
Estimating the Generalization Performance of an SVM E�ciently

Thorsten Joachims joachims@ls8.informatik.uni-dortmund.de

Informatik LS VIII, Universit�at Dortmund, Baroper Str. 301, 44221 Dortmund, Germany

Abstract

This paper proposes and analyzes an e�cient
and e�ective approach for estimating the gen-
eralization performance of a support vector
machine (SVM) for text classi�cation. With-
out any computation-intensive resampling,
the new estimators are computationally
much more e�cient than cross-validation or
bootstrapping. They can be computed at
essentially no extra cost immediately after
training a single SVM. Moreover, the estima-
tors developed here address the special per-
formancemeasures needed for evaluating text
classi�ers. They can be used not only to es-
timate the error rate, but also to estimate re-
call, precision, and F1. A theoretical analysis
and experiments show that the new method
can e�ectively estimate the performance of
SVM text classi�ers in an e�cient way.

1. Introduction

From a practical perspective, learning theory should
provide accurate and e�cient methods for predict-
ing how well a learner can handle the task at hand.
Given a set of training examples, a practitioner will
ask how well a particular learner will generalize using
this data. With this information it is possible to ad-
dress the question of selecting between di�erent repre-
sentation, di�erent models, and di�erent learning pa-
rameters. Similarly, it provides the basis for deciding
when to apply the learned rule, since real-world tasks
usually require a certain minimum performance.

The following presents an approach to answering these
questions in the context of text classi�cation with Sup-
port Vector Machines (SVMs) (Joachims, 1998; Du-
mais et al., 1998). The aim is to develop operational
performance estimators that are of actual use when
applying SVMs. This requires that the estimators
are both e�ective and computationally e�cient. De-
vroye et al. (1996) give an overview of error estima-
tion. While some estimators (e.g., uniform conver-

gence bounds) are powerful theoretical tools, they are
of little use in practical applications, since they are
too loose. Others (e.g., cross-validation, bootstrap-
ping) give good estimates, but are computationally
ine�cient. This paper describes new estimators that
overcome these problems, extending results of Vapnik
(1998) and Jaakkola and Haussler (1999) to general
SVMs. The new estimators are both accurate and ef-
�cient to compute.

While the results presented here are general enough
to apply to arbitrary classi�cation tasks, special em-
phasis is put on evaluation measures commonly used
in text classi�cation. In particular, the approach is
not limited to estimating the error rate. It also covers
precision and recall, as well as combined measures like
F1. A theoretical analysis as well as experiments show
that the new estimators accurately re
ect the actual
behavior of SVMs on text classi�cation tasks.

2. Text Classi�cation

Text classi�cation is the primary application domain
for the methods developed here. The goal of text clas-
si�cation is the automatic assignment of documents to
a �xed number of semantic categories. Using a binary
classi�er for each such category, this leads to the fol-
lowing type of supervised learning problem. Given is
an i.i.d. training sample Sn

(~x1; y1); (~x2; y2); : : : ; (~xn; yn) (1)

of size n from a �xed but unknown distribution
Pr(~x; y) describing the learning task. ~xi represents
the document content and yi 2 f�1;+1g indicates
the class. The learner L aims to �nd a decision rule
hL : ~x �! f�1;+1g based on Sn that classi�es new
documents as accurately as possible.

Documents, which typically are strings of characters,
have to be transformed into a representation suitable
for the learning algorithm and the classi�cation task.
Here the so called \bag-of-words" representations fol-
lowing the setup of Joachims (1998) is used. Each
distinct word corresponds to a feature with its TFIDF



score (Salton & Buckley, 1988) as the value. Neither
stemming nor stopword-removal are used. To abstract
from di�erent document lengths, each document fea-
ture vector ~xi is normalized to unit length.

Unlike for other applications of machine learning, er-
ror rate Err(h) alone is not necessarily a good perfor-
mance measure in text classi�cation, since very often
the examples from one class vastly outnumber those
from the other class. Instead, scores based on pre-
cision and recall are used widely. I de�ne the recall
Rec(h) of a decision rule h as the probability that a
document with label y = 1 is classi�ed correctly. The
precision Prec(h) of a decision rule h is the probabil-
ity that a document classi�ed as h(~x) = 1 is indeed
classi�ed correctly. Between high precision and high
recall exists a trade-o�. A popular method to combine
both into a single performance measure is the F1. It is
de�ned as the geometric mean of precision and recall.

