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Abstract. Carin-ALN is an interesting new rule learning bias for ILP.
By allowing description logic terms as predicates of literals in datalog
rules, it extends the normal bias used in ILP as it allows the use of
all quantified variables in the body of a clause. It also has at-least and
at-most restrictions to access the amount of indeterminism of relations.
From a complexity point of view Carin-ALN allows to handle the dif-
ficult indeterminate relations efficiently by abstracting them into deter-
minate aggregations. This paper describes a method which enables the
embedding of Carin-ALN rule subsumption and learning into datalog
rule subsumption and learning with numerical constraints. On the theo-
retical side, this allows us to transfer the learnability results known for
ILP to Carin-ALN rules. On the practical side, this gives us a prepro-
cessing method, which enables ILP systems to learn Carin-ALN rules
just by transforming the data to be analyzed. We show, that this is not
only a theoretical result in a first experiment: learning Carin-ALN rules
from a standard ILP dataset.

Extended version of a paper in S. Matwin, C. Sammut (ed.), Proc of the 12th
Int. Conf. on Inductive Logic Programming, ILP-2002, Sydney, Australia.

1 Introduction

Carin was proposed by [Levy and Rouset, 1998] as a combination of the two
main approaches to represent and reason about relational knowledge, namely
description logic (DL) and first-order horn-logic (HL). In Inductive Logic Pro-
gramming (ILP) learning first-order horn-logic is investigated in depth, for learn-
ing DLs there exist first approaches and theoretical learnability results [Kietz
and Morik, 1994; Cohen and Hirsh, 1994; Frazier and Pitt, 1994]. Recently, it
was proposed to use Carin-ALN as a framework for learning [Rouveirol and
Ventos, 2000]. This is an interesting extension of ILP as ALN provides a new
bias orthogonal to the one used in ILP, i.e. it allows all quantified descriptions
of body-variables, instead of the existential quantified ones in ILP. This allows
to handle the difficult indeterminate relations efficiently by abstracting them
into a determinate summary. It also has at-least and at-most restrictions, which
allow to quantify the amount of indeterminism of these relations. However, up
to now there are neither practical nor theoretical results concerning learning the
Carin-ALN language.



This paper is intended to close this gap, by showing how Carin-ALN learn-
ing can be embedded into first-order horn-logic learning as done by ILP-methods.
Even, if DL and HL have been shown to be quite incomparable concerning their
expressive power [Borgida, 1996] with respect to their usual semantic interpre-
tation of primitive concepts and roles, we show that reasoning in DL can be
simulated by reasoning in horn logic with simple numeric constraints as formal-
ized in [Sebag and Rouveirol, 1996] and as present in most ILP-systems, e.g.
Foil [Quinlan and Cameron-Jones, 1993] or Progol [Muggleton, 1995]. A simple
invertible function encodes normalized concept descriptions into horn clauses
using new predicates with an external semantics (as Borgida has shown they
are not expressible in horn logic) to represent the DL terms, i.e. from an ILP
point of view, learning Carin-ALN can be done by learning HL with extended
background knowledge that encodes the description logic terms. This encoding
not only provides another method to do deductive reasoning, i.e. subsumption,
equivalence and satisfiability checking, but also allows ILP methods to learn
ALN concept descriptions and Carin-ALN rules. The known border-line of
polynomial learnability for ILP can be transfered to Carin-ALN as well, as
this encoding is a prediction preserving reduction as used in [Cohen, 1995] to
obtain PAC-learnability results for ILP.

In section 2 we repeat the basic definitions of the description logic ALN
and define the basis of our new encoding into horn logic. In section 3 we define
the description logic program (DLP) formalism. We show how it is related to
DLP (3.1) and ILP (3.2) and we define a reasoning procedure by extending the
encoding from section 2 to DLP rules (3.3). In section 3.4, we characterize the
boarder line of polynomial learnability of DLP rules using the encoding into
horn logic. Finally in section 4, we demonstrate with a first experiment, that
this encoding can be used to learn DLP rules using a normal ILP-systems on an
extended, i.e. preprocessed data-set.

