66.898

0.0001 5 59.33 60.599 60.399

0.00001 2 64.835 65.529 67.649

0.00001 3 65.765 66.044 65.22

0.00001 4 60.921 60.9 61.952

0.00001 5 57.406 57.898 57.29

Table 6.1: The first hyperparameter search results

As can be seen in Table 6.1, the best results for all algorithms were obtained with

a lower number of blocks. In the next search, we included a block size of two and

three. Even though most of the results favored a size of two, three blocks performed

comparably well. We varied the number of clusters in a range of 2 to 256 and tested

6.2. TRAINING ON FACT DATA 31

the same learning rates as before. The values obtained from the final hyperparam-

Learning Rate Clusters DC ODC SeLa

0.001 16 66.397 69.893 68.319

0.001 32 67.744 69.127 69.554

0.001 256 70.167 68.114 68.62

Table 6.2: Selected accurcacys for 2 blocks

eter run can be seen in Table 6.2. The best values are marked in their respective

column. The full table for 2 blocks and 3 blocks can be found in Table A.1 and

Table A.2 in the Appendix A.

In [2], the authors proposed that using multiple heads for classification could lead to

an improvement in test accuracy. We tested the use of multiple heads varying from

one to ten. The results suggest no further improvement. Therefore the strategy was

not adopted in the other two models. Further tested was the influence of training

more epochs than 50, which also resulted in slightly worse accuracy, probably due

to overfitting.

6.2 Training on FACT Data

The next experiment evaluates the performance of the models on real training data

recorded with the FACT telescope. The original papers trained their networks for

more than 400 epochs on datasets like ImageNet. Their training set consists of more

diverse images of higher resolution. As our dataset contains nearly 4 million images,

we choose to train for fewer epochs. We trained for 50 and five epochs, with the

best parameters obtained by the hyperparameter search. For the label mapping, we

used the same dataset as before. The test results can be seen in Table 6.3 and were

also evaluated on the test dataset consisting of 100.000 images.

Epochs DC ODC SeLa

50 64.51 67.319 68.974

5 67.811 69.308 68.985

Table 6.3: Accurcacy for training on the full FACT dataset

32 CHAPTER 6. EXPERIMENTS

We obtained the best accuracy on Online Deep Cluster trained for only five epochs.

The results depict a better accuracy for all models when trained only for a few

epochs. As we reported worse accuracy for models trained for more than 50 epochs

in the hyperparameter training with only 100.000 images, it is not surprising that

the accuracy of the models is slightly worse when we train with much more images

as the models can overfit to the training data. This can most evidently be observed

in Deep Cluster and Online Deep Cluster, while Sela remains relatively stable.

6.3 Cluster Comparison

As mentioned in Chapter 1, one important experiment is the comparison of the

proposed methods to a traditional clustering approach. As traditional methods

such as k-means make no use of an underlying neural network, we will examine the

resulting clusters of each method. We start by presenting some criteria for cluster

evaluation.

6.3.1 Metrics

Rand Index The Rand Index (RI) [22] is named after William M. Rand. He

extends the idea of a simple count of misclassified points against a correct classifi-

cation to how pairs of points are clustered. Let a and b be two di↵erent data points

of the dataset. Two clusterings C and D can be seen as similar either if a and b

are clustered together in both C and D or if they are in di↵erent clusters in both C

and D. Dissimilarity in this sense means that a and b are in the same cluster in one

clustering and in di↵erent clusters in the other clustering. The Rand Index is given

by the sum over all similar pairs, divided by the number of possible pairs, with �ij

being equal to 1 for every similar pair and 0 for every dissimilar pair:

RI =

PN
i<j �ij

N
�N
2

� (6.1)

A RI close to zero means that clusterings are very dissimilar and a RI of one means

they are the same.

One disadvantage of the Rand Index is that it is not near zero for a random clus-

tering. This issue can be addressed by also using the adjusted Rand Index [13],

which is adjusted for chance. It can be derived by a general form of index correction

6.3. CLUSTER COMPARISON 33

following equation 6.2.

AdjustedIndex =
Index� ExpectedIndex

MaxIndex� ExpectedIndex
(6.2)

Mutual Information The uncertainty of a discrete random variable X can be

measured by the entropy H(X), which is defined as:

H(X) = �
NX

n=1

p(xn) log(p(xn)) (6.3)

p(xn) is the probability of X = xn. The mutual information of two random variables

X,Y with a joint probability distribution p(xn, ym) is defined by equation 6.4 [5].

