
Master Thesis

Enriching Scientific Source Code by means of
Mining Relations between Papers and their

Implementation

Pierre Haritz

April 2021

Reviewers:

Prof. Dr. Katharina Morik

Dr.-Ing. Helena Kotthaus

Technical University Dortmund

Faculty of Computer Science

Chair of Artificial Intelligence

http://ls8-www.cs.tu-dortmund.de

"Words—so innocent and powerless as they are, as standing in a dictionary, how potent
for good and evil they become in the hands of one who knows how to combine them."

Nathaniel Hawthorne (1804-1864)

Contents

1 Introduction 1
1.1 Motivation and Background . 1
1.2 Contribution of this Thesis . 2
1.3 Thesis Structure . 2

2 Foundations 3
2.1 Natural Language Processing . 3

2.1.1 A Brief History of Natural Language Processing 3
2.1.2 An Overview of NLP Tasks . 4
2.1.3 Natural Language Understanding . 8

2.2 Code Search . 8
2.3 Encoders . 9

2.3.1 Sequence-to-sequence models . 9
2.3.2 One-Hot encodings . 11

2.4 Embeddings . 11
2.4.1 Word Embeddings . 11

2.5 Transformers . 14
2.5.1 Attention . 15
2.5.2 Transformer Architecture . 15
2.5.3 Pre-trained Language Models . 17
2.5.4 Bidirectional Encoder Representations from Transformers 18

3 Related Works and Tools 21
3.1 Text Analytics . 21

3.1.1 Text Analytics Related Research . 21
3.1.2 Text Analytics Tools . 22
3.1.3 Detailed Overview: Dr. Inventor Framework 22

3.2 Code Analysis . 25
3.2.1 Semantic Code Analysis Related Research 25
3.2.2 Code Analysis Tools and Resources 26

i

ii CONTENTS

3.3 Translation Approaches . 27

4 Implementation 29
4.1 General Pipeline . 29

4.1.1 Step 1: Reading and Aligning Input 30
4.1.2 Step 2: Knowledge Extraction from Research Papers 30
4.1.3 Step 3: Knowledge Extraction from Source Code 30
4.1.4 Steps 4 and 5: Learning Knowledge Representations 30
4.1.5 Step 6: Generating Useful Comments 31
4.1.6 Step 7: Enriching the Original Source Code 31

4.2 Specific Pipeline Designs . 31
4.2.1 Sample Generation Pipeline . 31
4.2.2 Training Pipeline . 32

4.3 Data Acquisition . 32
4.3.1 Data Requirements . 33
4.3.2 Available Datasets . 33

4.4 Data Preparation . 34
4.4.1 Tokenization . 34

4.5 Preprocessing . 35
4.5.1 Regular Expressions . 35
4.5.2 String Types in Python . 35
4.5.3 Processing LaTeX Files . 36
4.5.4 Processing Python Code Files . 37
4.5.5 Aligning and Generating the Samples 37

4.6 Training Pipeline . 38
4.6.1 Idea . 39
4.6.2 SciBERT . 39
4.6.3 CodeBERT . 40
4.6.4 Training Architecture Design . 41

4.7 Inference Pipeline . 43

5 Evaluation 45
5.1 Evaluation Limits . 45
5.2 Training Loss . 45

5.2.1 Baseline Model . 45
5.2.2 Effect of Data Properties . 46
5.2.3 CodeBERT vs. GraphCodeBERT . 46

5.3 Inference Evaluation . 48

CONTENTS iii

5.3.1 Example #1: Hierarchical Adaptive Contextual Bandits for Resource
Constraint based Recommendation 48

5.3.2 Example #2: Learning to Remove: Towards Isotropic Pre-trained
BERT Embedding . 51

5.3.3 Discussion . 52

6 Conclusion and Outlook 53
6.1 Outlook . 54

A Further Information 55

List of Figures 58

List of Algorithms 59

Bibliography 66

Declaration 66

iv CONTENTS

Chapter 1

Introduction

This introductary chapter will give an overview of the motivation that inspired this thesis,
as well as a plan what can be done to tackle some of the problems.

1.1 Motivation and Background

With the amount of research papers published daily getting exponentially bigger over recent
years1, the need for tools that help navigating through the ever-growing ocean of scientific
articles becomes a necessity. Finding the right articles, as well as minimizing reading time
spent on each paper, are key aspects of today’s natural language processing research. As
a result, several search engines, such as Semantic Scholar and summary tools have already
come to light in recent years. Over the last five years, submissions for popular machine
learning conferences, such as ICML2 and NeurIPS3 have increased by over 300%, while
acceptance rate stayed at about 25% for both, albeit slowly decreasing recently. Reviewers
have little time to decide whether a paper is accepted, and in the field of machine learning,
where implementations of the presented algorithms often accompany those papers, the
effort of verifying the implementations and results is at times not possible. At the same
time, researchers, that want to apply those algorithms, do not want to spend hours or days
working through the paper just to see what the parameters stand for, which is often not
well documented in the code itself. Therefore, a tool that automatically finds structures
and relations between papers and their implementations and subsequently is able to enrich
the code in a way that helpful information from within the paper are present as comments,
could be a massive improvement over current standards.

1https://arxiv.org/stats/monthly_submissions
2https://www.openresearch.org/wiki/ICML
3https://www.openresearch.org/wiki/NIPS

1

2 CHAPTER 1. INTRODUCTION

1.2 Contribution of this Thesis

To outline and define the problem, this thesis will try to answer several questions:

1. Which relevant tools are available to the research community at the moment?

2. In which ways can existing tools provide help?

3. How would the pipeline of a new prototypical tool look like?

4. What kind of data is needed for a task like this?

5. Is the data, that is available, suitable for such a task?

6. Is it possible to create a prototype, based on available data, to tackle the problem?

7. Is the task of aligning paper and code knowledge learnable by a simple network?

8. Can the proposed prototype already generate helpful comments?

1.3 Thesis Structure

After having explained the motivation and stated the resulting open questions, this thesis
will first give an introduction to the relevant fields of Natural Language Processing, Code
Search, Encoders, Embeddings and Transformer-based Neural Network Architectures, be-
fore introducing related works, tools, in both Semantic Text Analysis and Semantic Code
Analysis. Furthermore, datasets, including the requirements suited data should fulfill and
how data can be transformed to fit the needs will be explored and an assessment of using
translation approaches to the given task is given. The next chapter will then propose
a pipeline for such a prototypical tool and discuss its implementation step-by-step. Re-
sults will be evaluated in the following chapter, before the last chapter will finally give a
conclusion and an outlook on what future research can look like.

Chapter 2

Foundations

This section will give an introduction to the theoretical foundations and the background
needed for this thesis. First, a general overview of Natural Language Processing will
be given. Then, the concept of Code Search will be explained. After that, a detailled
description of Embeddings will be made before finally discussing Transformers and their
architecture.

2.1 Natural Language Processing

In general, natural language processing refers to a subfield of machine learning that deals
with making human language accessible for computers. Since both syntax and semantics
play a big role in languages, the task is a most complex one. For example, having a high
level of abstraction of language rules like the use of sarcasm as well as low level rules like
appending "-ing" to a verb to transform it into a gerund in the English language, are
equally part of it.

2.1.1 A Brief History of Natural Language Processing

The field of natural language processing evolved from a field called Machine Translation, at
a time where Artificial Intelligence research did not exist yet [25]. Early ideas consisted of
mechanical dictionaries, in as early as in the 17th century, that would serve as a multilingual
translation tool. Since the technology was far from available, it took about 300 years for
the issue to be adressed again. Warren Weaver, after developing the idea of using the
recently invented computers for such a translation machine together with Andrew Booth,
was the first to in theory tackle problems like ambiguity with the help of statistics in 1949.
The fifties consisted of several efforts, mostly by MIT and some IBM, advancing the field,
producing multiple books like [36].
It wasn’t until the eighties that the approach for translation went from translating directly
to the use of text corpora, meaning the view of language within a large body of naturally

3

4 CHAPTER 2. FOUNDATIONS

occurring language, bringing the element of context into it.
With the development of the Internet in the mid 1990s, the popularity of MT surged again.
The need for tools that translate web pages and emails grew suddenly, research interest
peaked and brought us to where we are today. Companies started specializing in the
processing of natural language and few grew to be some of the biggest players in today’s
economy.
Nowadays, NLP plays a huge role in everyday life. Not being limited to translation,
applications such as spam detection for filtering emails, speech assistants like Apple’s Siri
and Amazon’s Alexa, having phones auto-correcting user input, search engines like Google
predicting the questions one wants to ask or even translating complex texts, have come to
life. While these applications build upon different methods, it can be said that almost all
build upon Machine Learning principles. The most prominent will hence be explored in
the following section.

2.1.2 An Overview of NLP Tasks

A variety of tasks can be described within Natural Language Processing. Generally, they
can each be classified as methods that analyze either language syntax or language seman-
tics.

Text and speech processing

Processing raw data, such as text and speech signals, is a requirement for most other
techniques of NLP. Text processing includes optical character recognition from images (e.g.
by scanning book pages) and tokenization of sentences into words. In simple cases, this can
be as easy as splitting words by spaces like in most languages that use Roman characters,
or as hard as Japanese, where words are made up of sequences of syllables that are not
separated from each other. Tokenizing latter thus requires an in-depth understanding of
the language itself.

Morphological analysis

Naturally, grammar is hugely important to language structure. Words can be classified into
parts of speech such as nouns and verbs. Since words can have multiple roles, mapping
require additional information beyond the word itself. As an example, the word "fly" can
be a noun, a verb "to fly" or even an adjective ("to be fly"). Hence, the task of Part-
of-Speech-Tagging, assigning tags or labels to words in a sentence, also requires complex
language models.

2.1. NATURAL LANGUAGE PROCESSING 5

Figure 2.1: A constituency-based2parse tree for the sentence "I pet the dog".

Syntactic analysis

Language syntax is an important part of both natural languages and programming lan-
guages. While grammars for natural languages are ambiguous, grammars for programming
languages can be either ambiguous or unambiguous. Briefly expanding beyond the bounds
of natural languages, programming languages such as Python restrict their grammar to be
LL(1) 1 to avoid ambiguity, whereas in others, ambiguity can be induced by the Dangling-
Else-Problem [1]. A LL grammar is a grammar that can be parsed by a LL parser, left-to-
right, top-down.
For a terminal alphabet ⌃, subset ⌃⇤ is regular if it is a regular language over ⌃. A
partition ⇡ of ⌃⇤ is regular if for all R 2 ⇡ the set R is regular. Then, a grammar G is
LL-regular if a partition ⇡ of ⌃⇤ exists, such that G is LL(⇡). Furthermore, every LL(k)

grammar is also LL-regular and with all LL-regular grammars being unambiguous [45],
restricting a programming language to be LL(1) makes it retain the same property.
Parsing is a way of transforming a program or a sentence into a parse tree, an example of
which can be seen in figure 2.1. Through Dependency Parsing the relationship of words
in a sentence can be extracted. For the English language, this means having a sentence
structure of subject-verb-object (SVO).
For programming languages, parsing code results in an Abstract Syntax Tree (AST). Such
a tree is a representation of the source code’s structure. To give a simple example, we will
take a look at a simple algorithms and then its parsed tree in 2.2. ASTs can be edited and
its nodes can be annotated or enhanced with additional information. One of its main uses
is in compilation.