2 The Description Logic ALN

Starting with Kl-one [Brachman and Schmolze, 1985] an increasing effort has
been spent in the development of formal knowledge representation languages to
express knowledge about concepts and concept hierarchies. The basic building
blocks of description logics are concepts, roles and individuals. Concepts describe
the common properties of a collection of individuals and can be considered as
unary predicates which are interpreted as sets of objects. Roles are interpreted
as binary relations between objects. Each description logic defines also a number
of language constructs that can be used to define new concepts and roles. In this
paper we use the very basic1 description logic ALN under its normal open-world
(OWA) semantics, with the language constructs in table 1.

Definition 1 (ALN -terms and their interpretation).
Let P denote a primitive concept, i.e. an unary predicate, and R denote a prim-
1 See http://www-db.research.bell-labs.com/user/pfps/papers/krss-spec.ps for fur-

ther language constructs considered in description logics.



itive role, i.e. a binary predicate, n is a positive integer and the Ci are concept
terms. The set of all ALN -concept-terms (C) consist of everything in the left
column of the table 1 (and nothing more) and their interpretation (I ,∆) (see
def. 7 below) with respect to the interpretation of primitive concept and roles is
defined in the right row of the table 1 (CI is used as a shortcut for I(C), if C is
not primitive). The set of all ALN -role-terms (R) is just the set of all primitive
roles R.

Term (Math) Term (Classic) Interpretation

> everything ∆I

⊥ nothing ∅
P P P I

¬P not P ∆I \ P I

C1 u . . . u Cn and C1 . . . Cn CI
1 ∩ . . . ∩ CI

n

∀R.C all R C {x ∈ ∆I | ∀y ∈ ∆I :< x, y >∈ RI ⇒ y ∈ CI}
≥ nR at-least n R {x ∈ ∆I | ‖{y ∈ ∆I |< x, y >∈ RI}‖ ≥ n}
≤ nR at-most n R {x ∈ ∆I | ‖{y ∈ ∆I |< x, y >∈ RI}‖ ≤ n}

Table 1. Concept terms in ALN and their model-theoretic interpretation

These language constructs can be used to build complex terms, e.g. the term
train u ∀ has car.(car u ≤ 0 has load) can be used to define empty trains (all
cars do not have a load), in Michalski’s well-known train domain. A statement
not expressible as a logic program, if we are restricted to the predicates already
present in the train domain and cannot use externally computed predicates.

The main reasoning tasks with description logic terms are subsumption,
equivalence and satisfiability checking for deduction and the least common sub-
sumer (lcs) for learning.

Definition 2 (subsumption, equivalence, satisfiability and least com-
mon subsumer). The concept description D subsumes the concept description
C (C v D) iff CI ⊆ DI for all interpretations I; C is satisfiable if there exists
an interpretation I such that CI 6= ∅; C and D are equivalent ( C ≡ D) iff
C v D and D v C; and E is the least common subsumer (lcs) of C and D, iff
C v E and D v E and if there is an E′ with C v E′ and D v E′, then E v E′.

We have chosen ALN , because subsumption checking between ALN descrip-
tions is polynomial [Donini et al., 1991], and in this paper we always consider
an empty terminological component since subsumption checking between ALN
terms with respect to an acyclic terminological component is coNP-complete
[Nebel, 1990b] A polynomial time algorithm for the lcs computation of ALN
concepts can be found in [Cohen et al., 1992].
ALN descriptions are in general not normalized, i.e. there exist several pos-

sibilities to express the same concept, e.g. ⊥ ≡ (A u ¬A) ≡ (≥ 2 Ru ≤ 1 R).
However, they can be normalized, e.g. by the following set of rewrite rules.

