
Documentation of the Information Extraction

Plugin for RapidMiner

Felix Jungermann
Technical University of Dortmund

Department of Computer Science - Artificial Intelligence Group
Baroper Strasse 301, 44227 Dortmund, Germany

August 25, 2011



2



Chapter 1

The Information Extraction
Plugin for RapidMiner

In this chapter we will present the extension we developed for the well-known
open source framework RapidMiner [Mierswa et al., 2006]. The installation of
the plugin is presented in Section 1.1. RapidMiner – which is shortly presented
in Section 1.2 – works with a certain data structure for storing datasets. This
data structure has to be respected by our extension leading to particular require-
ments. These requirements in addition to the data structure used in RapidMiner
are presented in Section 1.2.1.

The process of a particular data mining task can be separated in four distinct
parts in RapidMiner. The first part is the retrieval of the data. We present the
possible ways to retrieve data for information extraction purposes in RapidMiner
in Section 1.3.1. After the retrieval the data has to be prepared for future use.
This preparation often is called preprocessing. Although the task of prepro-
cessing sometimes contains the process of data preparation and data cleansing,
we just focus on the enrichment of the data by features to allow more precise
analyses. The preprocessing of the datasets is presented in Section 1.3.2. The
preprocessed datasets finally can be used to create models which in turn can
be used to analyse formerly unknown datasets. The process of creating models
is called modelling and it is presented in Section 1.3.3. After – and sometimes
also during – the process of modelling the models have to be evaluated to get
the optimal model for the given datasets. The task of evaluation is presented
in Section 1.3.4.

Section 1.4 summarizes this chapter. The particular reference for each oper-
ator is presented in Appendix A.

3



4 CHAPTER 1. THE IE PLUGIN FOR RAPIDMINER

1.1 Install

The Information Extraction Plugin is an extension to the open source frame-
work RapidMiner. To install the Information Extraction Plugin you first of all
have to install RapidMiner. For downloading RapidMiner visit
http://www.RapidMiner.com

After having installed RapidMiner get the latest version of the Information Ex-
traction Plugin at http://sourceforge.net/projects/ieplugin4rm/. Down-
load the precompiled rapidminer-Information-Extraction-*.*.*.jar-file
and move it to <RapidMiner-home>/lib/plugins/.

If you start RapidMiner afterwards you will be able to use the Information
Extraction Plugin.

1.2 RapidMiner

RapidMiner is an open source data mining framework. It offers many operators
which can be plugged together into a process. The major function of a process
is the analysis of the data which is retrieved at the beginning of the process.
The framework offers a well designed graphical user interface (GUI) that allows
to connect operators with each other in the process view. Most operators have
input and output ports. Data that is passed to an input port of an operator
is processed internally and it is presented at the output port, finally. The data
which is processed is passed through connected operators. Other types of ob-
jects may be created during the process. The data can be used to create models,
for instance. These models can be evaluated, and results are generated out of
this evaluation process, and so on. These kinds of objects all can be passed
from operators to operators by connecting the operators. The complete process
– and the process view – has global output ports. Data, results or models which
are passed to these ports are represented after finishing the process.

The GUI of RapidMiner is shown in Figure 1.1. Six main areas of the GUI –
which can be rearranged by the user – are to be distinguished:

1. Overview
The Overview tab delivers a small overview on the complete process win-
dow. If the process is too large to be displayed in the process window, the
overview window will help to navigate to certain positions in the process
window.

2. Operators and Repositories
These tabs allow accessing operators or repositories of RapidMiner. Op-
erators are the basic elements for building a process. Repositories store
datasets for fast access.



1.2. RAPIDMINER 5

Figure 1.1: RapidMiner graphical user interface

3. Process
The Process window contains the whole process. An overview of this
window which could become very large is possible using the overview tab.

4. Problems, Log and System Monitor
This tab contains possible log messages, problems and information about
the system load.

5. Parameters
The Parameters tab is very important because it contains the parameters
of operators which are currently focussed.

6. Help
The Help-tab contains information about focussed operators.

Each RapidMiner-process can be split into four distinct phases. These phases
are shown in Figure 1.2:

1. Retrieve
The leftmost operator in Figure 1.2 is a Retrieve-operator. During the
Retrieve phase the data which is used for later processing is loaded from
specific datasources.

2. Preprocessing
The retrieved data has to be prepared or enriched in the Preprocessing
phase. The second operator shown in Figure 1.2 (the purple one) is a
particular preprocessing operator converting nominal values to numerical
ones.



6 CHAPTER 1. THE IE PLUGIN FOR RAPIDMINER

Figure 1.2: Exemplary process in RapidMiner

ID Label Att1 Att2 ... Attd

1 true 2 ’Felix’ ... 5.4
2 false 3 ’goes’ ... 7.1
... ... ... ... ... ...
n true 1 ’Detroit’ ... 2.3

Table 1.1: Spreadsheet datastructure internally used by RapidMiner

3. Modelling
The prepared data is used in the Modelling phase to extract or create
models which can be used for analysing former unknown data. The third
operator shown in Figure 1.2 is creating an SVM model.

4. Evaluation
The two rightmost operators shown in Figure 1.2 are used to apply the
model and to evaluate the perfomance achieved by the applied model. The
expected or real performance of the created models is evaluated during the
Evaluation phase.

These phases nearly stay the same for every RapidMiner process. Therefore,
we will define the particular phases and the corresponding specialties using the
Information Extraction Plugin in Section 1.3.

1.2.1 Data Structure

The datastructure in RapidMiner is comparable to a spreadsheet like it is used
in many spreadsheet programs. The lines of the spreadsheet represent examples
and the columns represent attributes. Table 1.1 shows an exemplary dataset
containing n examples and d attributes.