3. Support Vector Machines

The new estimators exploit a particular property of
Support Vector Machines that is identi�ed in section
4. SVMs (e.g., Vapnik, 1998) were developed based
on the structural risk minimization principle from sta-
tistical learning theory. In their basic form, SVMs
learn linear decision rules h(~x) = signf~w � ~x + bg de-
scribed by a weight vector ~w and a threshold b. For
a given training sample Sn, the SVM �nds the hy-
perplane with maximum soft-margin. Computing this
hyperplane is equivalent to solving the following opti-
mization problem (Vapnik, 1998), (OP1):

minimize: V (~w; b; ~�) =
1

2
~w � ~w + C

nX
i=1

�i (2)

subj. to: 8ni=1 : yi[~w � ~xi + b] � 1� �i (3)

8ni=1 : �i > 0 (4)

The constraints (3) require that all training examples
are classi�ed correctly up to some slack �i. If a training
example lies on the \wrong" side of the hyperplane, the
corresponding �i is greater or equal to 1. Therefore,Pn

i=1 �i is an upper bound on the number of training
errors. The factor C in (2) is a parameter that allows
one to trade o� training error vs. model complexity.
Instead of soving OP1 directly, it is easier to solve the
following Wolfe dual of OP1 (Vapnik, 1998), (OP2):

minimize:W (~�)=�
nX
i=1

�i+
1

2

nX
i=1

nX
j=1

yiyj�i�j(~xi�~xj) (5)

subj. to:
nX
i=1

yi�i = 0 ^ 8ni=1 : 0 � �i � C (6)

In this paper, SV MLight (Joachims, 1999b) is used
for computing the solution of OP21. All training ex-
amples with �i > 0 at the solution are called sup-
port vectors. To di�erentiate between those with
0 < �i < C and those with �i = C, the former will be
called unbounded support vectors while the latter will
be called bounded support vectors. From the solution
~� of OP2 the decision rule h(~x) and the solution of
OP1 can be computed using ~w �~x =

Pn

i=1 �iyi(~xi �~x),
the threshold b = yusv�~w�~xusv, and the training losses
�i = max(1� yi [~w � ~xi + b] ; 0). The training example
(~xusv; yusv) for calculating b must be an unbounded
support vector. While it is highly unlikely in practice
that one gets a solution of OP2 with only bounded sup-
port vectors, it is theoretically possible (see Burges &
Crisp, 1999; Rifkin et al., 1999, for a thorough dis-
cussion). In this case the solution of the SVM will be
called unstable, since the hyperplane is not uniquely
determined. If there is at least one unbounded support
vector, the solution is called stable. While SVMs are
an essentially linear method, they can easily be gen-
eralized to non-linear decision rules by replacing the
inner-products (~xi �~xj) with a kernel function K(~xi; ~xj)
(Vapnik, 1998) in the formulas above.

4. E�cient Performance Estimators for
SVMs

The estimators developed in the following are based
on the idea of leave-one-out estimation (Lunts &
Brailovskiy, 1967). The leave-one-out estimator of
the error rate proceeds as follows. From the train-
ing sample Sn = ((~x1; y1); � � � ; (~xn; yn)) the �rst ex-
ample (~x1; y1) is removed. The resulting sample Sn1 =
((~x2; y2); � � � ; (~xn; yn)) is used for training, leading to

a classi�cation rule h
n1
L . This classi�cation rule is

tested on the held out example (~x1; y1). If the ex-
ample is classi�ed incorrectly it is said to produce a
leave-one-out error. This process is repeated for all
training examples. The number of leave-one-out er-

rors
Pn

i=1 L(h
ni
L (~xi); yi) divided by n is the leave-one-

out estimate Errnloo(hL) of the generalization error.