1https://www.python.org/dev/peps/pep-3099/
2https://web.stanford.edu/⇠jurafsky/slp3/13.pdf
3https://en.wikipedia.org/wiki/Abstract_syntax_tree

6 CHAPTER 2. FOUNDATIONS

Require: a, b

while b 6= 0 do
if a > b then
a := a� b

else
b := b� a

end if
end while
return a

Algorithm 2.1: Euclidean algorithm for computing the greatest common divisor of two numbers.

Figure 2.2: AST for the Euclidean algorithm for GCD computation3

2.1. NATURAL LANGUAGE PROCESSING 7

Lexicosemantics

In lexical semantic analysis, words are not only seen as units but can be understood as
composites of sub-words. A common task in NLP is the so-called Named Entity Recognition
(NER) [39]. For this, a language model is trained on sentences with (foremost) labeled
nouns. This makes it possible to annotate text such as

"Mozart wrote 41 symphonies between 1764 and 1788."

"[Mozart]Person wrote 41 symphonies between [1764]T ime and [1788]T ime."

Another task that gained popularity with the rise of social media is Sentiment Analysis. By
categorizing sentences into classes of connotations such as negative, positive and neutral by
extracting subjective information. Applied to social media, sentiment analysis has shown
to detect a wider range of emotions and sarcastic meaning of statements [15] by taking
into account attached emojis.

Relational semantics

The analysis of relational semantics typically revolves around extracting meaning from a
single sentence. This includes extracting relationships such as marital status with the use
of ontologies. Another important concept is Semantic Parsing [29], the base of Machine
Translation, Question Answering and Code Generation. An example of semantic parsing
can be seen in figure 2.3.

Figure 2.3: Example of a semantically parsed sentence4.

Semantics beyond individual sentences

Imitating the human process of intuitively structuring bodies of text while reading, Text
Segmentation has the computer split text into units: topics, sentences or words. With a

4https://www.cs.upc.edu/⇠ageno/anlp/semanticParsing.pdf

8 CHAPTER 2. FOUNDATIONS

problem similar to that of Tokenization, this can require complex models when the text is
written in a language that does not have sentence delimiters or the use of capital words at
the start of each sentence.

Higher-level NLP applications

In reality, tools for more complex tasks such as Text Summarization and even Question An-
swering rely on the combination of several NLP subtasks. The complexity of the subtopic
Natural Language Understanding has it being classified as an AI-hard problem[55].

2.1.3 Natural Language Understanding

As a combination of both syntactical and semantical analysis tools, teaching a machine to
understand language can be described as the ultimate goal of Natural Language Processing
research. Tasks like semantic parsing rely on the machine having learned an understanding
of the human language. NLU generally refers to techniques that rearrange unstructured
data to be learnable by machines.

2.2 Code Search

Programmers often need to search for code solutions to solve some of their own problems.
Code Search is the task of retrieving relevant code from a query written using natural
language. The concept is based upon information retrieval, but requires an understanding
of both programming languages and natural languages, since the focus is on code semantic
and not on its syntax like static code analysis tools such as linters [27].
While a model trained on natural languages could be evaluated with a GLUE (General
Language Understanding Evaluation)[61] benchmark, models trained on code lacked a
standardized evaluation dataset. With deep learning rising and dominating many machine
learning fields, huge labeled datasets have cemented themselves as "standard" for evalua-
tion, for example MNIST5 for convolutional neural networks. Still, deep models struggle
with highly structured data such as semantic code search. In 2020, GitHub initiated the
CodeSearchNet Challenge6 in order to evaluate the current state of Semantic Code Search
by providing a baseline dataset for evaluating the task [24]. This dataset will be described
in more detail in chapter 4.3. Existing tools for Code Search will be the topic of chapter 3.
The authors also provide baseline models for code search. One idea was to join embeddings
of code and natural language queries, as seen in figure 2.4. Both code and language get
mapped onto vectors and in order for an encoded query to search for code snippets in the

5http://yann.lecun.com/exdb/mnist/
6https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/

2.3. ENCODERS 9

Figure 2.4: Code Search baseline model architecture

vicinity in this joint embedding space. To get a more in-depths understanding of both
encoders and embeddings, they will be the main topic of the following sections.

2.3 Encoders

An encoder is a neural network that produces an encoded output, such as features maps,
tensors or vectors, from an input. A common application in machine learning is the
autoencoder [40].

2.3.1 Definition. Let � : X ! F , : F ! X be transition functions with � representing
the encoder part and representing the decoder part. Then, an autoencoder should hold
true to �, = argmin

�,
kX � (� �)Xk2.

The basic idea behind autoencoders is to simultaneously learn the encoder and the decoder
in a way that the intermediate state �(x) 2 F minizing the difference between x and
((�(x)) 2 X . The error measuring the difference between the original data and the
output is generally refered to as reconstruction error. For autoencoders, having a smaller
intermediate state means reducing dimensionality of data [53].
Figure 2.5 shows a possible structure of a simple autoencoder. The mirrored design enables
the model to reconstruct the input.

2.3.1 Sequence-to-sequence models

Sequence-to-sequence models [57], in short seq2seq, are the backbone of applications that
implement machine translation, such as Google Translate, and those that handle speech
recognition [46]. Seq2seq-models map inputs of fixed length to a fixed-length output, but
contrary to LSTM-networks, can achieve this without requiring the same length for both.

10 CHAPTER 2. FOUNDATIONS

Figure 2.5: Simple Autoencoder Architecture.

Hence the application to translation: The task of translating natural language is rarely a
one-to-one mapping of words.
In order to understand how those models work, there will be a brief section about Recur-
rent Neural Networks (RNNs) and Long-Short-Term-Memory networks (LSTMs) [4].

2.3.2 Definition. Given a sequence of inputs (x1, . . . , xN), a RNN generates a sequence
of outputs (y1, . . . , yN) with

hn = �(W hx
xn +W

hh
hn�1) (2.1)

with W being a weight matrix, hi the output of hidden layer i and

yn = W
yh
hn (2.2)

While the RRN is able to map sequences onto other sequences when the alignment and
length is known, is struggles with tasks that don’t fulfill those requirements. Additionally,
RNNs fail to store longer temporal dependencies. This is especially problematic in the
field of NLP, because we can not expect the network to predict a word, if the information
from the beginning of the sentence is already gone.
LSTMs, with their ability to do just that, provide a solution [20]. The LSTM estimates
the conditional probability p(y1, . . . , yN 0 |x1, . . . xN), with N and N

0 not necessarily being
the same length. With the use of special tokens for sentence delimiters (<EOS>), the
model is able to define a distribution over sequences of all possible lengths. Sutskever et
al. [57] showed that the combination of two different deep LSTMs, one for encoding, one
for decoding, were able to learn a model for a different-length sequence-to-sequence task.

2.4. EMBEDDINGS 11

2.3.2 One-Hot encodings

The method of one-hot encoding makes it possible to vectorize categorial features.
"One-hot" describes a sequence of bits that have exactly one bit set to "1" and the rest to
"0" [22]. This makes them different to the traditional use of bits, for example in binary.
While a boolean state could easily be represented by a single bit that is either "0" or "1",
a one-hot representation would result in using two bits: "01" and "10".
Therefore, instead of being able to represent 2n entities with n bits, one-hot encoders are
limited to exactly n entities.

Using one-hot encoding makes the required model simple and the encoding process
fast. Since each category implies a new dimension, the trade-off is having large and sparse
matrices, leading to the "curse of dimensionality" [6].

As an alternative to one-hot encoding, encoding to a lower dimension vector of real
numbers has proven to be superior for a lot of tasks [8]. This alternative, embeddings, will
be discussed in the next section.

2.4 Embeddings

In a mathemetical way, an embedding is an instance of a mathematical structure that is
part of another structure.

2.4.1 Definition. [23] Let X and Y be objects. X is said to be embedded in Y if an
injective and structure-preserving mapping function f : X ! Y exists. For mapping
functions f that embed, we use the notation f : X ,! Y . This class of functions can also
be refered to as morphisms.

Since embeddings preserve the structure of the original object while mapping onto a space
of lower dimension, it can also be classified as a technique for dimension reduction.

In natural language processing, using embeddings is a way to map higher-dimensional
data to lower dimensions while still retaining semantics of the language. The most com-
monly used class of embeddings in NLP are word embeddings, which will be explained in
this section. Furthermore the problem of aligning embedding spaces and a way to tackle
it, is discussed herein.

2.4.1 Word Embeddings

To obtain a representation of word meaning, the so-called word embeddings are used in
NLP [28]. The idea is to learn features that allow mapping natural text to vectors of real
numbers in order to obtain abstract representations of words.
The idea of learning representations dates back to 1986, the same paper that introduced

12 CHAPTER 2. FOUNDATIONS

the concept of error back-propagation [52]. The authors state that a "network of neurone-
like units" is able to construct appropriate internal representations of the input.
A way to learn word embeddings was developed by Mikolov et al. at Google research
[37], a method dubbed Word2Vec. The following section will explore why and when word
embeddings are useful.
If we consider sentences sA = "The weather is good", sB = "The weather is nice" and
sC = "The weather is bad" and the task was to see how similar those sentences are, a
one-hot encoder would generate outputs

e(sA) = [100000, 010000, 001000, 000100]

e(sB) = [100000, 010000, 001000, 000010]

e(sC) = [100000, 010000, 001000, 000001]

A similarity function would deem the semantically similar words, "good" and "nice" to
be as different as "good" and "bad", which have a very different meaning. An additional
property is that all words in a one-hot encoded sentence are independent of each other,
since the their relations can not be represented by such a binary encoding.
By generating distributed representations, word embeddings introduce dependencies be-
tween words. There are two methods for generating word embeddings with Word2Vec:
Continuous Bag Of Words (CBOW) Skip-Gram.
The CBOW models learns to predict the words corresponding to the context by taking
word context as input. Coming back to the example above, let’s assume words "weather",
"is" as inputs to the neural network with a target of "great". The one-hot encoded input
words (also the context) then get compared to the one-hot encoded target and the error is
measured. Through this, the model is able to learn the vector representation of the target
word.
Figure 2.6 illustrates the architecture of both CBOW and Skip-Gram. Compared to the
one of Skip-Grams, CBOW’s architecture appears to be similar, albeit mirrored. Instead
of aiming to predict the word based on its context, Skip-Gram maximizes a log-linear clas-
sifier of a word based on another word from the same sentence. Basically, each word gets
used as an input and the models predicts the words before and the words that come after
in a specific range. Both quality of word vectors and computational complexity increase
with range [37].
Word embeddings are vectors of real numbers. An exemplary visualization is shown in
figure 2.7. Values are scaled to be in [�2, 2] with dark blue meaning the attribute is close
to �2 and red meaning proximity to 2. On closer inspection, some attributes show similar
values. While "woman" shares the same redness with "girl" in one of the features, in a
different one it is similar to "man". Without knowing the exact meaning of the features, it
is intuitively clear, that there are relationships between those words and that they should
be different ones.

2.4. EMBEDDINGS 13

Figure 2.6: Comparison of the CBOW and Skip-Gram models [37]

Figure 2.7: Visualization of word embeddings 7

Another property of word embeddings is the concept of analogies. Since all real number
vectors have the same length, it is possible to perform mathematical operations such as
subtraction and addition in order to arrive at a different word. Going by intuition, starting
with the word "king", it should be able to subtract "man", add "woman" and arrive at the
word "queen". As can be seen in figure 2.8, despite the resulting word being not exactly
the same, it still is the word with the smallest distance to "queen" in the entire corpus.