MI(X,Y) = �
NX

n=1

MX

m=1

p(xn, ym) log

✓
p(xn, ym)

p(xn)p(ym)

◆
(6.4)

We can write the entropy of a Clustering C as:

H(C) = �
SX

i=1

P (i) log(P (i)) (6.5)

The probability that a sample from the whole dataset with size N falls into cluster

C is given by: P (i) = |Ci|
N , where |Ci| is the number of samples in the cluster. The

Mutual Information of two clusterings C and D is therefore given by:

MI(C,D) = �
SX

i=1

RX

j=1

P (i, j) log

✓
P (i, j)

Pi)P (j)

◆
(6.6)

P (i, j) = |Ci\Dj |
N is the probability of one sample belonging to cluster Ci in C and

cluster Dj in D [26].

The Mutual Information is as well as the Rand Index not adjusted to chance and has

the additional disadvantage that comparing two equal clusterings does not result in

a score of one. We use the adjusted mutual information metric [26], which uses the

same index correction as the adjusted Rand Index.

V-Measure The V-measure [23], where V stands for validity, measures the har-

monic mean between a homogeneity score and a completeness score. For both ho-

mogeneity and completeness, we need the conditional entropy H(Y |X):

H(Y |X) = �
NX

n=1

MX

m=1

p(xn, ym) log(p(ym|xn))

= �
NX

n=1

MX

m=1

p(xn, ym) log

✓
p(xn, ym)

p(x)

◆ (6.7)

34 CHAPTER 6. EXPERIMENTS

This can be written in terms of our clustering problem, with P (i, j) and P (i) being

defined as in equation 6.6:

H(Y |X) = �
SX

i=1

RX

j=1

P (i, j) log

✓
P (i, j)

P (i)

◆
(6.8)

After Rosenberg and Hirschberg [23], a clustering is homogeneous if only those data

points are assigned to a cluster, whose underlying classes are the same. A clustering

is complete if all data points of the same underlying class are assigned to the same

cluster. With the conditional entropy, a clustering C a predefined class distribution

K, homogeneity and completeness are defined as

hom(C,K) = 1� H(K|C)

H(K)
=

H(K) +H(C)�H(C,K)

H(K)
(6.9)

and

com(C,K) = 1� H(C|K)

H(C)
=

H(C) +H(K)�H(C,K)

H(C)
(6.10)

With � being a weighting factor, the V-measure can thus be defined as:

V =
(1 + �)hom⇥ com

� ⇥ hom+ com
(6.11)

We leave � at a value of one, giving both scores the same weight.

6.3.2 Comparison

As previously mentioned, the real images obtained by the FACT telescope come

without labels. For this reason, we compare the methods on the simulation data.

We train each model as well as k-means and mini-batch k-means with the full simu-

lation dataset and varying numbers of clusters. We test two, 16, 32, and 256 clusters

for each method. As the (adjusted) Rand Index, the (adjusted) Mutual Information

score, and the V-measure, are all symmetrical, we can also use these metrics to com-

pare two obtained clusterings from di↵erent methods against each other. Note that

both the Rand Index and the V-measure range from 0 to 1, while the adjusted RI

and the adjusted MI score have both a range of �1 to 1. We include all these metrics

in our evaluation because they all value di↵erent aspects to judge a good clustering.

A good clustering should therefore not only give a good score on one metric. For

the following tests, we use the implementations of the metrics from scikit-learn [20].

First, we compare the resulting clusters to the labels of the simulation. As the

scores for 2, 16 and 32 clusters gave similar results, we only display the obtain

scores for 256 clusters. They can be seen in Table 6.4.

6.3. CLUSTER COMPARISON 35

256 Clusters Rand Index adjusted RI adjusted MI V-measure

Deep Cluster 0.50022 0.00044 0.00421 0.00442

Online DC 0.50013 0.00026 0.00382 0.00392

Self-Labeling 0.50019 0.00037 0.00791 0.00811

k-means 0.50179 0.00358 0.00391 0.00432

mb k-means 0.5004 0.00079 0.00282 0.00315

Table 6.4: Metric evaluation 256 cluster

We can see from the results, that for all methods and metrics, the obtained values

are not good. All of them have a Rand score around 0.5 and a score close to zero

for the other metrics. For comparison, the results for randomly arranged labels are

portrayed in Table 6.5.

Rand Index adjusted RI adjusted MI V-measure

Random 0.5 0.0 0.0 0.0

Table 6.5: randomly shu✏ed labels

This leads to the conclusion, that comparing the obtained clusters to the labels with

the proposed metrics does not reveal any useful information for the quality of the

clusters. We can interpret them either as all being randomly grouped together or

all clusterings being bad compared to the ground truth. If the assignments are ran-

domly distributed, we would expect the accuracy of our label-mapped models to be

around 50 percent, which conflicts with the results of our previous experiments. We

think it is more reasonable to say that the used metrics are not very applicable to

our dataset, as we only have two classes. For example, the Rand Index takes into

account how many examples are not grouped together and are also not in the same

ground truth class, so we expect higher values for more ground truth classes.