A shortcoming of the leave-one-out estimator is its
computational ine�ciency. The learner needs to be
invoked n times for a training set of size n. For
most practical problems, this is prohibitively expen-
sive. The estimators proposed in the following are
based on the leave-one-out method, but require an or-
der of magnitude less computation time due to partic-
ular properties of the SVM. In particular, they do not
require actually performing resampling and retraining,

1www-ai.informatik.uni-dortmund.de/svm light



but can be applied directly after training the learner
on Sn. The inputs to the estimators are the vector ~�
solving the dual SVM training problem OP2 and the
vector ~� from the solution of the primal SVM training
problem OP1. Due to this dependence, they will be
called ��-estimators in the following. Both ~� and ~�

are available at no extra cost after training the SVM.

4.1 Error Rate

Based on the solution ~� of the dual SVM training
problem and the vector of training losses ~�, the ��-
estimator of the error rate Errn��(hL) is de�ned as fol-
lows.

De�nition 1 For stable soft-margin SVMs, the ��-

estimator of the error rate is

Errn��(hL)=
d

n
with d = jfi : (��iR

2
� + �i)�1gj (7)

with � equals 2. ~� and ~� are the solution of optimiza-

tion problems OP1 and OP2 on the training set Sn.

R2
� is an upper bound on K(~x; ~x)�K(~x; ~x0) for all ~x; ~x0.

R2
� = 1 for the linear kernel K(~xi; ~xj) = ~xi �~xj on nor-

malized document vectors. The de�nition introduces
the parameter �. While the theoretical results that are
derived below assume � = 2, we will see that � = 1 is
a good choice for text classi�cation. The key quantity
in de�nition 1 is d. d counts the number of training
examples for which the inequality (��iR

2 + �i) � 1
holds. But how does one come to this de�nition of d
and what exactly does d count?

The key idea to the ��-estimator is a connection be-
tween the training examples for which the inequality
(��iR

2 + �i) � 1 holds and those training examples
that can produce an error in leave-one-out testing. In
particular, if an example (~xi; yi) is classi�ed incorrectly

by a SVM trained on the subsample S
ni
n , then example

(~xi; yi) must ful�ll the inequality (��iR2 + �i) � 1 for
a SVM trained on the full sample Sn. This implies
that d is an upper bound on the number of leave-one-
out errors. The following lemma establish this result
formally.

Lemma 1 The number of leave-one-out errorsPn
i=1 L(h

ni
L (~xi); yi) of stable soft-margin SVMs on a

training set Sn is bounded by

nX
i=1

L(h
ni
L (~xi); yi) � jfi : (2�iR

2 + �i) � 1gj (8)

~� and ~� are the solution of optimization problems OP1

and OP2 on the training set Sn. R
2 is an upper bound

on K(~x; ~x) and K(~x; ~x0) � 0.

Proof (sketch, more details in (Joachims, 1999a)) An
error on a left-out example (~xt; yt) occurs when at the
solution of

Wt(~�
t)=max~0�~�t�~C

1T ~�t�
1

2
~�tTHt~�t ^ ~ytT~�t=0 (9)

where ~�t, ~yt, and Ht have the t-th example removed,

the expression yt

hP
i6=t�

t
iyiK(~xt; ~xi) + bt

i
> 0 is

false. What follows in this proof are conditions for
when this expression must be true based on the soft-
margin SVM solution

W (~�) = max~0�~��~C
1T ~��

1

2
~�TH~� ^ ~yT ~� = 0 (10)

that involves all n training examples. Three cases can
occur based on the optimal value of �t:

Case �t = 0: Example (~xt; yt) is not a support vector.
Then Wt(~�t) = W (~�) and yt

P
i 6=t yi�

t
iK(~xt; ~xi) =

yt
P

i6=t yi�iK(~xt; ~xi) = 1 > 0.

Case 0 < �t < C: Example (~xt; yt) is a support vector.
From the solution ~�t of Wt(:), the following construc-

tion produces a feasible point ~� for W (:).