Definition 3 (Normalization of ALN descriptions). norm(C) = C ′ iff
sorted(C) 7→ . . . 7→ C ′ and no rewrite rule is applicable to C ′, i.e as a first
step any conjunction (C1 u . . . u Cn) is replaced by its sorted equivalent for a



total order < that respects (P1) < (¬P1) < ... < (Pn) < (¬Pn) < (≥ n1 R1) <
(≤ m1 R1) < (∀R1.C1) < ... < (≥ nn Rn) < (≤ mn Rn) < (∀Rn.Cn). Then
the following rewrite rules are applied to all conjunctions not only the top-level
one, as long as possible.
1. (C1 u . . . u Cn) 7→ ⊥, if any Ci = ⊥
2. (C1 u . . . u Cn) 7→ C1 u . . . u Ci−1 u Ci+1 u . . . u Cn, if any Ci = >
3. (P u ¬P ) 7→ ⊥
4. (≤ n Ru ≥ m R) 7→ ⊥, if n < m.
5. (C u C) 7→ C
6. (≥ 0R) 7→ >
7. (≥ n1 Ru ≥ n2 R) 7→≥ maximum(n1, n2) R
8. (≤ n1 Ru ≤ n2 R) 7→≤ minimum(n1, n2) R
9. (≤ 0 R u ∀R.C) 7→≤ 0 R
10. (∀R.⊥) 7→≤ 0 R
11. (∀R.>) 7→ >
12. (∀R.C1 u ∀R.C2) 7→ ∀R.(merge2(C1 u C2))

Lemma 1. For any two ALN concept descriptions C1 and C2: equivalence
(C1 ≡ C2, iff norm(C1) = norm(C2)), subsumption (C v D, iff norm(CuD) =
norm(C)) and satisfiability (C is satisfiable, iff norm(C) 6= ⊥) can be computed
in O(n log n), with n being the size of C uD.

Proof. It is easy to verify, that all these rewrite rules produce equivalent con-
cepts, i.e. are sound (if norm(C1) = norm(C2), then C1 ≡ C2), The other
direction, i.e. their completeness (if C1 ≡ C2, then norm(C1) = norm(C2)), is
less obvious, but follows from the fact that all primitive concepts Pi are inde-
pendent and after normalization occur at most once inside any conjunction. The
primitive roles Ri are independent as well and for every role there is at most
one set of consistent ≤ ni Ri, ≥ mi Ri and ∀Ri.Ci inside any conjunction. The
complexity O(n log n) is the worst case complexity of sorting C. Anything else
can be done during a linear scan of the sorted C as all rules either delete the
whole conjunction or an > inside, or apply to the current term and either it’s
left or right neighbor and they always produce a term that is sorted if inserted in
place of the left-hand-side terms. All rules except rule 10 reduce the size at-least
by 1, i.e. they are applicable at-most n times and rule 10 is also applicable at
most once for any source literal, i.e. there are at-most 2n rule applications. ut

The main innovation of this paper is the following encoding of description
logic terms into horn clauses. From the logical point of view the new predicates
are primitive as all predicates, i.e. they have an external semantic chosen freely by
the interpretation function as for any other predicate. The important matter is,
that we can prove, that they are always used such that semantic constraints (e.g.
I〈X/{a1, . . . , an}〉(cpP (X)) = 1, iff {a1, . . . , an} ⊆ I(P )) on the interpretation

2 Merging two sorted lists into one sorted list as in merge-sort. In an optimized imple-
mentation the recursive application of the normalisation rules should be integrated
into that linear (in the size of the conjunctions) process.



that would formalize the semantic of the encoded DL-terms are respected, i.e that
this function is indeed a correct polynomial problem (prediction and deduction
preserving) reduction of IDLP to ILP.