Comparing two word vectors is commonly done by measuring the cosine similarity.

2.4.2 Definition. Let A, B be two non-zero vectors of attributes. The cosine similarity
between A and B is defined as sim(A,B) = cos(✓) =

A ·B
kAkkBk

7https://jalammar.github.io/illustrated-word2vec/
8https://jalammar.github.io/illustrated-word2vec/

14 CHAPTER 2. FOUNDATIONS

Figure 2.8: Visualizing the "king - man + woman ⇠= queen" analogy 8

To illustrate this, a diagram of how the cosine similarity behaves is shown in figure 2.9.

Figure 2.9: Cosine similarity between words 9

One of the main problems of this approach, the limitation of those models only being
able to represent a single meaning of a word, has since been solved by bi-directional trans-
formers, which will be further discussed in the Transformers section of this chapter. An
expansion of these word-level embeddings are thought vectors that allow for sentence- or
even document-level embeddings. An embedding of former depth can also be refered to as
sentence embedding.

2.5 Transformers

A transformer is a deep learning model that handles sequential data similarly to recurrent
neural networks, but without the necessity to process the data in order [59]. Its main
application is in NLP. The transformer architecture allows the network to be trained in
parallel, which, since its first appearance, massively boosted the development of models
with billions of parameters, mainly language models.
Transformers rely entirely on an attention mechanism to draw global dependencies between
input and output [59]. The next part will go into attention in more detail.

9https://zhangruochi.com/Operations-on-word-vectors-Debiasing/2019/03/28/

2.5. TRANSFORMERS 15

2.5.1 Attention

Previous sections discussed how an encoder-decoder model processes sentences. A poten-
tial issue with using neural networks is that it has to compress all required information
into a vector of fixed length. Since the appraoch is based on a training corpus, this can be
problematic for sentences that are longer than the ones it is trained on. In [10], Cho et al.
showed that the performance of such a model decreases with increasing input length.
Bahdanau et al. tackle this problem in [4] by learning sentence alignment and translation
jointly.
Their architecture consists of a bidirectional RNN as encoder and a simple decoder. Dif-
ferent compared to a usual (unidirectional) RNN, a bidirectional RNN consists of two
sub-RNNs, a forward one that reads the input in order (x1, . . . , xT) and calculates hidden
states (

�!
h1, . . . ,

�!
hT) and a backwards one that reverses the input order into (xT , . . . , x1) to

calculate backward hidden states (
 �
hT , . . . ,

 �
h1). For a word xi, an annotation hi is obtained

by concatenating both hidden states, s.t. hi = [
�!
hi

>;
 �
hi

>]. This way, the annotations con-
tain summaries of both preceding and following words.
The decoder (next to the alignment model) uses this resulting sequence of annotations to
compute a context vector. In the proposed architecture, the decoder defines a probability
over a translation y = (y1, . . . , yT) for a context vector c as

p(y) =
TY

t=1

p(yt|{y1, . . . , yt�1}, c) =
TY

t=1

g(yt�1, st, c) (2.3)

The context vector ci is computed by a weighted sum of annotations (h1, . . . , hT):

ci =
TX

j=1

↵ijhj (2.4)

Weighted annotations let the model give more attention (hence the name) to certain parts
of the sequence. By having a mechanism like this inside the decoder instead of the encoder,
the information can be distributed among elements of the sequence. Those weights are
computed by

↵ij =
exp(eij)

TP
k=1

exp(eik)

(2.5)

2.5.2 Transformer Architecture

Figure 2.10 depicts the Transformer architecture. It combines several unique concepts.
Firstly, it stacks layers for both encoder and decoder. The encoder stacks of identical
layers each consist of a multi-head self-attention mechanism and a fully-connected feed-
forward network. For the decoder stack, an additional multi-head self-attention mechanism
is added. The concept of multi-head attention builds upon scaled-dot-product attention. In

16 CHAPTER 2. FOUNDATIONS

Figure 2.10: Architecture of the Transformer model [59]

general, an attention function maps a query and a key-value-pair to an output. For scaled-
dot-product attention, since the Transformer architecture allows for parallel computation,
for matrices of queries Q, keys K of dimension dk and values V , the output matrix can be
defined by

fAttention(Q,K, V) = softmax

✓
QK

>
p
dk

V

◆
(2.6)

Multi-head attention adds a dimension to the output by projecting queries, keys and values.
Attention then gets calculated for each projection, concatenated and projected once again,
resulting in projection dimensions {WQ

i ,W
K
i } 2 Rdmodel⇥dk and W

V
i 2 Rdmodel⇥dv with

dmodel being the dimension of embeddings.

fMultiHead(Q,K, V) = concat(head1, . . . , headh)W
O (2.7)

headi = fAttention(QW
Q
i ,KW

K
i , V Q

V
i) (2.8)

This way, the multi-head attention model can reference information from multiple sources
(representation subspaces) at different positions. A graphical comparison of the concepts
is shown in figure 2.11,

2.5. TRANSFORMERS 17

Figure 2.11: Architectural comparison of Scaled-Dot-Product Attention (left) and Multi-Head
Attention (right)

2.5.3 Pre-trained Language Models

Pre-trained LMs, trained on large text corpora, enable the transfer to downstream tasks
and prevent having to train a model completely from scratch [47]. This can be categorized
as an instance of transfer learning, which already showed huge potential on several clas-
sification tasks [13]. ELMo, Embeddings from Language Models, is a deep contextualized
word representation that models complex characteristics (word syntax and semantics) and
how usage varies across different contexts. It is a bi-directional model, meaning a combi-
nation of a forward and backward LM (implemented by LSTMs), whose log likelihoods are
jointly maximized during training [42]. As is shown in figure 2.12, its hidden states are

Figure 2.12: ELMo’s bidirectional architecture 10.

combined to output context sensitive features.
With the release of Generative Pre-Training (GPT) [48], the problem of lacking labeled data
for specific tasks was tackled and it increased performance of discriminately trained models.

10https://medium.com/duyanhnguyen_38925/create-a-strong-text-classification-with-the-help-from-
elmo-e90809ba29da

18 CHAPTER 2. FOUNDATIONS

The concept behind that approach is that models are trained in two steps: generatively
for task-agnostic pre-training and discriminately for fine-tuning, meaning a specialization
on a chosen target task. Unsupervised pre-training maximizes

L1(U) =
X

i

logP (ui|ui�k, . . . , ui�1;⇥) (2.9)

given a corpus of tokens U = {u1, . . . , un}, context window size k and a conditional prob-
ability P modeled by a neural network trained with gradient descent with parameters ⇥.

2.5.4 Bidirectional Encoder Representations from Transformers

Devlin et al. enhanced the concept of using transformers for language understanding
by developing a model named Bidirectional Encoder Representations from Transformers,
short BERT [12]. The BERT model learns representations with bidirectional context on
unlabeled text.

Figure 2.13: BERT pre-training (left) and fine-tuning (right). Output layers differ, all other
layers are the same for both.[12]

As can be seen in figure 2.13, the BERT framework consists of two steps: Pre-training,
in which the model gets trained on an unlabeled dataset over multiple tasks, and fine-
tuning, where the parameters that resulted from the pre-training step are tuned. In the
fine-tuning part, the model gets trained further on a (albeit significantly smaller compared
to pre-training) labeled dataset from the downstream tasks.

BERT is trained on two unsupervised tasks: Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP). Both task will be described in the following section.

2.5. TRANSFORMERS 19

Figure 2.14: Input representation for BERT. Input embeddings consist of token embeddings,
segment embeddings and positional embeddings. [CLS] preceeds every sample to mark its begin
and [SEP] is a special token for representing sentence seperators.[12]

Masked Language Modeling

As mentioned above, unidirectional (left-to-right or right-to-left) models are not well suited
for interpreting words in different contexts. To counter this, bidirectional models have been
proposed. The issue with training a conditional LM to be bidirectional is impossible, due
to the model being able to see itself and thus making any predictions pointless.
This leads to the task of prediction masked tokens. Certains parts of the input get hidden
(masked) from the model by replacing it with a [MASK] token and, in turn, making
predictions of those original tokens non-trivial. To counterbalance discrepancies between
pre-trained and fine-tuned models (where the [MASK] token does not appear), the masked
token sometimes gets replaced by a random token and at times not at all.

Next Sentence Prediction

The task of NSP is especially important for the task of Question Answering. Given a
sentence sA, the task is to predict the likeliest sentence sB to follow sA from a set of
sentences. Pre-training of task is done one a dataset generated from a text corpus with
half of the samples being pairs of (sA, sB), sB being the actual next sentence, and the
other half (sA, s0B) with s

0
B being a random sentence from the full corpus.

[49] states, that the original transformer model is better suited for text-to-text tasks
than either BERT or GPT architectures if scaled up and that all NLP tasks can be formu-
lated as text-to-text tasks.

20 CHAPTER 2. FOUNDATIONS

Chapter 3

Related Works and Tools

A multitude of tools have been released in recent years. This chapter will introduce some of
them and evaluate if and how they are able to help with the proposed problem. At first, an
overview of the current state of research and available tools for text analytics will be given,
before secondly introducing research and exploring tools for analyzing code. Finally, this
thesis will give an assessment of their applicability in the context of automatically enriching
scientific source code.

3.1 Text Analytics

Text analytics, or text mining, is a research field that deals focuses on extracting informa-
tion from natural language text.

3.1.1 Text Analytics Related Research

Knowledge Extraction from scientific sources:
Upadhyay and Fujii [58] proposed a software system that extracts sentences and keywords
from large scale document databases. The system builds a hyper-graph as semantic repre-
sentation scheme from PDFs, from which relations between sentences can be derived.
Ronzano and Saggion on Knowledge Extraction and Modeling from Scientific Publications
[51], which is the base for the Dr. Inventor Framework [50].
In [56], Stathopoulos et al. assigned mathematical types to variables occurring in text
from a manually annotated set of mathematical documents.
[54] gives a review of relevant knowledge extraction techniques, emphasizing the difficulty
of finding relevant information amongst the rapidly growing amount of research publica-
tions.
GATE (General Architecture for Text Engineering1) is a community-driven open-source

1https://gate.ac.uk/family/

21

22 CHAPTER 3. RELATED WORKS AND TOOLS

software toolkit for all-purpose text processing.

3.1.2 Text Analytics Tools

SemanticScholar2 is a web application for navigating scientific literature. It supports au-
tomatic extraction of abstracts, tables, figures and citations from research papers. It also
rates the papers impact based on volume and intent of their citations. Over 180 Million
papers are currently available on SemanticScholar.
DeepDive [65] is a Text Mining tool developed by a research group from Stanford. It is
a system that extracts information from so-called dark data, data that can be described
as hidden data in entities like tables, figures and images, that are hard to process due
to their lack of structure. DeepDive transforms unstructured dark data into a structured
database. It has been most notably applied to domain-specific searches in geological data
(GeoDeepDive) and documents from the dark web to fight human trafficking (MEMEX).

3.1.3 Detailed Overview: Dr. Inventor Framework

As mentioned in the previous section, the Dr. Inventor Framework3 is a tool for automated
analysis of scientific publications. The text mining framework supports identification of
structural elements, enrichment of bibliographic entries, rhetorical characterization of sen-
tences, linking of named entities and generating summaries. This section will give an
overview of the framework’s pipeline, which can be seen in figure 3.1.

Valid Input

The framework accepts both PDF and JATS XML documents. Depending on the input
file format, additional pre-processing steps are necessary. Because of how XML contains
raw text and environments for citations, these steps can be skipped.