�i =

8<
:

�ti if �ti = 0 _ �ti = C

�ti � yiyt�i if i 2 SV t

�i if i = t

(11)

�i has to ful�ll the following constraints. Let SV t be
the set of indices corresponding to support vectors of
the solution Wt(~�t) that are not at the upper bound
C (that is 0 < �ti < C). Then �i = 0 for all i 62 SV t.
For i 2 SV t the �i are chosen to be non-negative and
so that

P
i2SV t �i = �t and 0 � �i � C. Finding such

�i is always possible, if there are at least two support
vectors not at the upper bound C. The existence of
such two vectors follows from the assumption that the
SVMs solution is stable. From the construction of the
�i it follows that ~y

T ~� = 0 and 0 � �i � C. So ~� is a
feasible point of W (:). It is now possible to transform
(10) into

�tyt

" X
i2SV t

�tiyiK(~xt; ~xi) + bt

#
=

�W (~�) +Wt(~�
t)�

1

2
�2tK(~xt; ~xt) + �t (12)

�
1

2

X
i2SV t

X
j2SV t

�i�jK(~xi; ~xj) + �t
X
i2SV t

�iK(~xi; ~xt)

A similar construction produces a feasible point ~
 of
Wt(:) based on the solution ~� of W (:).


i =

�
�i if �i = 0 _ �i = C

�i + yiyt�i if i 2 SV n ftg
(13)



SV is the set of indices corresponding to support vec-
tors not at the upper bound for the solution ~� (that
is 0 < �i < C). SV nftg excludes the index t cor-
responding to the left-out example. �i is chosen non-
negative for all i 2 SVnftg such that

P
i2SVnftg �i = �t

and 0 � 
i � C. From the construction of the �i it
follows that ~yT~
 = 0 and so ~
 is a feasible point of
Wt(:). Exploiting that W (~�) � W (~�) by de�nition,
and Wt(~�t) �W t(~
), substitution into (12) leads to

�tyt

" X
i2SV t

�tiyiK(~xt;~xi)+b
t

#
� �tyt

2
4 X
i2SVnftg

�iyiK(~xt;~xi)+b

3
5

�
1

2

X
i2SVnftg

X
j2SVnftg

�i�jK(~xi;~xj) + �t
X

i2SVnftg

�iK(~xi;~xt) (14)

�
1

2

X
i2SV t

X
j2SV t

�i�jK(~xi;~xj) + �t
X
i2SV t

�iK(~xi;~xt) (15)

The term �t
P

i2SV t �iK(~xi; ~xt) is non-negative, since
all �i and K(~xi; ~xt) are non-negative. The same
holds for �t

P
i2SVnftg �iK(~xi; ~xt). Furthermore,

1
2

P
i2SVnftg

P
j2SVnftg �i�jK(~xi; ~xj) � 1

2�
2
tR

2 and
1
2

P
i2SV t

P
j2SV t �i�jK(~xi; ~xj) � 1

2�
2
tR

2, since the
K(~xi; ~xj) form a positive semi-de�nite matrix with
the diagonal elements bounded from above by R2.
Using these inequalities and dividing by �t, it is
possible to write yt

�P
i2SV t �tiyiK(~xt; ~xi) + bt

�
�

yt

hP
i2SVnftg �iyiK(~xt; ~xi) + b

i
� �tR

2. After adding

yt�tytK(~xt; ~xt) and exploiting that
yt
�P

i2SV �iyiK(~xt; ~xi) + b
�
= 1 for support vectors

one can see that a leave-one-out error can occur only
when 2�tR2 � 1. Note that �i = 0 for support vectors.

Case �t = C: Example (~xt; yt) is a bounded support
vector. The argumentation follows that in the case
of unbounded support vectors. The only di�erence is
that yt

�P
i2SV �iyiK(~xt; ~xi) + b

�
= 1��t for bounded

support vectors, leading to the condition 2�tR2+�t �
1.