Definition 4 (ALN encoding into constraint horn logic).
Φ(C) = h(X)← Φ(norm(C), X).
Φ(⊥, X) = ⊥(X)
Φ(P {u C}, X) = cpP (X){, Φ(C,X)}
Φ(¬P {u C}, X) = cnP (X){, Φ(C,X)}
Φ(≥ nR u ≤ mR u ∀R.CR {u C}, X) = rrR(X, [n..m], Y ), Φ(CR, Y ){, Φ(C,X)}
Φ(≤ mR u ∀R.CR {u C}, X) = rrR(X, [0..m], Y ), Φ(CR, Y ){, Φ(C,X)}
Φ(≥ nR u ∀R.CR {u C}, X) = rrR(X, [n..∗], Y ), Φ(CR, Y ){, Φ(C,X)}
Φ(≥ nR u ≤ mR {u C}, X) = rrR(X, [n..m], Y ){,⊥(Y ) if m = 0}{, Φ(C,X)}
Φ(∀R.CR {u C}, X) = rrR(X, [0..∗], Y ), Φ(CR, Y ){, Φ(C,X)}
Φ(≤ mR {u C}, X) = rrR(X, [0..m], Y ){,⊥(Y ) if m = 0}{, Φ(C,X)}
Φ(≥ nR {u C}, X) = rrR(X, [n..∗], Y ){, Φ(C,X)}
where Y is always a new variable not used so far and {u C} means, if there
are conjuncts left, recursion on them {, Φ(C,X)} has to continue. For any nor-
malised concept term only the first matching one has to by applied.

Let us illustrate our encoding function on our train example:
Φ(train u ∀ has car.(car u ≤ 0 has load)) = h(X) ← cp train(X),
rr has car(X, [0..∗], Y ), cp car(Y ), rr has load(Y, [0..0], Z), ⊥(Z). Note, that this
clause has a very different meaning than the clause h(X) ← train(X),
has car(X, Y ), car(Y ), has load(Y,Z). The first one must be interpreted as being
true for every set of empty trains, i.e. X, Y and Z are variables over set of
terms. The second one is true for every single train with has a car, which has
a load. The predicates (and variables) in the first clauses are meta-predicates
(set-variables) over the ones in the second clause (individual variables), e.g. like
findall in Prolog with a specific call using predicates of the second clause. This
difference becomes especially important in our DLP language, i.e. in the next
section, where both kinds of literals can occur in a single clause.

Nevertheless, we are now nearly able to simulate DL subsumption with θ-
subsumption and lcs with lgg. There are only two very small and easy extensions
of θ-subsumption and lgg (to θI⊥-subsumption and lggI⊥) needed:

The handling of sub-terms representing intervals of numbers, e.g. a term like
[0..∗] should θI -subsume a term like [1..5]. More precisely an interval [Min1..Max1]
θI -subsumes an interval [Min2..Max2], iff Min1 ≤ Min2 and Max2 ≤ Max1;
and the lggI of two intervals [Min1..Max1] and [Min2..Max2] is the interval
[minimum(Min1,Min2)..maximum(Max1,Max2)]3. The handling of nothing,

3 Formally this corresponds to reasoning and learning with simple numeric constraints
as present in Constraint Logic Programs (CLP). In in most ILP-systems, e.g. Foil
[Quinlan and Cameron-Jones, 1993] or Progol [Muggleton, 1995] this is done with
the help of the computed built-in predicates ≤ and/or ≥. For Foil or Progol a more
suitable encoding is rrR(X, natleast, matmost, Y ), as they can learn cmin and cmax in
literals like cmin ≤ natleast and matmost ≤ cmax. [Sebag and Rouveirol, 1996] have



i.e. ⊥(X) should be θ⊥-subsumed by Φ(C,X) for any concept description C,
e.g. by any sub-clause containing the relation-chains starting with X; and the
lgg⊥ of ⊥(X) and Φ(C,X) is Φ(C,X). This does not really need an extension
of the logic, it can be simulated with normal θ-subsumption and the follow-
ing sub-clause for bottom: for any primitive role R: rrR(bottom, [∗..0], bottom)
and for any primitive concept C: cpC(bottom), cnc(bottom). Every Φ(C,X) θ-
subsumes this cyclic 4 structure with a θ that maps every variable in it to the
term bottom and the lgg of every Φ(C,X) and that sub-clause is Φ(C,X), e.g.
lggI(rrR(bottom, [∗..0], bottom), rrR(X, [Min..Max], Y )) = rrR(X, [Min..Max], Y )
and everything present in Φ(C,X) has a selection [Plotkin, 1970] within the lgg.