Full Text Extraction

The pipeline makes use of the GROBID4 library to extract the text from PDFs. GRO-
BID is, at the time of writing, able to additionally extract information such as headers,
references, or citations.

2https://www.semanticscholar.org/
3https://driframework.readthedocs.io/en/latest/
4https://github.com/kermitt2/grobid

3.1. TEXT ANALYTICS 23

Figure 3.1: Architecture of the Dr. Inventor Framework Modules [51].

Inline Citations

Inline citations are spotted with the use of the Java Annotation Patterns Engine(JAPE)
from the GATE toolkit. JAPE operates over annotations based on regular expressions and
is particularly suited for pattern-matching and extraction of semantics.

Sentence Splitting

For sentence splitting, DRI utilizes ANNIE (a Nearly-New Information Extraction Sys-
tem), also from the GATE family. The splitter is independent from both domain and
application. It is described as "a cascade of finite-state transducers which segments the
text into sentences"5.

Reference Parsing

The next step, web-based reference parsing, is done with FreeCite. The open-source library
has since been retired. An alternative could be anystyle.io, though it has not been tested
in this context. Within AnyStyle, the user can train parser and finder models.

5https://gate.ac.uk/sale/tao/splitch6.html#sec:annie:splitter

24 CHAPTER 3. RELATED WORKS AND TOOLS

Citation-Aware Dependency Parsing

Open-source toolkit MATE6 provides several tools for natural language analysis. It mainly
consists of a dependency parser and a semantic role labeler. The Dr. Inventor Framework
makes use of MATE for citation-aware dependency parsing.

Rhetorical Annotation

This part of the pipeline is realized within the framework through a language model based
on a text corpus of 40 manually annotated documents. The papers belong to the field of
computer graphics and each sub-group deals with a specific sub-field: Skinning, Motion,
Fluid Dynamics and Cloth Simulation7. A general discoursive structure of research papers
in computer graphics is assumed [17].
The Rhetorical annotator is a model trained in the DRI framework. The authors did not
intend for other users to use the framework for training their own classifiers.

Knowledge Graph Builder

The term Knowledge Graph has become popular since the introduction of the Google
Knowledge Graph8, a knowledge base that enhances the search results, but the term stayed
somewhat vague until the definition of Ehrlinger et al. in [14]:

3.1.1 Definition. A knowledge graph acquires and integrates information into an ontol-
ogy and applies a reasoner to derive new knowledge.

The Dr. Inventor Framework builds a knowledge graph based on rules defined within the
framework. The output format is a String with a RDF (Resource Description Framework)
graph.
Visualization not built-in, since the framework is mainly intended for scientific data anal-
ysis, according to the authors. A possible way of visualizing the output graph is Gephi9.
A different approach for language representation with knowledge graphs has since been
proposed by Liu et al. [34].

Relevance for this thesis

The erstwhile plan of this thesis was to build a pipeline on top of the knowledge graphs
that the Dr. Inventor Framework produces as its output. Even though the framework
was released under an open-source license during the course of this thesis, it has not been
used beyond testing. Partly due to the immense computing cost of processing just a single

6https://code.google.com/archive/p/mate-tools/
7http://sempub.taln.upf.edu/dricorpus
8https://blog.google/products/search/introducing-knowledge-graph-things-not/
9https://github.com/gephi/gephi/wiki/SemanticWebImport

3.2. CODE ANALYSIS 25

document, not being able to access its model and its out-of-date components, a different
route was taken, which will be the main focus of chapter 4.
Another key aspect was the lack of progress on generating knowledge graphs in the context
of source code. This will, amongst others, be discussed in the next section of this chapter.

3.2 Code Analysis

3.2.1 Semantic Code Analysis Related Research

Wong et al. address the scarcity of in-code documentation in [62]. They propose a way of
automatically generating comments from code-description mappings obtained from Q&A
websites, such as StackOverflow.
After the success with word embeddings in NLP, the technique has also been applied to
source code. Chen and Monperrus give an overview in [9]. Source code embeddings can
be categorized into five categories: Tokens, expressions, APIs, methods and others.
Allamanis et al. [2] introduce neural equivalence networks to learn continuous semantic

Figure 3.2: Visualization of an expression embedding space [2].

representations of algebraic and logical expressions. This is illustrated in 3.2.
In [32], Liang and Zhu propose a framework for automatic generation of descriptive com-

Figure 3.3: Source Code documentation example of Code-GRU [32].

ments for blocks of source code. They use a RNN to extract features from the code and
feed the embedded vector into a Gated Recurrent Unit (GRU). An output example can be
seen in figure 3.3.
An approach to apply machine translation between source code and natural language has
been published by Oda et al. in [41]. They use statistical machine translation to generate

26 CHAPTER 3. RELATED WORKS AND TOOLS

pseudo-code from source code to improve understanding thereof, especially when coming
across a previously unknown programming language.
Another recent contribution is [60] by Wan et al., in which the authors use Deep Reinforce-
ment Learning to summarize source code. Their approach relies on the full AST rather
than only the sequential code input.
Abstract Semantic Graphs as alternative to ASTs for semantic code analysis have been
explored by Garner in [18].
Knowledge extraction from Source Code has been adressed by Azanzi and Camara in [3].
They adpot an ontology learning approach to generate knowledge graphs from code sources.
Jain et al. developed ContraCode [26], a self-supervised algorithm for learning semantic
representations of programs with contrastive learning.
Pre-training contextual embeddings on a JavaScript corpus is done by Karampatsis and
Sutton using the ELMo framework for the task of program repairing in [31].
Learning contextual embeddings of source code has been researched by Kanade et al. [30],
which resulted in the CuBERT model.

3.2.2 Code Analysis Tools and Resources

Tools for code analysis have been mostly syntactic. There is a multitude static program
analysis tools or plugins for IDEs to help a programmer detecting errors before actually
compiling (e.g. linters). Even having an output of precise compiler errors can be classified
as a code analysis tool. While these kind of tools are certainly indispensable, they will not
be the focus of this thesis.
For bringing together natural and programming languages, tools that do semantic code
analysis, are paramount.
Github’s semantic is a library for parsing, analyzing, and comparing source code across
many languages10 written in Haskell. It generates Haskell syntax types from tree-sitter
grammar definitions. Tree-sitter11 is a tool for generating parsers, which can build dy-
namic concrete syntax trees for a source code file.
Advances towards semantic versioning12 have been a research topic for version control.
SourceGraph is a tool for universal code search and code navigation13.
PapersWithCode14 is a website dedicated to gathering machine learning research papers
that have code repositories. Lately, automatic extraction of evaluation results has been
the focus 15, although as of the time of writing, it still relies on its community to populate
the databases. With the ability to compare results, this makes the website a tool for find-

10https://github.com/github/semantic
11https://github.com/tree-sitter/tree-sitter
12https://semver.org/
13https://github.com/sourcegraph/sourcegraph
14https://paperswithcode.com/
15https://github.com/paperswithcode/sota-extractor

3.3. TRANSLATION APPROACHES 27

ing current state-of-the-art approaches on specific tasks that have common datasets and
evaluation methods.
Automatically generating basic descriptive DocStrings (figure 3.4) can be done with a VS

Figure 3.4: Automatic Generation of Python DocStrings with CodeBERT.

Code extension16 powered by CodeBERT [16].

3.3 Translation Approaches

Neural Machine translation has its usual appliance in translations from one natural lan-
guage to another natural language.
In general, approaches that learn vector representations of text that can be used for trans-
lations need parallel text or aligned documents, sentences or words. Barone [5] and Mohi-
uddin/Joty [38] propose adversarial autoencoders to automatically align those.
Pires et al. [44] showed that Multilingual BERT achieves good results at zero-shot cross-
lingual tasks.

Wu et al. [63] researched unsupervised cross-lingual word alignments via contrastive
learning, an example of which is illustrated in figure 3.5. In their approach, sentences
are aligned beforehand and an alignment on a token level is learned during the training
process.
While there are some instances of research for NL-PL translations in the previous section
(3.2.1), the ones that automatically align are not suited for our specific task, since those
approaches assume structural similarities between the translatable entities, as is the case
for translations within natural languages or within programming languages. An approach
that achieved this would open up a lot of possibilities in this field of research.

16https://github.com/graykode/ai-docstring

28 CHAPTER 3. RELATED WORKS AND TOOLS

Figure 3.5: Example of cross-lingual (top to bottom: Chinese, English, Japanese) word alignment
with SLUA [63].

Chapter 4

Implementation

This chapter will first introduce an outline for a pipeline for the task of extracting relations
between research papers and their implementations and discuss ideas how to tackle each
of the steps and potential issues that might arise. Then, the main idea will be described in
detail, including libraries used, theory, pre-processing of data and the training setup. The
implementation can be found on GitHub1.

4.1 General Pipeline

One of the first, rough, drafts of the tool pipeline formulates as:

1. Input: Research paper (via arXiv link) and/or code repository (via GitHub link)

2. Extract knowledge representation from research paper

3. Extract knowledge representation from source code

4. Map knowledge representations into a shared space

5. Evaluate and rank mappings

6. Generate new comments from highest-ranking mappings

7. Insert comments into the original code

8. Output: Annotated version of the original source code

Since each of these steps pose challenging tasks, they will be further discussed below.

1https://github.com/pihari/enriching-ssc/tree/master

29

30 CHAPTER 4. IMPLEMENTATION

4.1.1 Step 1: Reading and Aligning Input

Reading input files varies in difficulty. Processing complex and information-rich data, such
as Portable Document Format (PDF) files, requires resource-heavy tools. As described in
chapter 3, the processing parts of the Dr. Inventor framework pipeline demonstrate the
complexity. Multiple tools need to handle the data in sequence, but still, the output is
then usable by subsequent libraries further down the chain.
Aligning paper sources with code sources requires either tools for finding references or a
access to a database with present information about their alignment.
Assuming already processed data in String form, one possibility of former method is to
look for said references in the sources. If we want to find a link to the code repository, it
would be obvious to compare the strings in the research paper text with one containing,
for example, "github" or "bitbucket". The problem with this is, that research papers do
not only not necessarily include a linked repository, but also are not limited to a single
referenced repository. This would make alignment impossible or unambiguous. Thus, ad-
ditional information or a more complex method are required.
Another possibility would be to process the information contained in a code repository and
find the referenced main paper there. Since a majority of papers get uploaded to arXiv,
a good way to do this would be to look for and parse the raw readme markdown file, in
order to search for a URL containing "arxiv.org".

4.1.2 Step 2: Knowledge Extraction from Research Papers

In chapter 3, we have already looked at some tools that are able to extract knowledge
from both research documents. Building upon the foundations laid in chapter 2, a pipeline
of NLP tools has to be constructed for this task. The extraction result should then be
a representation of the knowledge that can be fed forward. These information can be
represented by a knowledge graph or embeddings.

4.1.3 Step 3: Knowledge Extraction from Source Code

Since code analysis is mostly syntactically, extracting semantic information is challenging.
Recent approaches to Code Search, as discussed in chapter 3, could prove useful.

4.1.4 Steps 4 and 5: Learning Knowledge Representations

The structural difference between natural languages and programming languages can in-
tuitively be describes as less than the ones between a set of natural languages or a set
of programming languages. Therefore, we can generally assume that the representations
obtained from steps 2 and 3 are fundamentally different, even if they share the same type

4.2. SPECIFIC PIPELINE DESIGNS 31

(e.g. a graph). Subsequently, the pipeline needs to map both of those representations into
the same space.