It is remarkable that for many data mining task the examples are handled



1.3. INFORMATION EXTRACTION PLUGIN 7

ID batch Label Att1 Att2 ... Attd

1 0 true 2 ’Felix’ ... 5.4
2 0 false 3 ’goes’ ... 7.1
... ... ... ... ... ... ...
n m true 1 ’Detroit’ ... 2.3

Table 1.2: Spreadsheet datastructure internally used by the Information Ex-
traction Plugin

indepedently. It follows that the analysis of a particular example i just depends
on the attributes of example i instead of depending on other examples. The
structure of documents and texts should be respected for information extrac-
tion tasks. CRFs, for instance, process all the tokens of a particular sentence at
the same time, and the tokens of the certain sentence condition each other. To
be precise: each token is conditioning the following one, so that the sentences
itself and the ordering of the tokens of the sentences have to be respected. An-
other example is the creation of relation candidates which takes all the pairs of
entities of one sentence into account. We used the datastructure of RapidMiner
and we developed mechanisms to respect the circumstances of information ex-
traction tasks.

1.3 Information Extraction Plugin

Like for every data mining task the process for information extraction tasks also
can be split in four phases. These phases and the according operators to be used
in each phase are described in this section.

1.3.1 Retrieve

The process to retrieve datasets into RapidMiner is remarkable for information
extraction issues. We present two approaches. The first of these approaches
is to be used if the data is available as document files like PDF. The second
approach is a loading mechanism based on well-known data formats like the one
of the CoNLL 2003 shared task on NER1. The resulting dataset contains an
additional special attribute (batch-attribute) which groups the single examples.
In addition to the grouping the sequential ordering of the examples is respected
by many operators of the plugin. Table 1.2 shows the same dataset as presented
in Table 1.1 after being converted into m groups (probably sentences).

1http://www.cnts.ua.ac.be/conll2003/ner/



8 CHAPTER 1. THE IE PLUGIN FOR RAPIDMINER

Figure 1.3: Retrieving a document for information extraction in RapidMiner

Retrieve via Document

It is important to respect the structural circumstances of datasets consisting
of textual data as presented in Section 1.2.1. The Text Mining extension of
RapidMiner already offers the possibility to retrieve document structured data.
Although the structure of these documents in later steps is destroyed by the
Text Mining extension, the retrieve mechanism can be used to load documents
into RapidMiner. The Text Mining extension uses a special class for handling
documents: the Document-class. This class stores the whole document in com-
bination with additional meta-information. In the case of text mining the doc-
ument is split into unique tokens which are finally used to classify the complete
document. For information extraction purposes we would like to tokenize the
document and to preserve the order of such tokens, therefore, we implemented
tokenizers which are able to process examplesets extracted from the Document
classes. The application of these tokenizers result in a spreadsheet containing
the tokens in the particular order as they have been found in the document.
Each token contains a certain number indicating from which general unit it has
been created. Each word-token of a particular sentence, for instance, contains
the number of the sentence, whereas each sentence-token of a document contains
the number of that document. The Tokenizer-class can be easily extended to
create own tokenizers. Figure 1.3 shows a process containing two operators of
the Text Mining extension (the two leftmost operators) and two operators (the
two rightmost ones) of the Information Extraction Plugin. The process loads
a document, converts it into an exampleset containing an example which holds
the complete document-text and the two tokenizers are splitting the text into
multiple tokens (examples). The third operator splits the text into sentences,
and the fourth operator splits the sentences into words. After having finished
the process the resulting dataset consists of examples holding one word each.
Additionally, the words are containing sentence numbers allowing to access all
the words of a particular sentence.

Retrieve via File

Although RapidMiner already offers many operators (like the Read CSV-operator)
to retrieve datasets contained in spreadsheet-like files, the specific structure of



1.3. INFORMATION EXTRACTION PLUGIN 9

document datasets necessitates a certain operator. Datasets like the one for
the CoNLL 2003 shared task on NER which is well-known in the NER com-
munity are already presented as tokenized documents. Comparable to csv-files
the datasets contain a token each line whereas the tokens additionally contain
features which are also stored in the particular line. The main difference to
ordinary csv-files is the fact that sentences are split by empty lines. It follows
that after the tokens for one sentence an empty line is located. Although the
Read CSV-operator of RapidMiner can be adjusted to neglect such lines, we de-
veloped an own retrieve operator which respects the empty lines to distinguish
between distinct sentences. We therefore use a special attribute containing the
sentence numbers. These special attributes later can be used by other operators
which work on complete sentences (like CRFs, for instance).

1.3.2 Preprocess

Preprocessing is a very important point in information extraction. In contrast
to traditional datamining tasks the data is not given by examples already con-
taining different attributes extracted from a database, for example. The original
data just contains tokens consisting of nothing but the token and the contex-
tual tokens itself. The tokens have to be enriched by attributes to get a more
general representation. We will distinguish two different types of preprocessing,
here. The first type of processing is to enrich tokens for NER. The other type
of processing is for enriching relation candidates for relation extraction. Both
techniques are presented in the following subsections.

Named Entity Recognition

It is very important to enrich tokens for NER by internal and external infor-
mation. We developed an abstract class for preprocessing operators that allows
to focus on tokens before or after the current token and on the current token
itself. The sentence presented in Figure 1.4 is converted into a spreadsheet as
shown in Table 1.3.

Using the abstract class we developed allows accessing contextual tokens in a

Felix Jungermann studied computer sciences at the University of
Dortmund from 1999 until 2006.