Theorem 1 (Simulation of subsumption and lcs). A concept description
C subsumes a concept description D (D v C), if and only if the encoding
of C θI⊥-subsumes the encoding of D (Φ(C) `θI⊥ Φ(D)), and lcs(C,D) ≡
Φ−1(lggI⊥(Φ(C), Φ(D)))

This theorem directly follows from the similarity between the encoding Φ
of the normalized concept terms and θI⊥-subsumption and the correctness of
the structural subsumption algorithm given in [Cohen et al., 1992]. There are
some more nice properties for learning. Any clause which subsumes a set of such
clauses, does so deterministically [Kietz and Lübbe, 1994], i.e. is determinate
[Muggleton and Feng, 1992], as any rrR(X, I, Y ) occurs just once for any variable
X. The relation chains in the clause (i.e. the chains of rrR(X, I, Y ) literals)
are not only acyclic but even tree-structured (as the DL-Term is a tree), i.e.
subsumption (coverage test), learning, and propositionalisation are very easy, e.g.
the depth limit i needed for the polynomial learnability of (cyclic) ij-determinate
clauses is not needed. Φ is a bijective, invertible function, i.e Φ−1(Φ(C)) ≡ C,
i.e. it allows to decode generalized (i.e. learned) clauses: If D is a linked clause5,
and D `θI⊥ Φ(C) for any ALN description C, then Φ−1(D) is totally invertible
and produces a valid description logic term.

3 Induction of Description Logic Programs

Carin as proposed in [Levy and Rouset, 1998] combines first-order function-
free horn logic with description logic by allowing description logic terms as body
literals in horn rules. Concept terms represent unary predicates and role-terms

analysed this CLP extension of ILP systems and it is easy to see that the properties
of θ-subsumption also hold for θI -subsumption.

4 This gives a possibility to represent cyclic concept definitions from a terminologi-
cal component in a finite way. However we haven’t checked the adequate semantic
interpretation (descriptive, least or largest fix-point [Nebel, 1990a]) of these cyclic
terms so far, so we do not consider this possibility in this paper, even if it would
be helpful with respect to ABox abstraction by most specific concepts [Baader and
Küsters, 1998]

5 There is no partition of literals such that one partition does not share at-least one
variable with any other partition



represent binary predicates. The direct use of primitive concepts and roles is
indistinguishable from the use of unary and binary predicates in FOL, but the
use of concept terms, i.e. descriptions contain all, at-least and at-most adds
expressive power to the language. Here is an example of a Carin-ALN rule
using this expressive power. Note, that this cannot be expressed in neither horn
logic nor ALN alone. We bracket DL-terms with [], wherever we think that this
will increase readability.

east train(X) ← has car(X, Y ), has car(X, Z),same shape(Y, Z),
[train u ≤ 2 has car u ∀ has car.[car u ≤ 0 has load]](X).

The following is a formal definition of syntax and semantic of Description
Logic Programms (DLP) based on the usual first-order logic definitions adapted
from [Görz, 1993, chapter 2], i.e. it is restricted to function-free clauses and ex-
tended to description logic by allowing ALN -concept-terms as one-place predi-
cates and ALN -role-terms as two-place-predicates.

Definition 5 (variable, constant, term, atom, literal).
Let V be a countable set of variable-symbols, e.g. X, Y, Z, U1, U2, U3 ∈ V. Let F be
a countable set of constant-symbols, e.g. s, t, u, v, t1, t2, t3 ∈ F . T (F ,V) = F ∪V
or as a shortcut T , is the set of term over F and V.