We can make this more clearly by examining the following example, using the Rand

index for comparison:

Suppose we have true labels [0, 0, 0, 1, 1, 1, 1, 0], which are then grouped by a cluster-

ing algorithm into two cluster [0, 0, 0, 1] and [1, 1, 1, 0], resulting in the new labeling

[0, 0, 0, 0, 1, 1, 1, 1]. If we set the first cluster as being class zero and the second one

as being class one, we get an accuracy of 75 Percent for each cluster.

36 CHAPTER 6. EXPERIMENTS

The resulting score of the Rand Index is 0.57143.

Now we take the true lables [0, 0, 0, 1, 1, 1, 1, 0, 2, 2, 2, 3, 3, 3, 3, 2] and the clustering

[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3] which results in the same accuracy of 75 Percent

as we name the cluster after their most common example. This time we get a much

higher Rand Index of 0.8.

In the next step, we compare the found clusters of the methods to each other. From

our previous observations, we expect them to give more insight into the similarity of

the clusterings, at least for higher numbers of clusters. Results can be seen in Table

6.6 for 2 clusters and in Table 6.7 for 256 clusters. The comparisons of 16 and 32

clusters can be found in the appendix, B.1 and B.2 We abbreviate k-means as km

and mini-batch k-means as mbkm in the following Tables.

2 Clusters RI adjusted RI adjusted MI V-measure

DC vs. SeLa 0.51989 0.03978 0.02948 0.02948

DC vs. ODC 0.52018 0.04036 0.02956 0.02956

SeLa vs ODC 0.52089 0.04177 0.03035 0.03035

mbkm vs. DC 0.50597 -0.00146 0.00071 0.00072

mbkm vs. SeLa 0.50065 0.0013 0.02752 0.02753

mbkm vs. ODC 0.5001 0.00011 0.00037 0.00038

mbkm vs. km 0.96728 0.2456 0.18059 0.18062

Table 6.6: Clusterings of the methods compared to each other with 2 clusters

For two clusters, the direct comparisons suggest no real similarities, except for k-

means and mini-batch k-means. The higher values of the standard clustering algo-

rithms are due to a clustering, where all except a few hundred examples are assigned

to the same cluster. By comparing the resulting clusterings of 256 clusters, we can

see higher values for all scores. Even though the adjusted RI is still not very high,

the other scores suggest that all methods obtained similar clusterings.

6.4 Supervised Training

Most of the state-of-the-art neural network architectures use at least some kind of

supervision. For this reason, we wanted to compare the unsupervised methods to a

6.4. SUPERVISED TRAINING 37

256 Clusters RI adjusted RI adjusted MI V-measure

DC vs. SeLa 0.99228 0.14433 0.58169 0.59531

DC vs. ODC 0.99097 0.14695 0.566 0.57994

SeLa vs ODC 0.99266 0.21404 0.63697 0.64852

mbkm vs. DC 0.94394 0.05357 0.51814 0.52879

mbkm vs. SeLa 0.94481 0.05028 0.51014 0.52106

mbkm vs. ODC 0.94397 0.05851 0.47366 0.48494

mbkm vs. km 0.8633 0.21783 0.54729 0.55238

Table 6.7: Clusterings of the methods compared to each other with 256 clusters

supervised approach. Another reason is the state-of-the-art model for gamma de-

tection, which is also fully supervised.

The supervised training was conducted in a similar way to the hyperparameter

search. We tested multiple configurations of parameters and used only the mapping

dataset, consisting of 80.000 images to train the network and 20.000 images for val-

idation. To get a comparable result to the work of Buschjäger et al. [3], we also

trained each model on the gamma wobble set. We split the wobble dataset as in the

hyperparameter search, resulting in a training set with 100.000 images and a label

mapping set consisting of 80.000 images for label mapping and 20.000 images for

validation. For the unsupervised methods, we trained each model with their best

respective hyperparameters as found in 6.1. The supervised neural network was also

trained with the best hyperparameters from the first run. Additionally, we tested

the configurations of Buschjäger et al.

We report the best results for each model in table 6.8.

Di↵use Wobble
Parameters

learning rate clusters blocks

Supervised 79.194 90.721 0.1 � 4

Deep Cluster 70.167 86.217 0.001 256 2

Online Deep Cluster 69.893 85.538 0.001 16 2

Self-Labeling 69.554 85.666 0.001 32 2

Table 6.8: Supervised vs. Unsupervised

38 CHAPTER 6. EXPERIMENTS

The neural network trained under supervision is the clear winner of this compari-

son, but the gap between unsupervised and supervised is way smaller on the Wobble

dataset. This implies that the Di↵use dataset is somewhat harder to classify. This

is not surprising as the Wobble data aims at representing strong gamma sources

more often, caused by the mode of operation as described in Chapter 4. Therefore,

the models can easier distinguish between a strong gamma signal and the weaker

hadron radiation.