4.1.5 Step 6: Generating Useful Comments

The usefulness of comments can be hard to quantify. The mapping from paper to code
needs to be as exact as possible for a description of the code based on the research doc-
ument. One of the possibilities is to analyze occurrences of symbols in both sources and
add the containing sentence to the pool of comments, before in the end inserting them "as
is" into the code.
An example of this would be hyperparameters. In most machine learning publications,
there is at least some description of parameters that were tuned specifically. Now, if the
source code contains a reference to a variable � (gamma), it should be possible to search
the paper for all occurrences of this variable and use the sentences to generate a comment.

4.1.6 Step 7: Enriching the Original Source Code

The generated comments need to get inserted into the original code base. A way to do
this is by first parsing the original version of the code into an AST without discarding
the comments (if available)2. After having generated the new comments, they could be
inserted into the AST at the location of the specific function. Determining the location
can be done by matching the function by an identifier such as its name. This step will not
be part of this thesis due to a higher focus being on the previous steps.

4.2 Specific Pipeline Designs

In this section, the proposed pipeline will be illustrated in several steps.

4.2.1 Sample Generation Pipeline

The pipeline for generating samples from online data sources is shown in figure 4.1.
In the first step, data is gathered from online sources. This is done by cloning repositories
to get the python code files and downloading the .tex source files from arXiv3. With user-
defined criteria, the raw data gets processed in the next step. Finally, the training samples
are generated by aligning the samples from each data source with user-defined alignment
criteria.

2https://pypi.org/project/horast/
3https://arxiv.org/

32 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Sample Generation Pipeline

4.2.2 Training Pipeline

From the previously generated training samples and the encoders, the embeddings get
produced. These then get fed batch-wise into a neural network that outputs the model.
This is illustrated in figure 4.2.

Figure 4.2: Training Pipeline

4.3 Data Acquisition

This chapter will explore a variety of datasets and emphasizes issues with utilizing them
for the given task of enriching scientific source code. An overview of data processing will
be given in the following part, before introducing the concept of tokenization in language
processing and explaining how the pre-processing pipeline for the task looks like.

4.3. DATA ACQUISITION 33

4.3.1 Data Requirements

For the task of jointly extracting information from research papers and code bases in order
to find relations between them, certain requirements have to be met:

1. There has to exist a relation between a data pair of paper and code.

2. There has to be a way to align paper and code.

3. One of the following:

(a) There has to exist a suited annotated dataset for the task.

(b) Data has to be manually annotated for this thesis.

(c) A self-supervised approach is taken.

Since, for item 3, there has not been found a suitable already annotated dataset and eval-
uating both of the others is beyond the scope of this thesis, we will proceed with focusing
on item (c), the self-supervised approach.

4.3.2 Available Datasets

There is a broad availability of datasets for general-purpose natural language understand-
ing. In this section, the most common classes will be introduced.
The first class is the text corpus. These corpora are large collections of structured natural
language text and are at the foundation of the unsupervised pre-training step described in
chapter 2. A selection was published online4.
The second class is manually labeled data. Since the process of annotating data is tedious,
the labeling can be crowd-sourced, meaning everyone within a community can contribute
to the labeled dataset. An example of this is the Stanford Question Answering Dataset
(SQuAD). It is a reading comprehension dataset, consisting of questions posed by users on
a set of Wikipedia articles, where the answer to every question is a segment of text from
the corresponding reading passage5. For NER, despite there being a collection of datasets
in a curated list 6, none of these fit the scientific context.
While in some domains, labeled datasets at a large scale can be obtained through crowd-
sourcing, such dataset in a scientific context is problematic due to the lack of experts
required to annotate those [7]. A few exceptions for annotated research papers exist on
GitHub7 or PapersPlease8.

4https://www.corpusdata.org/
5https://rajpurkar.github.io/SQuAD-explorer/
6https://github.com/juand-r/entity-recognition-datasets
7https://github.com/guptakhil/research-papers
8http://papersplease.ml/

34 CHAPTER 4. IMPLEMENTATION

This limits the possibilities of using supervised learning approaches and, for one, leads
to a need for labeled data in research-related NLP tasks. At the same time, a different
approach gained popularity in recent times: Self-supervised learning.
Self-supervised learning describes the process of learning to automatically annotate an un-
labeled dataset by generating a supervisory signal. It is also used to learn a representation
of the data. The autoencoder can be classified as self-supervised [19], since they are essen-
tially unsupervised (with no class information being necessary for the training task), but
at the same time mostly get used for classification (hence supervised) tasks. In language
models, the previously mentioned text corpora get used as the source for self-supervised
learning. For scientific literature, there exist corpora like the Semantic Scholar Open Re-
search Corpus (S2ORC9) from which the vocabulary SciVocab[7] is created.

Datasets for specific tasks like code understanding, especially in a scientific context are
sparse. While published annotations like The Annotated Transformer10 are arguably very
helpful to the machine learning community, the existence of such annotated datasets is
certainly not sufficient to consider a supervised approach for the proposed task.

One approach could be to, instead of dealing with the code semantics, extract the vari-
ables and function parameters via the AST and to train a NER classifier on the task of
classifying entities as variable. The issue is, that such a task needs a dataset with anno-
tated entities, and, at the time of writing, such a dataset does not exist and would have to
be created by manual annotation. Additionally, while having a language model that un-
derstands how variables fit into a sentence, the added value of such a classifier for just the
variable detection is questionable if the extraction from papers can be done automatically.

4.4 Data Preparation

4.4.1 Tokenization

Tokenization11 is an important part of processing text.

4.4.1 Definition. Given a character sequence S = (S0, . . . , Sn) and a defined document
unit, tokenization is the task of splitting the sequence into tokens si 2 Si for all i 2 1, . . . , n.

If we once again look at the example from figure 2.14, it is clear that the original sentence
is "My dog is cute. He likes playing.". Splitting the sentences into its parts results in
["my", "dog", "is", "cute", ".", he", "likes", "playing", "."].

9https://github.com/allenai/s2orc
10https://nlp.seas.harvard.edu/2018/04/03/attention.html
1112

4.5. PREPROCESSING 35

Tokenizing words can be useful for language models, such as splitting "playing" into
["play", "ing"]. In order to make sense of such a split word, the relation is represented by
adding a prefix "##". The final result then is ["play", "##ing"], the verb in its basic
form and its -ing suffix.

Since there are no suitable datasets available for the proposed task, data has to be
gathered first.
For learning the proposed task, the data has fulfill the requirements stated in chapter
4.3.1. Existing relations between data are provided by paperswithcode.com in form of a
file that records the needed links between research publications and repositories with their
respective implementations. For each paper, the following data can be accessed: paper url,
paper title, arxiv id, abstract url, direct arxiv link to pdf, repository url, flags for references
to each other in paper and on github and finally the used framework if available.
This makes it, for one, possible to automatically clone the repositories.
Additionally, from the arXiv id, with a script, the source files can be directly downloaded
from "https://arxiv.org/e-print/{id}".
For this thesis, a limitation of only papers from January 2019 has been chosen.

4.5 Preprocessing

The preprocessing step is a big part of this pipeline. Since the data is gathered from two
sources, the process is different for each of them.

4.5.1 Regular Expressions

A regular expression (RegEx) is a formal description of a pattern. The set of possible
regular expressions for a given string is either empty or infinitely large.

4.5.1 Definition. For a given finite alphabet ⌃, the empty set ;, the empty string ✏ and
all characters � 2 ⌃ are regular expressions. Given regular expressions R1 and R2, (R1R2)

is defined as their concatenation, (R1|R2) as their union and R
⇤
1 as smallest superset

described by R1 with ✏ 2 R
⇤
1.

Regexes are generally used in code for matching string patterns. Some of its metacharacters
will be introduced in 4.1 below.

4.5.2 String Types in Python

In Python, regexes have to be described with raw strings. They can be declared by prepend-
ing the character "r" to the quotation mark that announces the beginning of a string.
A different type of strings in python are the f-Strings. They can be used to improve
formatting of strings by making it possible to include variables within the string. The

36 CHAPTER 4. IMPLEMENTATION

Character Meaning
. Matches any character.

() Groups pattern elements together.
+ Preceding character has to occur at least once.
? Prededing character can occur at most once.
* Preceding character can occur for any number of times.

{M,N} Specifies the range of number of occurences for the preceding character.
[] Describes a set of possible character patterns.
| Separates possible pattern matches. Equivalent of OR.
^ Matches the start of the string.
$ Matches the end of the string.

Table 4.1: Common RegEx characters.

prepended literal is an f. A variable or an expression has to be inside an environment of
curly brackets.
To give an example of usage: f"My name is {name}. I live in {city}." would re-
place the placeholders with the strings stored in the variables name and city.
It is possible to combine r- and f-Strings by prepending both.

4.5.3 Processing LaTeX Files

As discussed in chapter 3, the available LaTeX parsers are not sufficiently modular to solve
the proposed task. Therefore a pre-processing pipeline for .tex files has to be implemented.
Since the idea is to create sentence/function pairs based on occurring variables, for this
step, the sentences containing them have to be extracted. Generally, when writing a LaTeX
document, refering to a variable v is done by embedding it in an environment v.
This assumption makes it possible to extract most variables used in a document by match-
ing the syntax similarly to [43]. The corresponding r-string r"(.*?)\$(.*?)\$(.*?)"
matches all strings in which two $ symbols occur. To prevent unwanted matches, a fil-
tering system should check possible mismatches. Typical mismatches that were found
include:

• Numbers inside an inline match block, for example 2

• Equation blocks $$...$$

• Sequential variable blocks in one sentence: $v1$...$v2$

In addition to identifying sentences that have variables in them, further modifications
are needed. Because LaTeX syntax includes environments such as \begin{...}, parts

4.5. PREPROCESSING 37

inside specific environments are excluded. Specifically, figures, equations, tables, algo-
rithms and align environments were all filtered out. With a combination of aforemen-
tioned r- and f-strings these can easily be found by matching the regular expression
rf"\\{cmd}{{{env}}}", where cmd can be begin, end or any of the structural commands
such as chapter or section. Variables that are inserted via command (e.g. \{alpha}) get
changed to just the variable name (alpha) and equally, math environments around words
(\mathcal{},...) get removed.

Sentence splitting is necessary for the model to be trained on sentence level embed-
dings. It is important to define a regular expression that only splits at dots that are
sentence delimiters and ignores all other occurrences. The given expression is defined by
r"(?<!˙.)(?<![A-Z][a-z])̇(?<=|̇)".

4.5.4 Processing Python Code Files

Python code files can be parsed into an Abstract Syntax Tree, in short: AST. The tree is
a representation of the syntactic structure of the source code. We can traverse the AST to
gather sets of node types, such as functions, variables and imports.
Since the idea is to align sentences and functions by variable, we need to create certain
collections when processing the files.

1. Function dictionary: A collection of all functions available in the file with its name
as the key.

2. Tokenized function dictionary: A tokenized version of the function dictionary.

3. Variable dictionary: For each occurring variable, a list of tokenized functions that
uses them.

The implementation is built on top of Python’s ast module13. Custom implementations
for function and variable extractions are shown in figures 4.3 and 4.4.

4.5.5 Aligning and Generating the Samples

Aligning and sample generation can be done in one step. The preceding processing step
yields dictionaries grouped by variables, which now can be used to simply align them and
generate samples for each combination.

13https://docs.python.org/3/library/ast.html

38 CHAPTER 4. IMPLEMENTATION

Figure 4.3: Custom implementation for extracting functions from a Python AST.