The idea of connecting the leave-one-out error with
properties of the solution vector ~� goes back to Vap-
nik (1998, pages 418-421). Unlike the work presented
here, Vapnik's result is limited to the case where (a)
the training data is separable, (b) the special case of
hyperplanes passing through the origin, and (c) it is
used to derive bounds on the expected error, not esti-
mators. Jaakkola and Haussler (1999) present a gen-
eralized bound for inseparable data that is similar to
that of Lemma 1. Nevertheless, like Vapnik's bound it
is restricted to hyperplanes passing through the origin
and does not apply to regular SVMs. Approximations
to the leave-one-out error of SVMs without guarantee-

ing an upper bound were recently proposed by Wahba
(1999) and Opper and Winther (in press). An addi-
tional di�erence is that their approach requires com-
puting the inverse for part of the Hessian making it
computationally more expensive.

While Lemma 1 is valid for all kernel functions that
return positive values, it is tightest when the minimum
value is zero. The following lemma shows that this can
always be achieved.

Lemma 2 The soft-margin SVM is invariant under

addition of a real value c to the kernel function.

The proof is given in (Joachims, 1999a). The previous
two lemmas complete the tools needed to characterize
the bias of the ��-estimator of the error rate.

Theorem 1 The ��-estimator of the error rate is pes-

simistically biased in the following sense

E(Errn��(hL)) � E(Errn�1(hL)) (16)

The expectation on the left hand side is over training

sets of size n, the one on the right hand side is over

training sets of size n� 1.

Proof A theorem of Lunts and Brailovskiy (1967)
shows that the leave-one-out estimator Errnloo(hL) of
the error rate on training sets of size n gives an un-
biased estimate of the error rate after training on
n � 1 examples. After adding a constant c to the
kernel function so that minK(~xi; ~x) = 0, the theo-
rem follows directly from the bound in Lemma 1 using
Lemma 2. Lemma 1 establishes that Errn��(hL) �

Errnloo(hL) with R2 = c + maxK(~x; ~x) and therefore
E(Errn��(hL)) � E(Errn�1(hL)).

In other words, the theorem states that the ��-
estimator tends to overestimate the true error rate.
This means that \on average" the estimate is higher
than the true error. Given a low variance of the es-
timate it is now possible to guarantee with a certain
probability that the true error is lower than the esti-
mate. Nevertheless, known bounds on the variance de-
pend on further assumptions about the learner and/or
the learning task. Bounds in (Devroye & Wagner,

1976) require that the probability Pr(hnL(~x) 6= h
ni
L (~x))

is small. For SVMs this quantity depends on the learn-
ing task. Bounds on the variability of the leave-one-
out estimator presented by Kearns and Ron (1997) are
independent of the learning task. Nevertheless, their
bounds would be too loose to be of practical impor-
tance. Therefore, the variability of the ��-estimator
will be assessed empirically in section 5.



4.2 Recall, Precision, and F1

With similar arguments as for the error rate, one can
derive ��-estimators of the recall, the precision, and
the F1.

De�nition 2 For stable soft-margin SVMs, the ��-

estimators of the recall, the precision, and the F1 are

Recn��(hL) = 1�
d+

n+
(17)

Precn��(hL) =
n+ � d+

n+ � d+ + d�
(18)

F1n��(hL) =
2 n+ � 2 d+

2 n+ � d+ + d�
(19)

using d+ = jfi : yi = 1 ^ (��iR
2
� + �i) � 1gj (20)

d� = jfi : yi = �1 ^ (��iR
2
� + �i) � 1gj (21)

n+ = jfi : yi = 1gj (22)

with � equals 2. ~� and ~� are the solution of OP1 and

OP2 on the training set Sn. R
2
� is an upper bound on

K(~x; ~x) �K(~x; ~x0) for all ~x; ~x0.

d+ (d�) is the number of positive (negative) training
examples for which the inequality (��iR2

� + �i) � 1
holds. n+ is the number of positive examples in the
training sample. Using the same arguments as in
Lemma 1, d+ (d�) is an upper bound on the number
of positive (negative) examples that produce a leave-
one-out error.