6.5 Significance

In our final experiment, we use the previously trained models to conduct the Li & Ma

significance test, denoted as SLi&Ma, on the real-world data produced by the FACT

telescope. SLi&Ma is a statistical hypothesis test that is applied to photon counts

measured, for example, in the Wobble operation mode of a telescope. As already

mentioned in Chapter 4, we first have to assume that only the On region observes the

suspected gamma source. Then the O↵ regions only measure background radiation.

With the photon count of the On region being Non and the photon count of the O↵

region being Noff , we can write the probable number of photons coming directly

from the source as:

Ns = Non � ↵Noff (6.12)

The scalar ↵ is a scaling factor denoting the ratio of the area of the On region to

the area of the O↵ region. The significance of detection S is then defined as:

S(Non, Noff) =
p
2

⇢
Non ln

1 + ↵

↵

✓
Non

Non +Noff

◆�

+Noff ln

(1 + ↵)

✓
Noff

Non +Noff

◆��1\2 (6.13)

As SLi&Ma is a hypothesis test, we can formulate the null hypothesis that the On

region does not observe a gamma source. The value obtained by S then shows by

how many standard deviations � we can reject our hypothesis. Using this test on

a fixed dataset can give us an estimation of the detection e�ciency of our model.

In gamma astronomy, five or more � are considered a gamma event. Classifying all

our images as gamma events gives us a value of around 15 �, so we aim for at least 15.

For the SLi&Ma test, we use the subset of the FACT dataset, which was taken

while operating in Wobble mode. For the evaluation, we need to determine the class

probability of an event being gamma radiation. Therefore we use our models and

6.5. SIGNIFICANCE 39

make a forward pass with the dataset to derive our predictions. During the for-

ward pass, we convert the model output into class probabilities by performing the

softmax operation. Now we can adjust the threshold for an event being classified

as gamma radiation. We test multiple thresholds for each model and display the

models with the highest significance. The complete evaluation of varying thresholds

can be found in the appendix C.1. For each method, we test both models trained

on the FACT dataset, of which one was trained for 50 epochs and one for 5. We

also test the best-performing model from the hyperparameter search, trained on the

Di↵use dataset. Note that after the unsupervised training on the di↵erent datasets,

the models have to be label-mapped to the simulation data. Otherwise, we do not

know which class corresponds to gamma events. As explained at the beginning of

this Chapter, this is achieved by only re-learning the classifier of our models while

letting the parameters of the layers for feature extraction unchanged. Additionally,

we test two supervised models from Section 6.4, one trained on the Wobble and one

trained on the Di↵use dataset. Table 6.9 summarizes our findings.

Wobble Di↵use FACT 5 FACT 50

Supervised 24.45 23.87 � �
Deep Cluster � 18.70 19.74 16.49

Online Deep Cluster � 18.31 20.61 18.54

Self-Labeling � 19.11 17.35 18.43

Table 6.9: SLi&Ma significance test

The highest significance for each method is marked in bold text, and the highest

significance overall is additionally underlined.

Comparing only the unsupervised models, we can see that Online Deep Cluster

achieves the highest significance. Deep Cluster shows similar di↵erences to our sec-

ond experiment in Section 6.2 when only trained for five epochs instead of 50 on the

FACT dataset. Both methods perform better when trained on the real-world data.

Only the Self-Labeling method achieves its best performance on the simulated data.

Overall all methods deliver decent results, but the highest scores were achieved by

the models trained under supervision, mirroring our results from Section 6.4.

40 CHAPTER 6. EXPERIMENTS

Figure 6.2: Viridis

Figure 6.3: BW

6.6 Visualization

Before we close this Chapter and finish this thesis with a conclusion and outlook on

possible future work, we present some images identified as gamma radiation by our

methods. For each method, we take the best performing model of the SLi&Ma test

and display images with a high probability of being gamma events or background

radiation. We create the images by using the Python library Matplotlib [14].

We used the standard coloring scheme of Matplotlib, ”Viridis”, which has a range

from purple for low-intensity pixels to yellow for high-intensity pixels. Figure 6.2

and Figure 6.3 show the range for a ten pixel wide image in comparison to a normal

grey scale image. Note that there is not necessarily a one-to-one conversion between

each of the ten pixels. The images show only a rough conversion from black and

white to the new color spectrum.