Figure 1.4: A sentence containing two related entities (’Felix Jungermann’ and
’Dortmund’). The relation is indicated by ’to study at’.

relative way. Each token is processed and the abstract class accesses a number
of tokens before and after the current token. The number of tokens to access be-
fore and after the current token are parameters that can be adjusted by the user.
Let the number of tokens surrounding the current token be 2 and the current
token shall be example number 10: ’Dortmund’. In that case the preprocessing



10 CHAPTER 1. THE IE PLUGIN FOR RAPIDMINER

ID batch Label Att1
1 0 PER ’Felix’
2 0 PER ’Jungermann’
3 0 O ’studied’
4 0 O ’computer’
5 0 O ’sciences’
6 0 O ’at’
7 0 O ’the’
8 0 O ’university’
9 0 O ’of’
10 0 LOC ’Dortmund’
11 0 O ’from’
12 0 O ’1999’
13 0 O ’until’
14 0 O ’2006’
15 0 O ’.’

Table 1.3: Spreadsheet representation of the sentence shown in Figure 1.4

method would also access the 8th, 9th, 11th and 12th token in addition to the
10th token. The most simple way of preprocessing would be to enrich the cur-
rent token by the surrounding tokens. Table 1.4 shows the dataset presented in
Table 1.3 enriched by two surrounding tokens before and after each token. If
a token is at the beginning or at the end of a sentence some of the contextual
attributes will contain null-values because the tokens of one particular sentence
only contain informational units from that sentence.

In addition to the relative contextual tokens to be taken into account another
interesting parameter to set for preprocessing operators is the length. Some
created attributes like prefixes or suffixes, for instance, have a specific length
which has to be adjusted by this parameter.

Annotations Another important point for NER datasets is the labeling of
documents and texts. The number of labeled tokens compared to tokens which
are not labeled is sparse for most NER datasets. Additionally, the labels are
sometimes spread over multiple tokens. Because of these two reasons it should
easily be possible to mark specific tokens somewhere in a document directly and
to assign a label to the marked tokens. We implemented an annotator operator
which allows to display the dataset as a textual document allowing the user on
the one hand to create new labels and on the other hand to use those labels for
annotating the tokens. After having used that operator the dataset contains a
label attribute carrying the annotations and a formerly defined default value if
no annotation is given for a particular token. Figure 1.5 shows a screenshot of



1.3. INFORMATION EXTRACTION PLUGIN 11

ID batch Label Att1 token−2 token−1 token+1 token+2

1 0 PER ’Felix’ null null ’Jungermann’ ’studied’
2 0 PER ’Jungermann’ null ’Felix’ ’studied’ ’computer’
3 0 O ’studied’ ’Felix’ ’Jungermann’ ’computer’ ’sciences’
4 0 O ’computer’ ’Jungermann’ ’studied’ ’sciences’ ’at’
5 0 O ’sciences’ ’studied’ ’computer’ ’at’ ’the’
6 0 O ’at’ ’computer’ ’sciences’ ’the’ ’university’
7 0 O ’the’ ’sciences’ ’at’ ’university’ ’of’
8 0 O ’university’ ’at’ ’the’ ’of’ ’Dortmund’
9 0 O ’of’ ’the’ ’university’ ’Dortmund’ ’from’
10 0 LOC ’Dortmund’ ’university’ ’of’ ’from’ ’1999’
11 0 O ’from’ ’of’ ’Dortmund’ ’1999’ ’until’
12 0 O ’1999’ ’Dortmund’ ’from’ ’until’ ’2006’
13 0 O ’until’ ’from’ ’1999’ ’2006’ ’.’
14 0 O ’2006’ ’1999’ ’until’ ’.’ null
15 0 O ’.’ ’until’ ’2006’ null null

Table 1.4: Dataset of Table 1.3 enriched by contextual tokens

the annotator screen containing the text presented already in Table 1.3 and 1.4.

Relation Extraction

For relation extraction we developed particular preprocessing operators working
especially for relational learning purposes. Although the flat features developed
by [Zhou et al., 2005] can be seen as contextual information, the features have
to be seen as contextual information relative to a pair of tokens. Respecting
these two tokens is much more complex than as it is for the single tokens for
NER. In addition to the flat features relation extraction heavily relies on struc-
tural information like parse trees, for instance. We developed parsing operators
to first of all create tree-structured attributes. Additionally, we implemented
pruning methods for the creation of more condensed tree-structures.

Tree-structures can be represented as nominal values like it is shown in Fig-
ure 1.7. It would be a computational overhead to parse these nominal values
into tree objects for every time they are needed. We developed a generic form
of attribute which allows the storage of every type of Java-object. This generic
object-attribute can be used to work with tree-structures in RapidMiner. Like
for nominal values, the object-attribute is storing a mapping which maps nu-
merical values to particular objects.

1.3.3 Modelling

We implemented or embedded all of the techniques we presented in this work in
RapidMiner. The particular learning methods are CRFs [Lafferty et al., 2001],
Tree Kernel SVMs [Collins and Duffy, 2001], Tree Kernel Perceptrons [Aiolli et al., 2007]
and Tree Kernel Näıve Bayes Classifier [Jungermann, 2011]. The learning meth-
ods already available in RapidMiner of course can be used, too. Most publica-



12 CHAPTER 1. THE IE PLUGIN FOR RAPIDMINER

Figure 1.5: Annotating operator for RapidMiner

Figure 1.6: The constituent parse tree of the sentence ”Felix went to New York
to visit the statue of liberty.”



1.4. SUMMARY 13

(ROOT (S (NP (NNP Felix)) (VP (VBD went) (PP (TO to) (NP (NNP New)
(NNP York))) (S (VP (TO to) (VP (VB visit) (NP (NP (DT the) (NN statue))
(PP (IN of) (NP (NN liberty)))))))) (. .)))