Using the commonde�nition of bias to characterize the
��-estimator of the recall is di�cult. The recall esti-
mate depends on the number of positive training ex-
amples in a non-linear way. The situation is even worse
for the precision. Given a decision rule that classi�es
all examples into the negative class with probability
one, the precision is not de�ned at all. Researchers in
information retrieval have worked around this problem
by di�erentiating between micro-averaging and macro-
averaging. Macro-expectation, the analog of macro-
averaging, corresponds to the conventional expected
value. In micro-averaging the arguments (i.e. the el-
ements of the contingency tables) are averaged before
the function is applied. This removes the artifacts dis-
cussed above. The micro-expected value Emicro(f(X))
of a function f(x) is de�ned as Emicro(f(X)) =
f(E(X)). The random variable X can be a vector.
The bias of the ��-estimators in terms of a micro-
expectation is characterized by the following theorem.

Theorem 2 The ��-estimators of the recall, the pre-

cision, and the F1 are pessimistically biased in the fol-

lowing sense:

Emicro(Rec
n
��(hL)) � Emicro(Rec

n�1(hL)) (23)

Emicro(Prec
n
��(hL)) � Emicro(Prec

n�1(hL)) (24)

Emicro(F1
n
��(hL)) � Emicro(F1

n�1(hL)) (25)

The proof is given in (Joachims, 1999a). The theorem
shows that the ��-estimates are \on average" lower
than the true recall, precision, and F1 in terms of a
micro-average. A similar result for the strong (macro)
de�nition of bias requires further assumptions.

5. Experiments

The following experiments explore how well the ��-
estimators work in practice. The evaluation is done
on the three text classi�cation tasks Reuters, WebKB,
and Ohsumed. Due to space constraints, here only the
results for Reuters are discussed in detail. The results
for WebKB and Ohsumed can be found in (Joachims,
1999a).

The Reuters-21578 dataset2 was collected from the
Reuters newswire in 1987. The \ModApte" subset is
used, leading to a corpus of 12,902 documents. Of the
135 potential topic categories only the most frequent
10 are used, while keeping all documents.

Two values for the parameter � are evaluated in the
following, namely � = 2 and � = 1. The setting � = 2
is a direct consequence of Lemma 1, while the setting
� = 1 is suggested as a better choice for text classi�-
cation by the following argument. The factor � = 2
in the ��-estimates was introduced to upper bound
the expressions (14) and (15) in the proof of Lemma
1. In the worst case, each expression can be 1

2�
2
tR

2

as argued above. For this worst case to happen, it is
necessary that all support vectors have identical fea-
ture vectors ~xi. For text classi�cation problems the
opposite is true. Many support vectors are almost or-
thogonal. Consequently the expressions in (14) and
(15) can be kept close to zero for the linear kernel and
suitable ~�; ~�, leading to a ��-estimate with � � 1 in-
stead of � = 2.

Unless noted otherwise, the following results are av-
erages over 10 random test/training splits. Training
and test set are designed to be of equal size to be able
to compare variance estimates. The test set is used
to get a holdout estimate as an approximation to the
true parameter. For simplicity reasons, all results in
this section are for linear SVMs with C = 0:5. This
value of C is chosen since it was selected by the ��-
estimates in model selection experiments (Joachims,
2000). Note that R� = 1, since document vectors are
normalized to unit length.

2www.research.att.com/�lewis/reuters21578.html
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Figure 1. Diagrams comparing average ��-estimate (� = 1)
of the error, the recall, the precision, and the F1-measure
with the average true error, true recall, true precision, and
true F1 measured on a holdout set for the ten most fre-
quent Reuters categories.

5.1 How Large are Bias and Variance of the
��-Estimators?

Figure 1 illustrates the results for the Reuters dataset
with � = 1. The �ndings are as expected. The ��-
estimators slightly overestimate the true error and un-
derestimate precision, recall, and F1. Nevertheless,
they accurately re
ect the relative performance be-
tween categories. Table 1 gives additional details on
the results. The top half of the table contains the ��-
estimates with � = 1, the lower half with � = 2. For

� = 2 the ��-estimates are substantially more biased
than for � = 1. After each average the table includes
an estimate of the standard deviation. The standard
deviation of the ��-estimates is very similar to that of
the holdout estimates, especially for � = 1. This shows
that in terms of variance the ��-estimates are as good
as holdout testing without requiring an additional test
set of the same size as the training data.