We display six images for each method. The first two are identified as gamma

events, one with a probability of 99 Percent and one with a probability of 90 Per-

cent. The next two images are identified as background radiation or non-gamma

event, again with a probability of 99 and 90 Percent. The last two images have the

same probability of being gamma or background radiation. The resulting images can

be see in Figure 6.4 for Deep Cluster, in Figure 6.5 for the Self-Labeling method,

and in Figure 6.6 for Online Deep Cluster.

6.6. VISUALIZATION 41

(a) 99% Gamma

(b) 99% Hadron

(c) 50% Gamma, 50% Hadron

(d) 90% Gamma

(e) 90% Hadron

(f) 50% Gamma, 50% Hadron

Figure 6.4: Images classified by Deep Cluster

42 CHAPTER 6. EXPERIMENTS

(a) 99% Gamma

(b) 99% Hadron

(c) 50% Gamma, 50% Hadron

(d) 90% Gamma

(e) 90% Hadron

(f) 50% Gamma, 50% Hadron

Figure 6.5: Images classified by SeLa

6.6. VISUALIZATION 43

(a) 99% Gamma

(b) 99% Hadron

(c) 50% Gamma, 50% Hadron

(d) 90% Gamma

(e) 90% Hadron

(f) 50% Gamma, 50% Hadron

Figure 6.6: Images classified by Online Deep Cluster

44 CHAPTER 6. EXPERIMENTS

Chapter 7

Conclusion

In this thesis, we presented three recently proposed methods for learning feature

representations of a given dataset without the need for supervision. Each method

clusters the features extracted by the underlying neural network to derive pseudo-

labels for the training process. Several experiments were conducted to test the per-

formance of the methods on the problem of gamma-hadron separation. We started

by training our models on the simulated images and the data recorded by the FACT

telescope. We then evaluated the trained models in terms of detection accuracy by

re-training the classifier to predict whether a given image includes gamma rays or

cosmic background radiation. As each method relies on clustering to derive feature

representations, we examined the resulting clusters and compared them to a tradi-

tional clustering approach, k-means. After comparing our models to the standard

supervised approach, traditionally used for neural network training, we concluded

our experiments by performing the SLi&Ma significance test on our label-mapped

models.

We showed that all methods produce good results, but can not achieve the level

of accuracy of models trained under full supervision. For future work in applying

this type of unsupervised clustering approach to gamma astronomy, the SLi&Ma sig-

nificance test could be directly integrated into the training process, as accomplished

in [21]. After deriving a clustering of the simulation dataset, instead of mapping the

classifier onto labeled data, we could aim at maximizing the SLi&Ma significance on

the FACT data by assigning each found cluster to either gamma or hadron radiation.

45

46 CHAPTER 7. CONCLUSION

Appendix A

Hyperparameter

47

48 APPENDIX A. HYPERPARAMETER

LR Clusters DC ODC SeLa

0.1 2 64.011 68.759 65.976
0.1 8 66.66 68.224 64.709
0.1 16 65.255 68.705 65.637
0.1 32 67.218 68.599 65.413
0.1 64 66.72 66.931 65.949
0.1 128 67.07 66.885 64.879
0.1 192 61.964 65.694 65.985
0.1 256 65.207 67.381 64.642

0.01 2 60.204 67.668 66.161
0.01 8 67.872 68.387 66.376
0.01 16 66.734 69.374 66.371
0.01 32 65.796 69.59 67.112
0.01 64 64.056 69.706 66.775
0.01 128 64.472 67.784 66.899
0.01 192 61.759 66.933 68.106
0.01 256 64.133 66.622 66.765

0.001 2 63.764 67.379 64.839
0.001 8 66.251 69.645 68.831
0.001 16 66.397 69.893 68.319
0.001 32 67.744 69.127 69.554
0.001 64 68.54 68.05 69.074
0.001 128 69.905 66.941 69.245
0.001 192 69.54 68.416 69.036
0.001 256 70.167 68.114 68.62

0.0001 2 65.956 67.697 64.117
0.0001 8 67.228 66.735 68.269
0.0001 16 67.131 68.893 67.214
0.0001 32 65.706 66.898 69.201
0.0001 64 67.68 66.986 68.144
0.0001 128 66.485 67.631 68.59
0.0001 192 65.995 66.957 69.175
0.0001 256 66.179 66.077 67.534

0.00001 2 66.119 66.045 66.047
0.00001 8 66.169 65.612 66.194
0.00001 16 66.155 65.417 65.932
0.00001 32 64.699 65.353 67.697
0.00001 64 67.07 66.562 65.725
0.00001 128 66.174 65.332 66.091
0.00001 192 65.973 66.063 65.695
0.00001 256 66.203 65.735 65.127

Table A.1: Accurcacy for 2 blocks from the second hyperparameter search as de-
scribed in Chapter 6.1. The best results from each method are marked in their
respective column.