Figure 1.7: String representation of the constituent parse tree shown in Figure
1.6

tions concerning tree kernel learning are evaluated using the SVMlight
2 which

is implemented in C. We used the JNI interface of the SVMlight of Martin
Theobald3 and embedded tree kernel calculation into it. This Java SVMlight

can be used for the purpose of comparison.

1.3.4 Evaluation and Validation

Some information extraction tasks need specific evaluation. NER datasets, for
instance, sometimes are labeled using the IOB-tagging. During the evaluation
of predictions made on a testset the predicted tokens in some evaluation schemes
only are considered to be correct if all the single tokens of an entity consisting
of multiple tokens are predicted correctly. George Walker Bush, for instance,
is an entity of type PERSON consisting of three tokens. If only one of these
three tokens is not predicted to be of type PERSON, the complete entity is
incorrectly tagged. Although the tokens are represented as single examples, the
evaluation has to be done on the entity-mentions which sometimes consist of
multiple tokens.

1.4 Summary

We presented the Information Extraction Plugin in this chapter. The plugin
is an extension to the well-known open source framework RapidMiner. After
having presented the graphical user interface of RapidMiner we showed that
most of the RapidMiner processes can be splitted into four particular phases.
Compared to traditional datamining tasks we have shown that those phases are
also apparent for information extraction tasks. We presented the possibilities
to work on these phases for information extraction. Due to the spreadsheet
datastructure internally used by RapidMiner we developed a representation of
datasets for information extraction based on that datastructure. In addition,
we implemented several operators helpful and needed for information extraction
purposes.

2http://svmlight.joachims.org/
3http://www.mpi-inf.mpg.de/~mtb/svmlight/JNI_SVM-light-6.01.zip



14 CHAPTER 1. THE IE PLUGIN FOR RAPIDMINER



Bibliography

[Aiolli et al., 2007] Aiolli, F., Da San Martino, G., Sperduti, A., and Moschitti,
A. (2007). Efficient kernel-based learning for trees. In Computational Intelli-
gence and Data Mining, 2007. CIDM 2007. IEEE Symposium on, pages 308
–315.

[Collins and Duffy, 2001] Collins, M. and Duffy, N. (2001). Convolution ker-
nels for natural language. In Proceedings of Neural Information Processing
Systems, NIPS 2001.

[Joachims, 2002] Joachims, T. (2002). Learning to Classify Text using Support
Vector Machines, volume 668 of Kluwer International Series in Engineering
and Computer Science. Kluwer.

[Jungermann, 2011] Jungermann, F. (2011). Tree kernel usage in naive bayes
classifiers. In Proceedings of the LWA 2011. To appear.

[Lafferty et al., 2001] Lafferty, J., McCallum, A., and Pereira, F. (2001). Con-
ditional random fields: Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the 18th International Conference on Machine
Learning, pages 282–289. Morgan Kaufmann, San Francisco, CA.

[Liu and Nocedal, 1989] Liu, D. C. and Nocedal, J. (1989). On the limited
memory method for large scale optimization. In Mathematical Programming,
volume 45, pages 503–528. Springer Berlin / Heidelberg.

[Mierswa et al., 2006] Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., and
Euler, T. (2006). YALE: Rapid Prototyping for Complex Data Mining Tasks.
In Eliassi-Rad, T., Ungar, L. H., Craven, M., and Gunopulos, D., editors, Pro-
ceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2006), pages 935–940, New York, USA.
ACM Press.

[Moschitti, 2006a] Moschitti, A. (2006a). Efficient convolution kernels for de-
pendency and constituent syntactic trees. In Fuernkranz, J., Scheffer, T., and
Spiliopoulou, M., editors, Procs. ECML, pages 318 – 329. Springer.

[Moschitti, 2006b] Moschitti, A. (2006b). Making tree kernels practical for nat-
ural language learning.

15



16 BIBLIOGRAPHY

[Nocedal, 1980] Nocedal, J. (1980). Updating quasi-newton matrices with lim-
ited storage. Mathematics of Computation, 35(151):773–782.

[Rueping, 2000] Rueping, S. (2000). mySVM Manual. Universi-
taet Dortmund, Lehrstuhl Informatik VIII. http://www-ai.cs.uni-
dortmund.de/SOFTWARE/MYSVM/.

[Zhang et al., 2006] Zhang, M., Zhang, J., Su, J., and Zhou, G. (2006). A com-
posite kernel to extract relations between entities with both flat and struc-
tured features. In Proceedings 44th Annual Meeting of ACL, pages 825–832.

[Zhou and Su, 2004] Zhou, G. and Su, J. (2004). Exploring deep knowledge
resources in biomedical name recognition. In Proceedings of the Joint Work-
shop on Natural Language Processing in Biomedicine and its Applications
(JNLPBA-2004), Geneva, Switzerland.

[Zhou et al., 2005] Zhou, G., Su, J., Zhang, J., and Zhang, M. (2005). Exploring
various knowledge in relation extraction. In Proceedings of the 43rd Annual
Meeting of the ACL, pages 427–434, Ann Arbor. Association for Computa-
tional Linguistics.



Appendix A

Operator Reference

A.1 Tokenizers

In this section we will describe the parameters and the input and output ports
of the SentenceTokenizer in detail. These parameters and ports are extended
from the super-class TokenizerImpl and they are the same for WordTokenizer
and LineTokenizer. A new tokenizer should be extend the class TokenizerImpl
and the method String[] tokenization(String text) should be implemen-
ted.

SentenceTokenizer This tokenizer splits texts into sentences. The parame-
ters for this operator are presented in Table A.1 and the I/O ports are presented
in Table A.2.