Require: dicts, dictf

1: Vf dictf .keys()

2: samples = {}
3: for all v 2 Vf do
4: if v 2 dicts then
5: for all combinations of entries i, j do
6: add (dicts[v][i], dictf [v][j]) to list of samples
7: end for
8: end if
9: end for

Algorithm 4.1: Sample Generation from Processed .tex and .py files

4.6 Training Pipeline

In this section, a simple setup for a pipeline for training the model will be presented. First,
the backbone models of SciBERT and CodeBERT will be introduced. Then, the training
architecture will be outlined.

4.6. TRAINING PIPELINE 39

Figure 4.4: Custom implementation for variable finding in a Python AST.

4.6.1 Idea

The fundemental idea is to encode both the sentence and the function for each sample.
Using Pre-trained models based on Bidirectional Transformers (see chapter 2) as encoders
is a promising way to keep semantic information. The resulting embeddings then have
to be combined into a shared space. A large collection of pre-trained language models is
available on Hugging Face14, an open-source website for facilitating building, training and
deploying state of the art models.

4.6.2 SciBERT

SciBERT [7] is a pre-trained language model for scientific text. Compared to BERT [12],
SciBERT is architecturally the same, but the training data consist of solely scientific text.
The authors construct a vocabulary based on WordPiece, called SciVocab, that contains
the most frequent words. The percentage of shared words between SciVocab and BERT’s
BaseVocab is only 42%. The vocabulary is used for unsupervised tokenization.
SciBERT is trained on a subset of over one million full-text papers from SemanticScholar,
with 18% from the domain of computer science. SciBERT can be fine-tuned on several
tasks: Named Entity Recognition (NER), Text Classification, Relation Classification, De-
pendency Parsing and PICO Extraction specifically for medical applications. Even without
finetuning, SciBERT outperforms comparable models on tasks like NER for the computer

14https://huggingface.co/

40 CHAPTER 4. IMPLEMENTATION

science domain. With fine-tuning, SciBERT increases its F1 score up by up to 5.59%. The
F1 score (also F-measure) is a weighted average of the precision and recall, where the closer
the score is to 1, the better an evaluated method performs.
The pre-trained SciBERT model is provided by Hugging Face15.

4.6.3 CodeBERT

CodeBERT [16] is, as the name suggests, a bimodal pre-trained model for programming
and natural languages. It learns general-purpose representations that enable downstream
applications that involve both programming and natural languages, such as code search
and generation of documentation. In comparison to unimodal BERTs, like SciBERT, the
model has to process data from multiple sources with inherently different structures. It
is, however, able to process unimodal data (either NL or PL) as well, making it the first
model to achieve this task.
CodeBERT is trained on data pairs of (code, comment) in 6 programming languages and
its english documentation obtained from Github code repositories.
Microsoft’s pre-trained CodeBERT model is being provided by Hugging Face16. Its archi-
tecture is based on the RoBERTa model architecture [35].
Similar to how natural language is interpreted by NL BERT models, SciBERT regards
source code as a sequence of tokens. Input is a concatenation of two segments, one NL
and one PL: [CLS], w1, w2, . . . , wn, [SEP], c1, c2, . . . , cm, [EOS]. CodeBERTs output rep-
resentation consists of a contextual vector representation of each token for both NL and
PL and a representaion of [CLS], which is the aggregated representation of the sequence.
During pre-training, the model uses two objectives, masked language modeling (MLM)
and replaced token detection (RTD) [11].

MLM Objective

Given an input pair x = (w, c) with t being a sequence of NL tokens and c a sequence
of PL tokens, a set of positions m

w and m
c gets randomly replaced by a [MASK] token

with m
w
i ⇠ unif{1, |w|} for i 2 {1, . . . , |w|} and m

c
i ⇠ unif{1, |c|} for i 2 {1, . . . , |c|}. The

objective of MLM is a prediction of the masked out tokens, w
mask and c

mask. For a
token-predicting discriminator p

DMLM , it can be formulated as:

LMLM (✓) =
X

i2mw
S

mc

� log pDMLM (xi|wmask
, c

mask) (4.1)

15https://huggingface.co/allenai/scibert_scivocab_uncased
16https://huggingface.co/microsoft/codebert-base

4.6. TRAINING PIPELINE 41

RTD Objective

Instead of using only bimodal data, the RTD task uses both unimodal and bimodal data.
Two separate n-gram language models are used as generators, pGw for NL and p

Gc for PL.
We draw ŵi ⇠ p

Gw(wi|wmask) for i 2 m
w and ĉi ⇠ p

Gc(ci|cmask) for i 2 m
c respectively.

The discriminator p
DRTD is trained on classifying whether a word is the original word or

a fake word w
corrupt. The objective loss is given by

LRTD(✓) =

|w|+|c|X

i=1

�
�(i) log pDRTD(xcorrupt, i) + (1� �(i))

�
1� log pDRTD(xcorrupt, i

��

(4.2)

�(i) =

8
<

:
1, if xcorrupti = xi

0, else
(4.3)

The total training objective can now be written as

min
✓

LMLM (✓) + LRTD(✓). (4.4)

An illustration of the RTD objective can be seen in figure 4.5.

Figure 4.5: RTD objective within CodeBERT. Both generators are language models. The dis-
criminator is the target pre-trained model.

4.6.4 Training Architecture Design

In order to train a model, the architecture has to be designed first.
Figure 4.6 illustrates how the design is meant to work. Training sample pairs get split into

text and code samples. Text samples get encodes by SciBERT, while code samples get en-
coded by CodeBERT. Both result in embeddings of their respective type. An autoencoder
is trained for both with a shared intermediate state space. The training gets controlled
by a shared loss function that measures both reconstruction errors and similarity of the

42 CHAPTER 4. IMPLEMENTATION

Figure 4.6: The proposed Training Setup

intermediate encoded state.

Figure 4.7: Autoencoder architecture for the task. Top: Paper embeddings. Bottom: Code
embeddings.

Figure 4.7 shows the layers of the proposed simple parallel autoencoders. Both consist
of two pooling layers, a state and two unpooling layers, each with a ReLU activation
function.

fReLU (x) = max(0, x) (4.5)

After the final layer, a sigmoid activation function is used.

fsigm(x) =
1

1 + e�x
(4.6)

4.7. INFERENCE PIPELINE 43

The input embeddings get average pooled before getting put in the autoencoders, since
averaging the complete sequence of hidden states of the embeddings is a better represen-
tation of semantics17.

For the network, a custom loss function has been implemented. Because we want to
evaluate the reconstruction of the two autoencoders at the same time and additionally
evaluate the similarity of the encoded spaces, a composite loss function gets used. First,
we define two mean-squared error loss functions for measuring the reconstruction error of
the encoders/decoder system. A smaller error means that the autoencoder has learned a
better abstract representation from which the original can be reconstructed.

Lpaper =
1

n

nX

i=1

(spi � ŝ
p
i)

2
. (4.7)

Lcode =
1

m

mX

j=1

(sci � ŝci)
2
. (4.8)

For measuring the similarity of the encodings, a cosine similarity function is used. It is
defined by

Lsim = 1� ep · ec
max(||ep||2 · ||ec||2, ✏)

(4.9)

A small ✏ is used to prevent division by zero errors. It is set to ✏ = 10�8 by default.
For tunable hyperparameters �1 and �2, the resulting composite loss function can then be
formulated as:

Lae = �1(Lpaper + Lcode) + �2Lsim (4.10)

For a start, we set �1 = �2 = 1.

4.7 Inference Pipeline

After having trained the model, a design and implementation for a pipeline for inference is
needed. This section will go over a proposed design, before its evaluation will be part of the
next chapter. For simplicity, the inference part will only cover plugging the data into the
model and generating comments as output. Obtaining the data and injecting them into
the source code is not part of this pipeline, even though it could be added in the future.
Starting from a pair of research paper and code repository, first, all sentences get extracted
from the paper and pre-processed in the same way as described in the previous section about
pre-processing. Likewise, all available python files from the repository get processed and
their functions (head and body) get extracted. As illustrated in figure 4.8, we calculate
all embeddings with SciBERT for all sentences and encode those into the learned shared
space with the encoder trained on research papers. Then, for each function, CodeBERT

17https://huggingface.co/transformers/modeldoc/bert.html#transformers.BertModel

44 CHAPTER 4. IMPLEMENTATION

yields the code embeddings and through the encoder part of the auto-encoder trained on
code samples, we get the encodings of the code. We calculate their similarities with the
cosine similarity function, and output the sentence, whose encoded embeddings have the
highest similarity to the encoded function embedding. From there, the resulting sentence
could be used as a comment for the respective function in the source repository.

Figure 4.8: Proposed Inference Pipeline

Chapter 5

Evaluation

In this chapter, the proposed training pipelines are to be evaluated and an the inference
results for a simple feed-forward model will be compared to human annotation.

5.1 Evaluation Limits

The typical evaluation methods usually done within machine learning to assess a newly
developed method can not be realized in this context. As neither a standardized dataset
to compare the proposed methods performance against other methods, nor even other
methods that try to achieve the same goal exist, evaluation has to be done on a different
level. This means, that the method has to be compared to itself on several tasks:

1. Is the shared space learnable?

2. Which factors play a role in learning the space shared by the encoders?

3. How well do (for manually checked examples) generated sentences represent the in-
formation in the paper?

5.2 Training Loss

There is an infinite amount of ways to build a neural network. Usually, certain factors play
a bigger role in measuring the quality of a model than others, so there will be limitations
of what can and will be realistically compared. In each of the upcoming subsections, a
potentially influencing factor will be described and discussed.

5.2.1 Baseline Model

As a baseline to compare against, a model without normalization was trained and the
loss recorded, which can be seen in figure 5.1. While the cosine similarity loss goes down

45

46 CHAPTER 5. EVALUATION

rapidly, the reconstruction error for both paper and code stays the same throughout the
batches.

Figure 5.1: Baseline model training loss for n batches.

5.2.2 Effect of Data Properties

Normalization

Normalization brings down both reconstruction errors, as shown in figure 5.2. This leads
to an overall lower total loss.

5.2.3 CodeBERT vs. GraphCodeBERT

The way that the pipeline is built, BERT models can be swapped out easily. This section
will evaluate the training performance of GraphCodeBERT and compare it to CodeBERT.
GraphCodeBERT [21] is a pre-trained model, like CodeBERT, that considers the inherent
code structure by taking into consideration the semantic data flow instead of the syntactic
AST.
An example of a target task for the model can be seen in figure 5.4. GraphCodeBERT
gets used to detect similarity between implementations of function by extracting and com-
paring their semantic representations. GraphCodeBERT supposedly evaluates higher than
CodeBERT on most tasks, meaning a potentially better retention of semantics for this
task. Figure 5.5 shows the training loss of the pipeline trained with GraphCodeBERT
with pooling of the hidden-state-sequence. Compared to the training performance of 5.3,
the difference is marginal.

5.2. TRAINING LOSS 47

Figure 5.2: Training loss with normalized data for n batches.

Figure 5.3: CodeBERT training loss for n batches with normalization and average hidden state
sequence pooling.

48 CHAPTER 5. EVALUATION

Figure 5.4: An example of GraphCodeBERT on a clone detection task. The two sources have a
reported semantic similarity of 0.983.

Figure 5.5: Training loss of GraphCodeBERT model for n batches.