49

LR Clusters DC ODC SeLa

0.1 2 66.217 67.923 62.999
0.1 8 65.866 67.671 64.7
0.1 16 66.999 68.257 65.701
0.1 32 66.829 68.422 66.43
0.1 64 66.289 68.278 66.687
0.1 128 65.212 67.853 65.729
0.1 192 66.361 67.689 65.821
0.1 256 60.735 68.07 65.182

0.01 2 58.558 68.025 63.035
0.01 8 67.365 66.857 65.594
0.01 16 67.23 68.513 66.083
0.01 32 66.165 67.762 65.967
0.01 64 62.854 68.068 67.837
0.01 128 64.524 66.467 67.597
0.01 192 62.454 66.366 67.78
0.01 256 58.8 65.975 68.877

0.001 2 61.727 66.878 67.037
0.001 8 62.028 68.396 66.473
0.001 16 62.762 66.929 67.83
0.001 32 65.206 66.891 68.515
0.001 64 66.477 67.323 67.372
0.001 128 65.915 67.589 67.993
0.001 192 68.724 66.072 68.949
0.001 256 69.525 67.222 69.517

0.0001 2 64.816 67.571 67.031
0.0001 8 65.785 66.914 67.597
0.0001 16 66.238 67.996 67.661
0.0001 32 67.101 66.514 68.956
0.0001 64 66.114 66.954 67.886
0.0001 128 65.3 66.998 68.375
0.0001 192 64.949 66.1 66.546
0.0001 256 64.749 66.292 68.243

0.00001 2 64.225 64.834 65.848
0.00001 8 65.51 64.745 64.818
0.00001 16 65.138 65.404 65.548
0.00001 32 65.926 65.383 65.245
0.00001 64 65.492 64.395 64.234
0.00001 128 65.266 64.252 64.378
0.00001 192 64.777 65.176 64.746
0.00001 256 64.689 65.472 65.498

Table A.2: Accurcacy for 3 blocks from the second hyperparameter search as de-
scribed in Chapter 6.1. The best results from each method are marked in their
respective column.

50 APPENDIX A. HYPERPARAMETER

Appendix B

Cluster Comparison

16 Clusters RI adjusted RI adjusted MI V-measure

DC vs. SeLa 0.86301 0.19609 0.4913 0.49141

DC vs. ODC 0.86704 0.22819 0.56367 0.56377

SeLa vs ODC 0.91925 0.32336 0.54954 0.54963

mbkm vs. DC 0.24547 -0.01629 0.06704 0.06739

mbkm vs. SeLa 0.22034 0.00246 0.09151 0.09182

mbkm vs. ODC 0.22071 0.0009 0.08829 0.08861

mbkm vs. km 0.86993 0.40289 0.26044 0.26117

Table B.1: Cluster comparison from Chapter 6.3 for 16 clusters. The obtained

clusterings from each model are compared against each other.

32 Clusters RI adjusted RI adjusted MI V-measure

DC vs. SeLa 0.89983 0.08729 0.41756 0.41799

DC vs. ODC 0.8944 0.07388 0.36961 0.37008

SeLa vs ODC 0.95238 0.2714 0.54816 0.54848

mbkm vs. DC 0.31445 -0.05727 0.11291 0.11401

mbkm vs. SeLa 0.33667 0.0057 0.15118 0.15213

mbkm vs. ODC 0.33655 0.00279 0.12463 0.12564

mbkm vs. km 0.78113 0.41046 0.31678 0.31801

Table B.2: Cluster comparison from Chapter 6.3 for 32 clusters. The obtained

clusterings from each model are compared against each other.