Parameter Description
attribute Select the attribute here which has to be used

for extracting the text to be tokenized from each
example.

new token-name Type a new attribute name in here which will
be created to write the new tokens to.

Table A.1: Parameters for SentenceTokenizer
I/O port-name Description
I example set

input
The exampleset which will be used for tokeniza-
tion.

O example set
output

The exampleset containing the new tokens.

O original ex-
ample set
output

The original exampleset got at the input port.

Table A.2: I/O-ports for SentenceTokenizer

17



18 APPENDIX A. OPERATOR REFERENCE

WordTokenizer This tokenizer splits texts into words. The parameters and
the I/O ports are the same as for the SentenceTokenizer.

LineTokenizer This tokenizer splits texts into lines. It splits texts contained
in examples by using the linebreaks in the texts, one could say. The parameters
and the I/O ports are the same as for the SentenceTokenizer.

A.2 Visualizer

The visualizers are used for the annotation and the visualization of textual
data. The parameters and the ports of the ParseTreeVisualizer and the
TextVisualizer are comparable, and therefore we only present the parameters
and ports of the ParseTreeVisualizer.

ParseTreeVisualizer This operator creates a visualization of parse trees. For
each example the parse tree and the corresponding sentence will be displayed.
Only one example is displayed at a time, but one can switch from one example
to another during the visualizing process. Table A.3 describes the parameters
of the operator and Table A.4 describes the ports.

Parameter Description
sentence-attribute Select the attribute here which has to be used

for extracting the text to be displayed in addi-
tion to the parse tree from each example.

parsetree-atrribute Select the attribute here which has to be used
for extracting the parse tree to be displayed
from each example.

Table A.3: Parameters for ParseTreeVisualizer
I/O port-name Description
I example set

input
The exampleset which will be used for tokeniza-
tion.

O parsetree
visualization
output

The visualization component which becomes
visible in the results workspace.

O original ex-
ample set
output

The original exampleset got at the input port.

Table A.4: I/O-ports for ParseTreeVisualizer

TextAnnotator The TextAnnotator is used for annotating a textual dataset.
The textual data of the text-attribute are displayed. The user can annotate
the tokens by marking them and by selecting formerly created labels. During



A.3. PREPROCESSING 19

the annotation process it is possible to create new label types which can directly
be used for annotating. The labels are stored in the label-attribute for each
token. After finish the annotation process the dataset is stored in a repository
which is selected using the parameter repository-entry.

Parameter Description
repository-entry Select a repository entry here which has to be

used for storing the dataset after having finished
the annotation process.

text-attribute Select the attribute here which has to be used
for extracting the text to be displayed in addi-
tion to labeling from each example.

label-attribute Select the attribute here which has to be used
for extracting the label to be displayed from
each example.

Table A.5: Parameters for TextAnnotator
I/O port-name Description
I example set

input
The exampleset which will be used for tokeniza-
tion.

O annotation
output

The annotation component which becomes vis-
ible in the results workspace.

O example set
output

The original exampleset got at the input port.

Table A.6: I/O-ports for TextAnnotator

TextVisualizer This operator creates a visualization of labeled textual data.
Like for the ParseTreeVisualizer two attributes have to be selected. The
nominal values of the first attribute will be displayed as text whereas the nominal
values of the second attribute will be used as labels. The parameters and ports
are comparable to the ones of the ParseTreeVisualizer and thererfore are not
specified again.

A.3 Preprocessing

WordVectorPreprocessing This operator creates a BOW representation of
the values given by the attributes defined by the parameter valueAttribute.
The regular expression which can be set using the parameter splitExpression
is used for splitting the suggested values. Each unique resulting splitted value
is used to create a new attribute containing a 1 if the value in the attribute
valueAttribute contains the splitted value and 0, otherwise. The operator is
very similar and we disclaim on presenting the parameters and ports in detail.



20 APPENDIX A. OPERATOR REFERENCE

A.3.1 Named Entity Recognition

The preprocessing operators for NER are extending two types of super classes.
The first one is PreprocessOperatorImpl and the second one is
MultiPreprocessOperatorImpl. PreprocessOperatorImpl enriches the dataset
by one additional attribute for every value it sees, whereas
MultiPreprocessOperatorImpl is creating multiple additional attributes for
every value.

WordPreprocessing WordPreprocessing works like the operator
PrefixPreprocessing. The difference is that the extracted value from at-
tribute wordAttributeName is directly stored (without any manipulation) to
the attribute operatorName. The parameter length is not needed and there-
fore it is not apparent.

PrefixPreprocessing PrefixPreprocessing extends
PreprocessOperatorImpl. The most important method to implement after ex-
tending PreprocessOperatorImpl is
String newValueToInsert(String w, int length,int index).
This method is delivering the new attribute value in a String representation
and is called using the parameters w which contains the value of the attribute
wordAttributeName of the indexth example shifted by position examples.
The parameter length can be used if the resulting value should contain a spe-
cific length. All operators extending PreprocessOperatorImpl until some ex-
ceptions are defined by the same parameters which exemplarily are listed in
Table A.7. The input and output ports are presented in Table A.8. This opera-
tor creates a new attribute containing the prefixes of length length of the values
extracted from attribute wordAttributeName. If the value extracted from at-
tribute wordAttributeName is ’Felix’, for instance, the prefix of length 3 is ’Fel’
and will be stored in the attribute operatorName.

Parameter Description
position The position of the example to be chosen rela-

tive to the current example. (−2 will take the
example two examples before, −2 2 will take all
examples between two before and two after the
current example, −2, 2 will take the examples
two before and two after the current example)

length The parameter length is determining the length
of the extracted prefix.

operatorName Select the name of the new attribute here which
will contain the created values.

wordAttributeName Select the attribute which will be used to extract
the values to be used for preprocessing.