5.3 Inference Evaluation

For evaluation of the inference pipeline, a small selected sample of papers will be processed
by the pipeline and the extracted comments will be manually compared against how a
reader might extract information from the source.

5.3.1 Example #1: Hierarchical Adaptive Contextual Bandits for Re-
source Constraint based Recommendation

The first chosen research paper is [64] by Yang et al.

5.3. INFERENCE EVALUATION 49

Content of the research paper

From the paper’s abstract: "Contextual multi-armed bandit (MAB) achieves cutting-edge
performance on a variety of problems. When it comes to real-world scenarios such as
recommendation system and online advertising, however, it is essential to consider the
resource consumption of exploration. In practice, there is typically non-zero cost associated
with executing a recommendation (arm) in the environment, and hence, the policy should
be learned with a fixed exploration cost constraint. It is challenging to learn a global optimal
policy directly, since it is a NP-hard problem and significantly complicates the exploration
and exploitation trade-off of bandit algorithms. Existing approaches focus on solving the
problems by adopting the greedy policy which estimates the expected rewards and costs and
uses a greedy selection based on each arm’s expected reward/cost ratio using historical
observation until the exploration resource is exhausted. However, existing methods are
hard to extend to infinite time horizon, since the learning process will be terminated when
there is no more resource. In this paper, we propose a hierarchical adaptive contextual
bandit method (HATCH) to conduct the policy learning of contextual bandits with a budget
constraint. HATCH adopts an adaptive method to allocate the exploration resource based
on the remaining resource/time and the estimation of reward distribution among different
user contexts. In addition, we utilize full of contextual feature information to find the
best personalized recommendation. Finally, in order to prove the theoretical guarantee,
we present a regret bound analysis and prove that HATCH achieves a regret bound as low
as O(

p
T). The experimental results demonstrate the effectiveness and efficiency of the

proposed method on both synthetic datasets and the real-world applications."

Code repository content

The authors provide an implementation to accompany their paper on GitHub1.
It contains three Python files: bandit.py, util.py and evaluation.py, neither of which have
any documentation in form of comments or DocStrings.

Results of the inference

The inference pipeline was not able to generate comments on the full set of sentences with-
out restrictions, despite the autoencoder managed train well with a small loss. Restricting
to sentences with matched variables, with normalized CodeBERT embeddings, the follow-
ing function/comment pairs were generated:

• __init__: ""
1https://github.com/ymy4323460/HATCH

50 CHAPTER 5. EVALUATION

• _add_common_lin: "For HATCH, we keep ↵ as the same in both of resource allo-
cation and personal recommendation level."

• set_time_budget: ""

• fit: "We set r = x
>
t ✓

⇤
j,a + ✏, supposing that ✏ is 1-sub-gaussian independent zero-

mean random variable, where E[✏] = 0 and ✓⇤j,a denotes the expected value of ✓."

• _fit_single: "The quality of user class j is captured by uj and is called expected
reward of j."

• partial_fit: "We set r = x
>
t ✓

⇤
j,a + ✏, supposing that ✏ is 1-sub-gaussian indepen-

dent zero-mean random variable, where E[✏] = 0 and ✓⇤j,a denotes the expected value
of ✓."

• predict: ""

The same results were obtained with the GraphCodeBERT approach. With the training
performance being very similar, this could mean that there is no noticeable difference in
semantics being transported for this specific task.

Comparison against manual annotation

When comparing the results to the potential comments of manual annotation, there is a
noticeable difference. Following the structure of the inference results, a selection of possi-
bly helpful comments could be:

• __init__:

– "We set the dimension of each generated context is dim = 5 and the value range
of each dimension is in [0,1].

– "For HATCH, we keep ↵ as the same in both of resource allocation and personal
recommendation level."

– " We set J = 10 as the number of user classes and K=10 arms with the reward
generated from a normal distribution.

• _add_common_lin: "For HATCH, we keep ↵ as the same in both of resource allocation
and personal recommendation level."

• set_time_budget: ""

• fit: "Here we choose Gaussian Mixture Model as mapping method in our system,
denoted by G(x).

5.3. INFERENCE EVALUATION 51

• _fit_single:

– "We sampled 30000 synthetic contexts from data generator with the distribution
� and we denote Xj as context set of class j."

– "The quality of user class j is captured by uj and is called expected reward of
j."

• partial_fit: "Here we choose Gaussian Mixture Model as mapping method in our
system, denoted by G(x).

• predict: "The quality of user class j is captured by uj and is called expected reward
of j."

5.3.2 Example #2: Learning to Remove: Towards Isotropic Pre-trained
BERT Embedding

The chosen research paper is [33] by Liang et al.

Content of the research paper

From the abstract: "Pre-trained language models such as BERT have become a more com-
mon choice of natural language processing (NLP) tasks. Research in word representa-
tion shows that isotropic embeddings can significantly improve performance on downstream
tasks. However, we measure and analyze the geometry of pre-trained BERT embedding and
find that it is far from isotropic. We find that the word vectors are not centered around
the origin, and the average cosine similarity between two random words is much higher
than zero, which indicates that the word vectors are distributed in a narrow cone and de-
teriorate the representation capacity of word embedding. We propose a simple, and yet
effective method to fix this problem: remove several dominant directions of BERT embed-
ding with a set of learnable weights. We train the weights on word similarity tasks and show
that processed embedding is more isotropic. Our method is evaluated on three standardized
tasks: word similarity, word analogy, and semantic textual similarity. In all tasks, the
word embedding processed by our method consistently outperforms the original embedding
(with average improvement of 13% on word analogy and 16% on semantic textual similar-
ity) and two baseline methods. Our method is also proven to be more robust to changes of
hyperparameter."

52 CHAPTER 5. EVALUATION

Repository content

The provided implementation is available on the author’s GitHub2. The python files in
the repository are config_file.py, evaluate.py, wr_train.py, all_test_forBERT.py, dataload-
ers.py, draw.py, loaddatasets.py, models.py and testForTask.py.

Comment Generation Issues

Due to the difference in variable naming between the paper and the code, there were no
matches between sentences and functions and therefore no generated comments. This part
is included in the evaluation chapter to highlight a problem with this approach. Since
the model is not able to infer without constraining the comment output to the matched
variables, in cases like this, it does not work.

5.3.3 Discussion

While during training, the loss gives the impression that the shared space was learned by
the neural network with the chosen approach and relevant comments can be generated with
the mentioned restrictions, the quality and coverage of generated comments gets negatively
impacted. The limitation of sequence length being 512 for the models also impacts large
function bodies negatively, in that they do not get processed. The rather simple network
for inference likely also plays a role in the result. Alternatives and possible improvements
to various sections of the whole pipeline will be outlined in chapter 6.

2https://github.com/liangyuxin42/weighted-removal

Chapter 6

Conclusion and Outlook

The overall goal of this thesis was to explore how, given scientific publications and their
provided implementations, the code could be annotated in a way that would help others
understand and re-use the source code for their own needs. Chapter 2 gave an overview
over recent developments, the current state of research in natural language processing
and theoretical foundations to several concepts, such as embeddings and transformers.
Chapter 3 explored specific research approaches for information extraction from research
documents and available tools and libraries. The Dr. Inventor framework was described
in more detail and an explanation was given on why it was not suited for the proposed
task. Chapter 3 also presented relevant research on extraction from source code and tools,
before briefly discussion issues with using approaches usually used for translation. A
pipeline was drafted and each of its parts discussed in chapter 4. Moreover, chapter 4 went
into detail about how a dataset for self-supervised learning approaches can be obtained.
Additionally, implementations for pre-processing the data, training the model and using it
for inference were presented. Evaluation of the training performance was shown in chapter
5 and the results of the inference was compared to a manually annotated exemplary paper.
It showed that an alignment of embeddings generated by two BERT-type models, SciBERT
for scientific documents and CodeBERT for code repositories was possible by learning a
shared space with an autoencoder. However, the quality of generated comments were not
as high as a user would need them to be, or impossible if alignment was different from the
chosen scheme, and it seems as if the inference model was not sophisticated enough to be
able to understand the relations of unlabeled data from the learned representations of the
generated dataset, even though using the total set of sentences aligned by their variables
as a selection of source code comments could be an option to improve understanding. All
in all, this thesis can be understood as a step in the direction, a prototype, of at some
point being able to automatically generate semantically rich documentation for scientific
source code.

53

54 CHAPTER 6. CONCLUSION AND OUTLOOK

6.1 Outlook

First, in the future, the model and approach for learning the shared encoded space could
be substituted. The concept proposed in this thesis could be expanded beyond just vari-
ables in the future. Another possibility could be to try different approaches (instead of
an autoencoder) to learn the shared space. Also, future works could research different
approaches to utilize the dataset proposed or use the approach of this thesis on a different
dataset. A different approach to tackle the tackled task could be to generate descriptive
natural text from functions and learn to align it with natural text from the papers in order
to summarize a text (for comment generation) made from those descriptions. Comments
from repositories could also be included in learning approaches, if available. Fine-tuning
on manual annotations done by experts could also be a direction to take, if the amount of
available labeled data, such as 1, grows over time. Furthermore, it could be possible to try
a contrastive learning approach for this problem by training a model to learn differences
between positive and negative pairs of code and paper segments, given a good enough
retention of semantics through encodings. Fine-tuning the BERT-type models used in the
proposed pipelines during training could be done as well. With the likely advancement of
research regarding knowledge graph generation in the context of source code, a research
opportunity could be to use a similar pipeline as proposed in this thesis to learn an align-
ment. It could also be possible to train a bimodal BERT model on source code and paper
input to skip the problem of having to learn a shared space after generating embeddings.

1https://nlp.seas.harvard.edu/2018/04/03/attention.html

Appendix A

Further Information

55

56 APPENDIX A. FURTHER INFORMATION

List of Figures

2.1 A constituency-based1parse tree for the sentence "I pet the dog". 5
2.2 AST for the Euclidean algorithm for GCD computation2 6
2.3 Example of a semantically parsed sentence3. 7
2.4 Code Search baseline model architecture . 9
2.5 Simple Autoencoder Architecture. 10
2.6 Comparison of the CBOW and Skip-Gram models [37] 13
2.7 Visualization of word embeddings 4 . 13
2.8 Visualizing the "king - man + woman ⇠= queen" analogy 5 14
2.9 Cosine similarity between words 6 . 14
2.10 Architecture of the Transformer model [59] 16
2.11 Architectural comparison of Scaled-Dot-Product Attention (left) and Multi-

Head Attention (right) . 17
2.12 ELMo’s bidirectional architecture 7. 17
2.13 BERT pre-training (left) and fine-tuning (right). Output layers differ, all

other layers are the same for both.[12] . 18
2.14 Input representation for BERT. Input embeddings consist of token embed-

dings, segment embeddings and positional embeddings. [CLS] preceeds ev-
ery sample to mark its begin and [SEP] is a special token for representing
sentence seperators.[12] . 19

3.1 Architecture of the Dr. Inventor Framework Modules [51]. 23
3.2 Visualization of an expression embedding space [2]. 25
3.3 Source Code documentation example of Code-GRU [32]. 25
3.4 Automatic Generation of Python DocStrings with CodeBERT. 27
3.5 Example of cross-lingual (top to bottom: Chinese, English, Japanese) word

alignment with SLUA [63]. 28

4.1 Sample Generation Pipeline . 32
4.2 Training Pipeline . 32
4.3 Custom implementation for extracting functions from a Python AST. 38

57

58 LIST OF FIGURES

4.4 Custom implementation for variable finding in a Python AST. 39
4.5 RTD objective within CodeBERT. Both generators are language models.