51

52 APPENDIX B. CLUSTER COMPARISON

Appendix C

Significance test

53

54
A
P
P
E
N
D
IX

C
.
S
IG

N
IF

IC
A
N
C
E

T
E
S
T

Threshold
Supervised Deep Cluster Online Deep Cluster Self-Labeling

Di↵use Wobble FACT 50 FACT 5 Di↵use FACT 50 FACT 5 Di↵use FACT 50 FACT 5 Di↵use

0.40 19.47 16.16 16.25 19.19 17.71 18.54 18.10 16.97 17.81 17.35 17.82

0.45 19.84 16.28 16.19 19.71 17.87 17.82 19.03 16.73 18.43 16.52 18.01

0.50 20.53 16.54 16.49 19.74 18.22 18.38 19.80 17.18 18.36 15.97 18.44

0.55 21.52 16.71 15.71 19.54 18.39 18.54 19.93 17.28 18.14 15.45 18.55

0.60 22.70 17.34 16.43 19.24 17.72 18.18 20.61 17.95 18.34 14.87 18.67

0.65 23.54 17.72 14.65 17.80 17.49 18.42 20.57 17.88 18.20 14.05 18.61

0.70 23.87 18.66 15.26 16.94 18.31 17.98 20.23 17.65 17.55 12.48 18.89

0.75 23.58 19.28 14.60 15.45 18.06 16.86 20.28 18.31 16.91 10.69 19.11

0.80 23.73 19.65 11.90 14.25 18.34 15.02 20.37 18.10 15.84 8.02 18.73

0.85 23.38 20.44 9.53 11.41 18.59 13.40 19.07 17.68 14.90 6.30 18.61

0.90 23.44 20.74 6.86 7.93 18.69 10.26 16.49 17.43 12.91 4.26 17.68

0.95 23.87 22.33 3.15 5.95 18.70 5.36 11.13 16.30 10.85 2.42 15.86

0.99 17.06 24.45 0.0 0.0 12.86 1.62 3.42 9.63 4.72 1.23 9.54

Table C.1: The full SLi&Ma significance test for each model, including the threshold variations as described in Chapter 6.5. The Table

shows multiple trained models for each method. The unsupervised models are trained on the FACT dataset, for 50 and 5 epochs and on

the Di↵use simulation dataset for 50 epochs. Each trained model is label mapped on the Di↵use data according to Chapter 6.1. As for the

neural networks trained under supervision, one model is trained and label mapped on the Di↵use simulation data and one on the Wobble

data.

Bibliography

[1] H Anderhub, M Backes, A Biland, V Boccone, I Braun, T Bretz, J Buß,

F Cadoux, V Commichau, L Djambazov, D Dorner, S Einecke, D Eisenacher,

A Gendotti, O Grimm, H von Gunten, C Haller, D Hildebrand, U Horisberger,

B Huber, K S Kim, M L Knoetig, J H Köhne, T Krähenbühl, B Krumm,

M Lee, E Lorenz, W Lustermann, E Lyard, K Mannheim, M Meharga, K Meier,

T Montaruli, D Neise, F Nessi-Tedaldi, A K Overkemping, A Paravac, F Pauss,

D Renker, W Rhode, M Ribordy, U Röser, J P Stucki, J Schneider, T Stein-

bring, F Temme, J Thaele, S Tobler, G Viertel, P Vogler, R Walter, K Warda,

Q Weitzel, and M Zänglein. Design and operation of FACT – the first g-APD

cherenkov telescope. Journal of Instrumentation, 8(06):P06008–P06008, jun

2013. https://doi.org/10.1088/1748-0221/8/06/p06008.

[2] YM Asano, C Rupprecht, and A Vedaldi. Self-labelling via simultaneous clus-

tering and representation learning. In International Conference on Learning

Representations, 2019. http://arxiv.org/abs/1911.05371.

[3] Sebastian Buschjäger, Lukas Pfahler, Jens Buss, Katharina Morik, and Wolf-

gang Rhode. On-site gamma-hadron separation with deep learning on fp-

gas. In Yuxiao Dong, Dunja Mladenić, and Craig Saunders, editors, Ma-

chine Learning and Knowledge Discovery in Databases: Applied Data Sci-

ence Track, pages 478–493, Cham, 2021. Springer International Publishing.

https://doi.org/10.1007/978-3-030-67667-4_29.

[4] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep

clustering for unsupervised learning of visual features. In Vittorio Ferrari, Mar-

tial Hebert, Cristian Sminchisescu, and Yair Weiss, editors, Computer Vision

– ECCV 2018, pages 139–156, Cham, 2018. Springer International Publishing.

https://doi.org/10.1007/978-3-030-01264-9_9.

55

https://doi.org/10.1088/1748-0221/8/06/p06008
http://arxiv.org/abs/1911.05371
https://doi.org/10.1007/978-3-030-67667-4_29
https://doi.org/10.1007/978-3-030-01264-9_9

56 BIBLIOGRAPHY

[5] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley

Series in Telecommunications and Signal Processing). Wiley-Interscience, USA,

2006.

[6] cta observatory. Observing the highest-energy processes in the universe. https:

//www.cta-observatory.org/science/gamma-rays-cosmic-sources/. last

accessed: 22-08-2021.

[7] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal trans-

port. In Proceedings of the 26th International Conference on Neural Informa-

tion Processing Systems - Volume 2, NIPS’13, page 2292–2300, Red Hook, NY,

USA, 2013. Curran Associates Inc.

[8] J. Knapp F. Schmidt. Corsika shower images. https://www-zeuthen.desy.

de/~jknapp/fs/showerimages.html, 2005. last accessed: 22-08-2021.

[9] V.P. Fomin, A.A. Stepanian, R.C. Lamb, D.A. Lewis, M. Punch, and T.C.