Table A.7: Parameters for PrefixPreprocessing



A.3. PREPROCESSING 21

I/O port-name Description
I example set

input
The exampleset which will be used for prepro-
cessing.

O example set
output

The exampleset containing the new attribute(s).

O original The original exampleset got at the input port.

Table A.8: I/O-ports for PrefixPreprocessing

ngram preprocessing ngram_preprocessing extends
MultiPreprocessOperatorImpl. The most important method to implement
after extending MultiPreprocessOperatorImpl is
ArrayList<String> newValueToInsert(String w,int length,int index).
This method is delivering a list of new attribute values and the processing
is comparable to the processing of PreprocessOperatorImpl. The resulting
values will be converted into a binary attribute, each. This operator will split
the values extracted from attribute wordAttributeName into pieces of length
length. Each unique piece will result in a new attribute which contains a 1 for
each example containing this piece or a 0 otherwise. The parameters and input
and output ports are comparable to the already presented operators.

IOBPreprocessing This operator cuts off the prefixes ’B-’ and ’I-’ of
wordAttributeName.

IndexPreprocessing This operator just takes the index of the relatively cho-
sen example and creates an additional attribute containing this information.

SuffixPreprocessing Works like PrefixPreprocessing but with the differ-
ence that the suffixes are extracted.

WordCountPreprocessing This operator counts the words of the current
sequence and creates an attribute containing this information.

GeneralizationPreprocessing This operator generalizes the currently cho-
sen value of wordAttributeName by replacing capital letters by ’A’, small letters
by ’a’ and digits by ’x’. The resulting value is stored in the newly created at-
tribute operatorName.

WikipediaPreprocessing This operator creates a new attribute and puts
the wikipedia-category of the wordAttributeName of the relatively chosen ex-
ample as a value into it.

LetterCountPreprocessing This operator counts the number of letters of
the value extracted of wordAttributeName of the relatively chosen example and
stores them as a value into a newly created attribute.



22 APPENDIX A. OPERATOR REFERENCE

RegExPreprocessing RegExPreprocessing also extends
MultiPreprocessOperatorImpl. The chosen value is checked against a number
of regular expression. If an expression is matched, the corresponding attribute
of the example is allocated with a 1 and otherwise it is allocated with a 0.

TagListPreprocessing This operator checks the wordAttributeName of the
relatively chosen example against a given taglist. If the current value is con-
tained in the list, the newly created attribute is allocated with 1 and otherwise
it is allocated with 0.

StartOfSequencePreprocessing This operator creates a new attribute that
contains a 1 if the current token shifted by location is at the beginning of the
sequence/sentence and 0 otherwise.

EndOfSequencePreprocessing Works like
StartOfSequencePreprocessing but for the end of sequences/sentences.

A.3.2 Relation Extraction

In this section we present the preprocessing operators related to relation extrac-
tion.

TreeCreatorAndPreprocessor The operator
TreeCreatorAndPreprocessor reads the values out of a particular attribute
and creates a Tree-representation out of it. The resulting tree-structured value
is stored in a newly created attribute. The creation of the tree structure is done
by parsing a machine-readable or natural language sentence. Additionally, a
tree structure given in String-representation can be read and converted into a
tree-structured attribute value. The parameters and the input and output ports
of this operator are shown in Tables A.9 and A.10.

Parameter Description
valueAttribute The attribute which contains the tree or the sen-

tence to be parsed.
needParsing Does the attribute value need to be parsed?
modelfile The file containing a parser model
parseTreeType The trees have to be pruned for special tasks.

Select pruning type here.
FTK Selecting this will activate the list-creation

needed for the FTK.

Table A.9: Parameters for TreeCreatorAndPreprocessor



A.3. PREPROCESSING 23

I/O port-name Description
I example set

input
The exampleset which will be used for prepro-
cessing.

O example set
output

The exampleset additionally containing the new
attribute.

Table A.10: I/O-ports for TreeCreatorAndPreprocessor

HTMLTreePreprocessing The HTMLTreePreprocessing operator works like
the TreeCreatorAndPreprocessor operator as it creates tree-structured at-
tribute values. In contrast to the TreeCreatorAndPreprocessor the resulting
trees are not pruned.

Zhou Features

In this section we present some of the features published in [Zhou and Su, 2004].
According to the two entities creating the relation candidate, several informa-
tional units concerning these entities are extracted by the features. The features
are extending the class RelationPreprocessOperatorImpl. Two particular
methods have to be implemented by each operator:
String newValueToInsertTree(Tree t) and
String newValueToInsert(String w1, String w2, List<String>

addAtts, int length, ExampleIteration exIter).
Both methods are creating the value for the newly created attribute. The first
is based on a tree-representation, and the second one is based on the position
of the two entities in the sentence.

WBNULLPreprocessing This operator creates a new binary attribute con-
taining a ’true’-value if no word is located between the two entities creating the
relation candidate. The parameters and input and output ports of this operator
are presented in Tables A.11 and A.12.



24 APPENDIX A. OPERATOR REFERENCE

Parameter Description
operatorName The name of the new attribute that will be cre-

ated.
use tree If this is selected the tree-structured attribute

value will be used.
firstAttributeName The name of the attribute containing the name

of the first entity must be inserted here (only if
tree is used).

secondAttributeName The name of the attribute containing the name
of the second entity must be inserted here (only
if tree is used).

additional Attributes Additional attributes can be selected using this
parameter list. These attributes are only needed
by several operators.

Table A.11: Parameters for WBNULLPreprocessing
I/O port-name Description
I example set

input
The exampleset which will be used for prepro-
cessing.

O example set
output

The exampleset additionally containing the new
attribute.