5.2 What is the In
uence of the Training Set
Size?

The results presented so far were for a large training
set. Do the estimators work for smaller training sets as
well? Figure 2 shows learning curves for the Reuters
categories \earn", \acq", and \money-fx". To save
space, only error rate and F1 are plotted, since pre-
cision and recall behave similar to F1. The top two
curves of each graph show the average ��-estimate and
the average holdout-estimate. The averages are over
20 random training/test splits. Except for very small
training sets, the graphs show no strong systematic
connection between bias (i.e. the di�erence between
the top two curves of each graph) and the training set
size. For \acq" and \money-fx" with small training
sets, the SVM behaves almost like the default classi-
�er that assigns all test examples to the more populous
class. In this situation the average ��-estimate and the
holdout-estimate are almost equal. In terms of vari-
ance, the training set size has a strong in
uence on
both the holdout-estimate and the ��-estimate. The
bottom two curves of each graph show the empirical
standard deviation of each estimator. As expected,
the variance increases with decreasing training set size.
Nevertheless, when moving to very small training sets,
the variance decreases again. This is a consequence
of the SVM behaving more and more like the default
classi�er. Interestingly, the variance curves of the ��-
estimator are very similar to those of the holdout-
estimator. This con�rms that the ��-estimators have
approximately the same variance as holdout testing.

5.3 Do the Findings Transfer to Other Text
Classi�cation Tasks?

To make sure that the ��-estimator are not tailored
to the properties of the Reuters dataset, but apply to
a wide range of text classi�cation tasks, similar ex-
periments were also conducted for the WebKB and
the Ohsumed data (reported in (Joachims, 1999a)).
For both collections, the results are qualitatively the
same as for Reuters. The ��-estimates with � = 1 are
preferable over those with � = 2. The ��-estimates
with � = 1 exhibit a moderate pessimistic bias and a
relatively low variance.



Table 1. Table comparing average ��-estimates with the average true performance for the ten most frequent Reuters
categories. The upper half shows the estimates for � = 1, the lower half for � = 2. The \true" values are estimated
from a holdout set of the same size as the training set (6451 examples each). All values are averaged over 10 random
test/training splits exhibiting the standard deviation printed after each average.

� = 1 Err��(hL) Err(hL) Rec��(hL) Rec(hL) Prec��(hL) Prec(hL) F1��(hL) F1(hL)

earn 2.68 � 0.08 1.87 � 0.15 92.3 � 0.3 94.8 � 0.5 98.8 � 0.1 99.1 � 0.1 95.4 � 0.1 96.9 � 0.2
acq 3.54 � 0.16 2.53 � 0.20 88.1 � 0.8 92.5 � 0.5 92.1 � 0.4 93.6 � 0.7 90.0 � 0.5 93.1 � 0.4
money-fx 2.67 � 0.12 1.92 � 0.14 64.9 � 2.0 73.6 � 2.4 83.4 � 1.4 89.8 � 1.9 73.0 � 1.4 80.9 � 1.4
grain 1.23 � 0.09 0.82 � 0.11 74.4 � 1.7 82.7 � 2.1 98.2 � 0.8 98.5 � 0.5 84.7 � 1.2 89.9 � 1.2
crude 1.58 � 0.08 1.30 � 0.10 72.5 � 1.7 76.6 � 2.6 90.9 � 1.0 92.7 � 1.2 80.6 � 1.0 83.9 � 1.3
trade 1.99 � 0.11 1.42 � 0.10 60.4 � 2.1 70.0 � 2.4 83.5 � 1.3 89.0 � 1.5 70.0 � 1.7 78.3 � 1.6
interest 2.20 � 0.18 1.67 � 0.20 54.0 � 5.2 63.8 � 4.3 80.2 � 2.9 87.2 � 2.8 64.5 � 4.4 73.6 � 3.4
ship 1.23 � 0.10 0.96 � 0.13 47.5 � 5.6 61.2 � 3.9 93.3 � 1.9 93.8 � 2.5 62.7 � 5.0 74.0 � 2.9
wheat 0.91 � 0.07 0.65 � 0.08 62.8 � 1.8 71.1 � 2.3 95.0 � 1.5 97.8 � 1.0 75.6 � 1.2 82.3 � 1.4
corn 0.90 � 0.05 0.71 � 0.06 52.4 � 4.1 61.8 � 1.7 97.3 � 1.8 99.1 � 0.6 68.1 � 3.6 76.1 � 1.3