Let P = (Pn)
n∈IN be a signature of predicate symbols, i.e. for n ∈ IN is p ∈ Pn

a predicatssymbols of arity n, e.g. p, q, r ∈ Pn. The extension to description logic
programms extends P1 by the set of all concept-terms C and P2 by the set of all
role-terms R (see Definition 1).

AT (F ,P,V), or as a shortcut AT , is the set of all atomar formulas or
atoms with P0 ⊆ AT (F ,P,V) and p(t1, . . . , tn) ∈ AT (F ,P,V), iff p ∈ Pn and
t1, . . . , tn ∈ T (F ,V), for n ∈ IN+.

LIT (F ,P,V) or as a shortcut LIT , with LIT (F ,P,V) = AT (F ,P,V) ∪
{¬A | A ∈ AT (F ,P,V)}, is the set of all literals over F , P and V. The atoms
in LIT are also called positive literals, and the negated atoms are also called
negative literals.

Definition 6 (clause, fact, rule, logic program).
A finite subset of LIT (F ,P,V) is called a clause over F , P and V. The empty
clause {} is also written as 2. A clause consisting of exactly one positive lit-
eral is called fact (a fact {a} is also written as a.); a clause consisting of ex-
actly one positive literal and one or more negative literals is called rule (a rule
{a0,¬ a1, . . . ,¬an} is also written a0 ← a1, . . . an.); a finite set of facts and
rules is called a description logic program (DLP).

Definition 7 (Interpretations and Models of clause sets and descrip-
tion logic programs).
Let ∆ be a domain and I an interpretation function mapping clauses to truth
values (0 and 1), n-ary predicates (Pn ∈ P) to n-ary relations (written P I

n) over
the domain ∆, terms (t ∈ F) to elements of ∆ (written tI), ALN -concept-terms
(C ∈ C)as defined in def. 1 and ALN -role-terms (R ∈ R)as defined in def. 1.



An interpretation (I ,∆) satisfies (is a model of) a clause set, iff every clause is
satisfied by (I ,∆). A clause is satisfied by (I ,∆), iff the interpretation function
assigns the truth value 1 to it. For all interpretations (I ,∆) the following must
hold 6:

1. ∀t1, t2 ∈ F : t1 6= t2 iff tI1 6= tI2,
7

2. I(2) = 0, and ∀X ∈ T : I(⊥(X)) = 0
3. I({l1, . . . , ln}) = 1, iff for all vectors a = a1, . . . , am, ai ∈ ∆, (1 ≤ i ≤

m) : I〈X1/a1, . . . , Xm/am〉(l1) = 1 or . . . or I〈X1/a1, . . . , Xm/am〉(ln) = 1,
where X = X1, . . . , Xm is the vector of all variables in the clause {l1, . . . , ln},

4. I(∃{l1, . . . , ln})8 = 1, iff there exists a vector a = a1, . . . , am, ai ∈ ∆, (1 ≤
i ≤ m) : I〈X1/a1, . . . , Xm/am〉(l1) = 1 or . . . or I〈X1/a1, . . . , Xm/am〉(ln) =
1, where X = X1, . . . , Xm is the vector of all variables in the clause {l1, . . . , ln},

5. I(¬A) = 1 iff I(A) = 0
6. I(Pn(t1, . . . , tn)) = 1 iff tI1, . . . , t

I
n ∈ P I

n

7. I(C(t)) = 1 iff tI ∈ CI , with CI defined in table 1
8. I(R(t1, t2)) = 1 iff tI1, t

I
2 ∈ RI .

Definition 8 (logical consequence).
A clause C follows from (is a logical consequence of) a clause set P (written
P |= C), iff all models of P are also models of C. A clause set P1 follows from
(is a logical consequence of) a clause set P2 (written P2 |= P1), iff all models of
P2 are also models of P1.

We also use the normal ILP definition of learning to define learning of de-
scription logic programs (called Induction of Description Logic Programs or short
IDLP).