O original The original exampleset got from the input port.

Table A.12: I/O-ports for WBNULLPreprocessing

WBFLPreprocessing This operator creates a new attribute which will con-
tain the word between the two entities creating the relation candidate if there
is only one word between. The parameters and input and output ports are the
same like for WBNULLPreprocessing.

WBFPreprocessing This operator creates a new attribute which will con-
tain the first word between the two entities creating the relation candidate if
there is more than one word between. The parameters and input and output
ports are the same like for WBNULLPreprocessing.

WBLPreprocessing This operator creates a new attribute which will con-
tain the last word between the two entities creating the relation candidate if
there is more than one word between. The parameters and input and output
ports are the same like for WBNULLPreprocessing.

WBOPreprocessing This operator creates a new attribute which will con-
tain the words except the first and the last one between the two entities creating
the relation candidate if there is more than one word between. The parameters
and input and output ports are the same like for WBNULLPreprocessing.



A.4. META 25

BM1FPreprocessing This operator creates a new attribute which will con-
tain the word before the first entity of the two entities creating the relation
candidate. The parameters and input and output ports are the same like for
WBNULLPreprocessing.

BM1LPreprocessing This operator creates a new attribute which will con-
tain the word two words before the first entity of the two entities creating the
relation candidate. The parameters and input and output ports are the same
like for WBNULLPreprocessing.

AM2FPreprocessing This operator creates a new attribute which will con-
tain the word after the last entity of the two entities creating the relation
candidate. The parameters and input and output ports are the same like for
WBNULLPreprocessing.

AM2LPreprocessing This operator creates a new attribute which will con-
tain the word two words after the last entity of the two entities creating the
relation candidate. The parameters and input and output ports are the same
like for WBNULLPreprocessing.

M1greaterM2Preprocessing This operator creates a new binary attribute
which will contain ’true’ if the second entity is encapsulated in the first entity.
The parameters and input and output ports are the same like for
WBNULLPreprocessing.

NumberOfMBPreprocessing This operator creates a new attribute which
will contain the number of entity mentions between the two entities creating the
relation candidate. The parameters and input and output ports are the same
like for WBNULLPreprocessing.

NumberOfWBPreprocessing This operator creates a new attribute which
will contain the number of words between the two entities creating the relation
candidate. The parameters and input and output ports are the same like for
WBNULLPreprocessing.

A.4 Meta

Binary2MultiClassRelationLearner This operator works like the
Polynomial by Binomial Classification operator already available in Rapid-
Miner. If a dataset containing more than two classes should be processed by
a binary learner a strategy to use the binary learner will have to be chosen.
The main reason for developing a new operator for this purpose is the fact that
some candidates for relation extraction are defined only for some special relation
types. It follows that the amount of relation candidates varies for each type of



26 APPENDIX A. OPERATOR REFERENCE

relation class currently focussing. For each class different parameters have to be
adjusted for the internal learning mechanism. The parameters and input and
output ports are presented in Tables A.13 and A.14

Parameter Description
classification strategies The strategy to be chosen to partition the

dataset for applying the internal learner.
use local random seed An own random seed is used to achieve repeat-

able results.
event1 The name of the attribute containing the type

of the first entity must be inserted here.
event2 The name of the attribute containing the type of

the second entity must be inserted here. Using
the two types of entities allows to check whether
the combination is suitable for particular rela-
tion classes.

null-Label The default-class has to be selected here.
confidence The confidence-level which has to be achieved to

predict a certain class. If the confidence-level is
not being achieved by any class the default-class
is predicted.

epsilon-list A particular epsilon-value can be adjusted for
every learner/class here.

Table A.13: Parameters for Binary2MultiClassRelationLearner
I/O port-name Description
I training set The exampleset which will be used for learning.
O model The model created by the internal learning

mechanism.
O example set The original exampleset got from the input port.

Table A.14: I/O-ports for Binary2MultiClassRelationLearner

A.5 Data

CSVbatchedDataReader The CSVbatchedDataReader operator extends the
Read CSV operator which is already available in RapidMiner. The
CSVbatchedDataReader operator allows to read in datasets which are prepared
like described in Section 1.3.1.

A.6 Learner

TreeKernel Naive Bayes The TreeKernel Naive Bayes operator is the
implementation of the approach presented in Section [Jungermann, 2011]. We



A.6. LEARNER 27

only present the parameters differing from the Naive Bayes (Kernel) operator
in Table A.15. Table A.16 contains the input and output ports of the operator.

Parameter Description
lambda The first kernel to be used for the Composite

Kernel (just Entity is possible)
sigma The list of attributes to be used by the Entity

Kernel
gaussian The λ-value to be used for QTK or FTK by the

Composite Kernel
treestructure selection The λ-value to be used for QTK or FTK by the

Composite Kernel
distribution The λ-value to be used for QTK or FTK by the

Composite Kernel

Table A.15: Parameters for Treekernel Naive Bayes
I/O port-name Description
I training set The exampleset which will be used for learning.
O model The model created by the internal learning

mechanism.
O exampleSet The original exampleset got from the input port.

Table A.16: I/O-ports for Treekernel Naive Bayes

TreeSVM We enhanced the already available JMySVM [Rueping, 2000] im-
plementation in RapidMiner by abilities to process tree structures. We im-
plemented the Kernel presented by [Collins and Duffy, 2001], the Fast Tree
Kernel by [Moschitti, 2006b, Moschitti, 2006a] and the Composite Kernel by
[Zhang et al., 2006]. The operator TreeSVM has some additional parameters
in contrast to the Support Vector Machine operator. These parameters are
shown in Table A.17. The input and output ports are presented in Table A.18.