� = 2 Err��(hL) Err(hL) Rec��(hL) Rec(hL) Prec��(hL) Prec(hL) F1��(hL) F1(hL)

earn 6.79 � 0.21 1.87 � 0.15 84.4 � 0.4 94.8 � 0.5 92.7 � 0.5 99.1 � 0.1 88.3 � 0.4 96.9 � 0.2
acq 12.99 � 0.28 2.53 � 0.20 59.3 � 1.4 92.5 � 0.5 66.0 � 1.2 93.6 � 0.7 62.5 � 1.2 93.1 � 0.4
money-fx 5.38 � 0.22 1.92 � 0.14 38.4 � 2.0 73.6 � 2.4 52.1 � 1.8 89.8 � 1.9 44.2 � 1.8 80.9 � 1.4
grain 3.20 � 0.19 0.82 � 0.11 48.1 � 2.0 82.7 � 2.1 72.8 � 1.8 98.5 � 0.5 57.9 � 2.0 89.9 � 1.2
crude 3.69 � 0.20 1.30 � 0.10 45.3 � 2.1 76.6 � 2.6 62.8 � 2.4 92.7 � 1.2 52.6 � 2.1 83.9 � 1.3
trade 3.80 � 0.15 1.42 � 0.10 34.7 � 1.8 70.0 � 2.4 51.2 � 2.2 89.0 � 1.5 41.4 � 1.9 78.3 � 1.6
interest 4.19 � 0.26 1.67 � 0.20 27.5 � 4.2 63.8 � 4.3 40.8 � 5.0 87.2 � 2.8 32.8 � 4.6 73.6 � 3.4
ship 2.21 � 0.08 0.96 � 0.13 18.2 � 2.6 61.2 � 3.9 49.4 � 5.2 93.8 � 2.5 26.6 � 3.5 74.0 � 2.9
wheat 1.79 � 0.14 0.65 � 0.08 43.2 � 1.8 71.1 � 2.3 65.8 � 2.7 97.8 � 1.0 52.2 � 1.9 82.3 � 1.4
corn 1.72 � 0.12 0.71 � 0.06 28.1 � 2.1 61.8 � 1.7 57.1 � 3.2 99.1 � 0.6 37.6 � 2.2 76.1 � 1.3

6. Summary and Conclusions

This paper proposed an approach to estimating the
generalization performance of a SVM without any
computation-intensive resampling. The new estima-
tors are much more e�cient than cross-validation or
bootstrapping, since they can be computed immedi-
ately after training a single SVM. Moreover, the es-
timators developed here address the special measures
used to evaluate text classi�cation performance.

The theoretical analysis of the estimators shows that
they tend to be conservative. This is a desirable prop-
erty for practical applications, since they are less likely
to falsely predict a high generalization performance. In
addition to the theoretical analysis, the bias and the
variance of the estimates are evaluated experimentally.
As predicted by the theory, the empirical results show
a conservative bias for all ��-estimators. Typically,
the bias is acceptably low and the variance of the ��-
estimates is essentially as low as that of a holdout esti-
mator which has access to twice as much labeled data.
The ��-estimators are therefore a suitable method for
estimating the performance of SVMs on text classi�-
cation tasks. They make e�cient use of the data and
they are computationally e�cient.

Currently, the ��-estimators are applied to model se-
lection for text classi�cation (Joachims, 2000). They
can e�ectively select between di�erent preprocessing
steps (e.g. stemming or no stemming), kernel param-
eters, and good values for C. Similarly, they can be

used to detect concept drift (Klinkenberg & Joachims,
2000). An open questions is whether the bias can
be removed with only a modest increase of compu-
tational expense. One approach could be to inte-
grate actual leave-one-out testing into the optimiza-
tion process considering only those examples for which
��R2

� + � > 1.
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