Definition 9 (The IDLP Learning Problem).
Given a logical language L (i.e. our language DLP) with a consequence relation
|=, background knowledge B in a Language LB ⊆ L, positive and negative ex-
amples E = E+ ∪E− in a language LE ⊆ L consistent with B (B,E 6|= 2) and
not already a consequence of B (∀e ∈ E : B 6|= e), and a hypothesis language
LH ⊆ L. Find a hypothesis h ∈ LH such that:

(I) (B, h, E 6|= 2), i.e. h is consistent with B and E.
(II) (B, h |= E+), i.e. h and B explain E+.
6 I〈X/a〉(l) means that during the interpretation I(l) the variable X in the literal

l is always interpreted as the domain element a. It must not be confused with a
substitution as a domain element a may not have a constant in F denoting it, i.e.
I−1(a) may be undefined.

7 In normal first-order logic such a unique name assumption for constants is usually
not needed (makes no difference, except that skolemization, e.g. used for existence-
quantor elimination would eliminate models), but for counting in DLs with number-
restrictions it is very useful. It must not be confused with the object identity restric-
tion on variables (substitutions must be injective) also used in some ILP approaches.

8 This formula is not an expression in our language, but we need to interpret it in a
lemma about our language.



(III) (B, h 6|= E−), i.e. h and B do not explain E−.

The tuple (|=, LB,LE, LH) is called the IDLP learning problem. Deciding whether
there exists such an h ∈ LH, is called the IDLP consistency problem. An algo-
rithm which accepts any B ∈ LB and E ∈ LE as input and computes such an
h ∈ LH if it exists, or ”no” if it does not exist is called an IDLP learning-
algorithm.

As we are interested in polynomial learnability results [Cohen, 1995] for DLP,
we are especially interested in IDLP problems, where B and E consist of ground
(variable-free) facts, and H is restricted to 1-clause Programs (see section 3.4).

3.1 The relation between (learning) Carin-ALN and (I)DLP

At first this looks quite different from the definition of Carin-ALN in [Levy and
Rouset, 1998] or the Carin-ALN learning problem as defined in [Rouveirol and
Ventos, 2000], but it is in fact quite similar. We of course do not claim equivalence
of the formalisms, but we think that we have transported the important (to us)
ideas from Carin-ALN into a more (inductive) logic programming oriented
form. The DLP formalism defined above is in general to expressive compared
with Carin-ALN , as so far we have neither forbidden recursion nor DL-literals
as the head of rules, two things known to be quite difficult to reason with in
Carin-ALN [Levy and Rouset, 1998]. But we have to introduce such restrictions
as well, as rules like connected(X, Y ) ← node(X), node(Y ), [≤ 0 connected](X)
expressible in the formalism are difficult to interpret9 under the normal model-
theoretic semantics we used. But as in ILP we want to start with the general
idea, and then introduce the restrictions needed to come to a characterisation of
polynomial learnability in the end. Given the goal of learning DLPs, recursive
description logic programs are not very interesting anyway, as the set of know
polynomial learnable recursive logic programs is very restricted and so far only
of interest for synthesis of toy programs and not for real data analysis or mining
applications.

The other main difference between DLP and Carin-ALN is that we have
unified assertional component (the set of facts from our DLP) and rule compo-
nent (the set of rules from our DLP) of Carin-ALN , and - as already discussed
in section 2 - we have dropped the terminological component of Carin-ALN ,
but are instead able to express rules and assertions, where concepts are already
expanded with respect to the (acyclic) terminological axioms [Nebel, 1990a], e.g.
instead of separating terminological axioms T , rules R and assertions A as in
the following example from [Rouveirol and Ventos, 2000]:

T = {empty car ≡ car u ≤ 0 has load,
empty train ≡ train u ∀has car.empty car}

9 They do not have a (stable) model, so they have to be interpreted as contradictory,
but an interpretation as default rule may be more adequate. But this is not a topic
of this paper.