The discriminator is the target pre-trained model. 41
4.6 The proposed Training Setup . 42
4.7 Autoencoder architecture for the task. Top: Paper embeddings. Bottom:

Code embeddings. 42
4.8 Proposed Inference Pipeline . 44

5.1 Baseline model training loss for n batches. 46
5.2 Training loss with normalized data for n batches. 47
5.3 CodeBERT training loss for n batches with normalization and average hid-

den state sequence pooling. 47
5.4 An example of GraphCodeBERT on a clone detection task. The two sources

have a reported semantic similarity of 0.983. 48
5.5 Training loss of GraphCodeBERT model for n batches. 48

List of Algorithms

2.1 Euclidean algorithm for computing the greatest common divisor of two num-
bers. 6

4.1 Sample Generation from Processed .tex and .py files 38

59

60 LIST OF ALGORITHMS

Bibliography

[1] Abrahams, Paul W.: A final solution to the Dangling else of ALGOL 60 and related
languages. Communications of the ACM, 9(9):679–682, Sep 1966.

[2] Allamanis, Miltiadis, Pankajan Chanthirasegaran, Pushmeet Kohli and
Charles Sutton: Learning Continuous Semantic Representations of Symbolic Ex-
pressions, 2017.

[3] Azanzi, F. J. and G. Camara: Knowledge Extraction from Source Code Based on
Hidden Markov Model: Application to EPICAM. In 2017 IEEE/ACS 14th Interna-
tional Conference on Computer Systems and Applications (AICCSA), pages 1478–
1485, 2017.

[4] Bahdanau, Dzmitry, Kyunghyun Cho and Yoshua Bengio: Neural Machine
Translation by Jointly Learning to Align and Translate, 2016.

[5] Barone, Antonio Valerio Miceli: Towards cross-lingual distributed represen-
tations without parallel text trained with adversarial autoencoders. arXiv preprint
arXiv:1608.02996, 2016.

[6] Bellman, Richard E: Adaptive control processes: a guided tour. Princeton univer-
sity press, 2015.

[7] Beltagy, Iz, Kyle Lo and Arman Cohan: SciBERT: Pretrained Language Model
for Scientific Text. In EMNLP, 2019.

[8] Bengio, Samy, Jason Weston and David Grangier: Label Embedding Trees for
Large Multi-Class Tasks. In Neural Information Processing Systems (NIPS), 2010.

[9] Chen, Zimin and Martin Monperrus: A Literature Study of Embeddings on Source
Code. CoRR, abs/1904.03061, 2019.

[10] Cho, Kyunghyun, Bart van Merrienboer, Dzmitry Bahdanau and Yoshua
Bengio: On the Properties of Neural Machine Translation: Encoder-Decoder Ap-
proaches, 2014.

61

62 BIBLIOGRAPHY

[11] Clark, Kevin, Minh-Thang Luong, Quoc V Le and Christopher D Man-
ning: Electra: Pre-training text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555, 2020.

[12] Devlin, Jacob, Ming-Wei Chang, Kenton Lee and Kristina Toutanova:
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,
2019.

[13] Do, Chuong B and Andrew Y Ng: Transfer learning for text classification. Ad-
vances in Neural Information Processing Systems, 18:299–306, 2005.

[14] Ehrlinger, Lisa and Wolfram Wöß: Towards a Definition of Knowledge Graphs.
SEMANTiCS (Posters, Demos, SuCCESS), 48:1–4, 2016.

[15] Felbo, Bjarke, Alan Mislove, Anders Søgaard, Iyad Rahwan and Sune
Lehmann: Using millions of emoji occurrences to learn any-domain representations
for detecting sentiment, emotion and sarcasm. arXiv preprint arXiv:1708.00524, 2017.

[16] Feng, Zhangyin, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang et al.: Code-
bert: A pre-trained model for programming and natural languages. arXiv preprint
arXiv:2002.08155, 2020.

[17] Fisas, Beatriz, Horacio Saggion and Francesco Ronzano: On the Discoursive
Structure of Computer Graphics Research Papers. In Proceedings of The 9th Linguistic
Annotation Workshop, pages 42–51, Denver, Colorado, USA, June 2015. Association
for Computational Linguistics.

[18] Garner, Richard: An abstract view on syntax with sharing, 2011.

[19] Gogna, Anupriya and Angshul Majumdar: Semi supervised autoencoder. In
International Conference on Neural Information Processing, pages 82–89. Springer,
2016.

[20] Graves, Alex: Generating Sequences With Recurrent Neural Networks, 2014.

[21] Guo, Daya, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu,
Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tu-
fano, Shao Kun Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian
Yin, Daxin Jiang and Ming Zhou: GraphCodeBERT: Pre-training Code Represen-
tations with Data Flow, 2021.

[22] Harris, David and Sarah Harris: Digital design and computer architecture. Mor-
gan Kaufmann, 2010.

BIBLIOGRAPHY 63

[23] Hocking, John: Topology. Dover Publications, New York, 1988.

[24] Husain, Hamel, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis and
Marc Brockschmidt: CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search, 2020.

[25] Hutchins, J.: Machine translation: a concise history. 2006.

[26] Jain, Paras, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph E. Gonza-
lez and Ion Stoica: Contrastive Code Representation Learning, 2020.

[27] Johnson, S. C. and M. Hill: Lint, a C Program Checker. 1978.

[28] Jurafsky, Daniel and H James: Speech and language processing an introduction
to natural language processing, computational linguistics, and speech. 2000.

[29] Kamath, Aishwarya and Rajarshi Das: A survey on semantic parsing. arXiv
preprint arXiv:1812.00978, 2018.

[30] Kanade, Aditya, Petros Maniatis, Gogul Balakrishnan and Kensen Shi:
Learning and Evaluating Contextual Embedding of Source Code. In International Con-
ference on Machine Learning, pages 5110–5121. PMLR, 2020.

[31] Karampatsis, Rafael Michael and Charles Sutton: SCELMo: Source Code
Embeddings from Language Models, 2020.

[32] Liang, Yuding and Kenny Q. Zhu: Automatic Generation of Text Descriptive
Comments for Code Blocks, 2018.

[33] Liang, Yuxin, Rui Cao, Jie Zheng, Jie Ren and Ling Gao: Learning to Remove:
Towards Isotropic Pre-trained BERT Embedding, 2021.

[34] Liu, Weijie, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng and
Ping Wang: K-BERT: Enabling Language Representation with Knowledge Graph,
2019.

[35] Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer and Veselin Stoy-
anov: Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[36] Locke, William N. and A. Donald Booth: Machine translation of languages.
American Documentation, 7(2):135–136, Apr 1956.

[37] Mikolov, Tomas, Kai Chen, Greg Corrado and Jeffrey Dean: Efficient
Estimation of Word Representations in Vector Space, 2013.

64 BIBLIOGRAPHY

[38] Mohiuddin, Tasnim and Shafiq Joty: Unsupervised Word Translation with Ad-
versarial Autoencoder. Computational Linguistics, 46(2):257–288, June 2020.

[39] Nadeau, David and Satoshi Sekine: A survey of named entity recognition and
classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

[40] Ng, Andrew et al.: Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19, 2011.

[41] Oda, Yusuke, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani
Sakti, T. Toda and S. Nakamura: Learning to Generate Pseudo-Code from Source
Code Using Statistical Machine Translation (T). 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 574–584, 2015.

[42] Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt Gardner,
Christopher Clark, Kenton Lee and Luke Zettlemoyer: Deep contextualized
word representations, 2018.

[43] Pfahler, Lukas and Katharina Morik: Semantic Search in Millions of Equa-
tions. In Proceedings of the 26th ACM SIGKDD International Conference on Knowl-
edge Discovery Data Mining, KDD ’20, page 135–143, New York, NY, USA, 2020.
Association for Computing Machinery.

[44] Pires, Telmo, Eva Schlinger and Dan Garrette: How multilingual is Multi-
lingual BERT?, 2019.

[45] Poplawski, David A: Properties of LL-Regular Languages. 1977.

[46] Prabhavalkar, Rohit, Kanishka Rao, Tara Sainath, Bo Li, Leif Johnson
and Navdeep Jaitly: A Comparison of Sequence-to-Sequence Models for Speech
Recognition. 2017.

[47] Qiu, Xipeng, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai and Xuanjing
Huang: Pre-trained Models for Natural Language Processing: A Survey, 2020.

[48] Radford, Alec, Karthik Narasimhan, Tim Salimans and Ilya Sutskever:
Improving language understanding by generative pre-training. 2018.

[49] Raffel, Colin, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li and Peter J. Liu: Explor-
ing the Limits of Transfer Learning with a Unified Text-to-Text Transformer, 2020.

[50] Ronzano, Francesco and Horacio Saggion: Dr. inventor framework: Extracting
structured information from scientific publications. In International conference on
discovery science, pages 209–220. Springer, 2015.

BIBLIOGRAPHY 65

[51] Ronzano, Francesco and Horacio Saggion: Knowledge Extraction and Model-
ing from Scientific Publications. 2016.

[52] Rumelhart, D., Geoffrey E. Hinton and R. J. Williams: Learning represen-
tations by back-propagating errors. Nature, 323:533–536, 1986.

[53] Schmidhuber, Jürgen: Deep learning in neural networks: An overview. Neural
networks, 61:85–117, 2015.

[54] Shahid, Abdul, M. Afzal, M. Abdar, Mohammad Ehsan Basiri, X. Zhou,
N. Y. Yen and Jiawei Chang: Insights into relevant knowledge extraction tech-
niques: a comprehensive review. The Journal of Supercomputing, 76:1695–1733, 2019.

[55] Shapiro, Stuart C: Encyclopedia of artificial intelligence second edition. John,
1992.

[56] Stathopoulos, Yiannos, Simon Baker, Marek Rei and Simone Teufel: Vari-
able Typing: Assigning Meaning to Variables in Mathematical Text. In NAACL-HLT,
pages 303–312, 2018.

[57] Sutskever, Ilya, Oriol Vinyals and Quoc V. Le: Sequence to Sequence Learning
with Neural Networks, 2014.

[58] Upadhyay, R. and A. Fujii: Semantic knowledge extraction from research docu-
ments. 2016 Federated Conference on Computer Science and Information Systems
(FedCSIS), pages 439–445, 2016.

[59] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin: Attention Is
All You Need, 2017.

[60] Wan, Yao, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu
and Philip S Yu: Improving automatic source code summarization via deep rein-
forcement learning. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, pages 397–407, 2018.

[61] Wang, Alex, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy
and Samuel R. Bowman: GLUE: A Multi-Task Benchmark and Analysis Platform
for Natural Language Understanding, 2019.

[62] Wong, Edmund, J. Yang and Lin Tan: AutoComment: Mining question and
answer sites for automatic comment generation. 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 562–567, 2013.

66

[63] Wu, Di, Liang Ding, Shuo Yang and Dacheng Tao: SLUA: A Super Lightweight
Unsupervised Word Alignment Model via Cross-Lingual Contrastive Learning, 2021.

[64] Yang, Mengyue, Qingyang Li, Zhiwei Qin and Jieping Ye: Hierarchical Adap-
tive Contextual Bandits for Resource Constraint based Recommendation. Proceedings
of The Web Conference 2020, Apr 2020.

[65] Zhang, Ce: DeepDive: a data management system for automatic knowledge base
construction. University of Wisconsin-Madison, Madison, Wisconsin, 2015.