Weekes. New methods of atmospheric cherenkov imaging for gamma-ray as-

tronomy. i. the false source method. Astroparticle Physics, 2(2):137–150, 1994.

https://doi.org/10.1016/0927-6505(94)90036-1.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

[11] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gom-

mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebas-

tian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer,

Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández

del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Shep-

pard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and

Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–

362, September 2020. https://doi.org/10.1038/s41586-020-2649-2.

[12] D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw. CORSIKA:

a Monte Carlo code to simulate extensive air showers. 1998.

[13] Arabie P. Hubert L. Comparing partitions. Journal of Classification, 2:193–218,

1985. https://doi.org/10.1007/BF01908075.

[14] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science

& Engineering, 9(3):90–95, 2007. https://doi.org/10.1109/MCSE.2007.55.

https://www.cta-observatory.org/science/gamma-rays-cosmic-sources/
https://www.cta-observatory.org/science/gamma-rays-cosmic-sources/
https://www-zeuthen.desy.de/~jknapp/fs/showerimages.html
https://www-zeuthen.desy.de/~jknapp/fs/showerimages.html
https://doi.org/10.1016/0927-6505(94)90036-1
http://www.deeplearningbook.org
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/BF01908075
https://doi.org/10.1109/MCSE.2007.55

BIBLIOGRAPHY 57

[15] Sergey Io↵e and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In Proceedings of the 32nd

International Conference on International Conference on Machine Learning -

Volume 37, ICML’15, page 448–456. JMLR.org, 2015.

[16] Ti-Pei Li and YuQian Ma. Analysis methods for results in gamma-ray astron-

omy. The Astrophysical Journal, 272:317–324, 08 1983. https://doi.org/10.

1086/161295.

[17] Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.

[18] Kevin P. Murphy. Machine Learning - A Probabilistic Perspective. MIT Press,

2012.

[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-

ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,

and Soumith Chintala. Pytorch: An imperative style, high-performance deep

learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc,

E. Fox, and R. Garnett, editors, Advances in Neural Information Processing

Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-

chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,

2011.

[21] Lukas Pfahler, Mirko Bunse, and Katharina Morik. Noisy labels for weakly

supervised gamma hadron classification. 2021.

[22] William M. Rand. Objective criteria for the evaluation of clustering methods.

Journal of the American Statistical Association, 66(336):846–850, 1971. https:

//doi.org/10.1080/01621459.1971.10482356.

[23] Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-

based external cluster evaluation measure. In Proceedings of the 2007 Joint

Conference on Empirical Methods in Natural Language Processing and Compu-

tational Natural Language Learning (EMNLP-CoNLL), pages 410–420, Prague,

Czech Republic, June 2007. Association for Computational Linguistics.

https://doi.org/10.1086/161295
https://doi.org/10.1086/161295
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1080/01621459.1971.10482356

58 BIBLIOGRAPHY

[24] D. Rumelhart, Geo↵rey E. Hinton, and Ronald J. Williams. Learning rep-

resentations by back-propagating errors. Nature, 323:533–536, 1986. https:

//doi.org/10.1038/323533a0.

[25] D. Sculley. Web-scale k-means clustering. In Proceedings of the 19th In-

ternational Conference on World Wide Web, WWW ’10, page 1177–1178,

New York, NY, USA, 2010. Association for Computing Machinery. https:

//doi.org/10.1145/1772690.1772862.

[26] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic

measures for clusterings comparison: Is a correction for chance necessary? In

Proceedings of the 26th Annual International Conference on Machine Learn-

ing, ICML ’09, page 1073–1080, New York, NY, USA, 2009. Association for

Computing Machinery. https://doi.org/10.1145/1553374.1553511.

[27] Xiaohang Zhan, Jiahao Xie, Ziwei Liu, Yew-Soon Ong, and Chen Change

Loy. Online deep clustering for unsupervised representation learning. In 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pages 6687–6696, 2020. https://doi.org/10.1109/CVPR42600.2020.00672.

https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1145/1553374.1553511
https://doi.org/10.1109/CVPR42600.2020.00672

	Introduction
	Motivation
	Goal
	Structure

	Theoretical Background
	Artificial neural networks
	Layer

	Loss Function
	Mean Squared Error
	Cross-Entropy

	Backpropagation
	Gradient-based Optimization
	Gradient descent
	Stochastic Gradient descent

	Batch Normalization
	Convolutional Neural Network
	Pooling Layer

	Traditional Clustering Approaches
	K-means
	Mini-batch k-means

	Methods
	Deep Clustering
	Online Deep Clustering
	Self-Labeling
	Other Related Work

	Dataset
	Implementation
	Experiments
	Hyperparameter
	Training on FACT Data
	Cluster Comparison
	Metrics
	Comparison

	Supervised Training
	Significance
	Visualization

	Conclusion
	Hyperparameter
	Cluster Comparison
	Significance test