28 APPENDIX A. OPERATOR REFERENCE

Parameter Description
kernel type The kernel type to be used (Collins and Duffy

(trivial), Moschitti (FTK), Composite Kernel)
CollinsDuffy Kernel
Lambda

The λ-value to be used (see
[Collins and Duffy, 2001]) for QTK or FTK

Composite Kernel Al-
pha

If the Composite Kernel is used the α value (see
[Zhang et al., 2006]) can be adjusted here.

kernel type 1 The first kernel to be used for the Composite
Kernel (just Entity is possible)

attribute list The list of attributes to be used by the Entity
Kernel

kernel type 2 The second kernel to be used for the Composite
Kernel (QTK and FTK possible)

Collins Duffy Kernel
Lambda (composite)

The λ-value to be used for QTK or FTK by the
Composite Kernel

Table A.17: Additional parameters for TreeSVM
I/O port-name Description
I training set The exampleset which will be used for learning.
O model The model created by the internal learning

mechanism.
O estimated

performance
The original exampleset got from the input port.

O exampleSet The original exampleset got from the input port.

Table A.18: I/O-ports for TreeSVM

Kernel Perceptron The Kernel Perceptron operator is the implementa-
tion of the approach presented by [Aiolli et al., 2007]. The parameters of the
operator are presented in Table A.19. The input and output ports are presented
in Table A.20.



A.6. LEARNER 29

Parameter Description
kernel type The kernel type to be used (CollinsDuffy, FastTree,

Treeceptron, DAGperceptron, OneDAGperceptron)
attribute The attribute containing the tree-structures.
lambda The λ-value to be used (see [Collins and Duffy, 2001])

for the tree kernel.
sigma The σ-value to be used (see [Moschitti, 2006b]) for the

tree kernel.
bootstrap If this is selected the at each step a randomly chosen

example will be selected.
stopping After this number of iteration training will stop. Se-

lecting −1 will make the perceptron do one run on the
complete exampleset.

Table A.19: Parameters for Kernel Perceptron
I/O port-name Description
I training set The exampleset which will be used for learning.
O model The model created by the internal learning

mechanism.
O example set The original exampleset got from the input port.

Table A.20: I/O-ports for Kernel Perceptron

ConditionalRandomField This operator implements a CRF which is pre-
sented by [Lafferty et al., 2001]. The parameters and the input and output ports
of this operator are presented in Tables A.21 and A.22. This operator needs an
embedded particular optimization operator. The optimizer is presented in the
next section (Section A.6.1).

Parameter Description
text-Attribute
name

Select the attribute containing the words of the sentence
to be processed

Table A.21: Parameters for ConditionalRandomField
I/O port-name Description
I example set

input
The exampleset which will be used for learning.

O example set
output

The original exampleset got from the input port.

O model output The model created by the CRF.

Table A.22: I/O-ports for ConditionalRandomField

SVMlight The SVMlight operator allows the usage of the SVMlight of
[Joachims, 2002] in RapidMiner. This is possible by connecting the



30 APPENDIX A. OPERATOR REFERENCE

C-code of the SVMlight with RapidMiner via JNI. We used the implemen-
tation of Martin Theobald1 and implemented the possibility to perform tree
kernel calculations in addition.

A.6.1 Optimizer

LBFGS optimizer The LBFGS_optimizer can be used as an optimization
method for the ConditionalRandomField-operator. The optimization tech-
nique is presented by [Nocedal, 1980, Liu and Nocedal, 1989].

Parameter Description
maximum num-
ber of iterations

After this number of iterations the optimization is
stopped.

eps for conver-
gence

The solution is assumed to be optimal if a smaller ε
value than this one is achieved during optimization.

features sorted
in array

Select this if the features are sorted in an array.

Table A.23: Parameters for LBFGS optimizer

I/O port-name Description
I feature set in-

put
The feature set which will be used for optimiza-
tion.

O feature set
output

The feature set containing the optimized
weights.

Table A.24: I/O-ports for LBFGS optimizer

A.7 Validation

If particular examples or tokens are grouped into sequences or sentences these
sequences should be respected by operators which split the example set like
SplittedXBatchValidation and BatchSplitValidation or
SequenceSampling.

PerformanceEvaluator This operator is a special performance evaluator for
NER. It calculates precision, recall and f-measure for each class except the
default-class. Additionally, the accumulated values are calculated because those
values are used very often in the information extraction community.

1http://www.mpi-inf.mpg.de/~mtb/svmlight/JNI_SVM-light-6.01.zip



A.7. VALIDATION 31

Parameter Description
precision The precision will be calculated for each class except the

default class (not-NER-tag) if this box is selected.
recall The recall will be calculated for each class except the

default class (not-NER-tag) if this box is selected.
f-measure The f-measure will be calculated for each class except

the default class (not-NER-tag) if this box is selected.
overall-
precision

The precision will be calculated for all classes together
except the default class (not-NER-tag) if this box is
selected.

overall-recall The recall will be calculated for each class except the
default class (not-NER-tag) if this box is selected.

overall-f-
measure

The f-measure will be calculated for each class except
the default class (not-NER-tag) if this box is selected.

stopword A special token represents the end of a sentence in some
datasets. This token can be selected here so that it is
not used for the calculation of the performance.

not-NER-tag Type in the default-class here.
iob Select this box if the dataset is in IOB-format.

Table A.25: Parameters for PerformanceEvaluator
I/O port-name Description
I example set

input
The example set which will be used for evaluat-
ing the performance.

O example set
output

The original example set from the input port.

O simplePerformanceDelivers the SimpleResultObject from Rapid-
Miner.

O performance Delivers the performance calculated by this op-
erator.

Table A.26: I/O-ports for PerformanceEvaluator