R = {east train(X)← empty train(X)}
A = {train(a), has car(a, d), ≤ 1 has car(a), empty car(d)}

we require the representation of the equivalent (with respect to assertional and
rule consequences) terminological expanded rule and facts within one description
logic program: train(a). has car(a, d). [≤ 1has car](a). [car u ≤ 0 has load](d).
east train(X)← [train u ∀has car.[car u ≤ 0 has load]](X).

Except for the dropped ALN terminological component which makes poly-
nomial learnability results possible (with a terminological component learning
is at-least as hard as reasoning, i.e coNP-hard [Nebel, 1990b]) this is only a
syntactic difference.

Concerning the learning framework in [Rouveirol and Ventos, 2000] and the
IDLP problem, the main difference is that they use the learning from interpreta-
tion setting, whereas we use the normal ILP setting. For non-recursive clauses,
this makes no difference, and they could be easily transformed into each other
with only a polynomial size difference, if B and E consist of ground facts, i.e.
take the whole B as interpretation for each example, or take the union of all
interpretations as B.

3.2 The relation between (I)LP and (I)DLP

As known from Carin-ALN , there are also serious differences between DLP
and LP. A set of rules may have more consequences than the union of the con-
sequences of the individual rules, e.g. let
P1 = {train(a). east train(X)← [train u ≤ 1 has car](X).} and
P2 = {train(a). east train(X)← [train u ≥ 1 has car](X).}.
Neither P1 |= east train(a) nor P2 |= east train(a) but P1∪P2 |= east train(a)
as [≥ 1 has car](X) ∨ [≤ 1 has car](X) is a tautology.

Theoretically (section 3.4), this does not hinder our transfer of learnability
results from LP to DLP very much as most results concerning polynomial learn-
ability of ILP are restricted to one rule programs [Cohen, 1995], but this is a
serious problem for applying these positive DLP results practically as done in
ILP. Most ILP systems use the greedy strategy of learning rules individually
such that no negative examples are covered by any rule until all positive exam-
ples are covered by a rule. This difference between DLP and LP means that a
rule set may cover negative examples, even if no rule does. However, this is only
a problem in learning DLPs from DLP facts, but not in the practically much
more important subproblem of learning DLPs from ILP data sets, e.g. from re-
lational databases. Under the usual open world assumption in DLP no rule ever
learned from an ILP data set will contain an at-most or all restriction, as under
the open-world assumption (OWA) a rule with an at-most or all restriction will
never cover an example described by datalog facts only, e.g. P1 will never cover
a train as without an explicit at-most restriction in the examples, i.e. the OWA
means we will never know that we know all cars of a train. This however makes
learning DLP quite useless as well, as only at-least restrictions are learnable from
ILP facts, but neither at-most nor all restriction.



There is an easy practical way out of this problem used in section 4 to
learn DLP programs from ILP data sets namely assuming that the background
knowledge contains all relevant background knowledge for the examples (a closed
world assumption on B). In that case we can also learn at-most and all restriction
and it is always possible to decide which side of a tautology is applicable, e.g.
if we know that we know all the cars of the trains under consideration, we can
decide by counting, if rule P1 or P2 or both are applicable. Also for a primitive
concept P we are able to decide, if P or ¬P is true. In summary, we do not have
to worry about this reasoning problem with respect to the goals of this paper.
Theoretically we only need reasoning with one clause programs, practically we
need a closed world assumption to learn DLPs and in both cases this problem
disappears.

Another difference between LP and DLP reasoning is that a DLP like the
one above also contains implicit knowledge not only due to rule reasoning as
usual in logic programing but also due to interactions between facts with de-
scription logic literals (DL-literals) and normal literals (HL-literals10), i.e. the
fact [∀has car.[car u ≤ 0 has load]](a) is true in every model of the DLP as
a consequence of the interaction between all the above facts and after we have
deduced that east train(a) can be deduced as a consequence of the facts and
the rule.

3.3 Subsumption between DLP clauses

We have to make such implicit literals explicit, as a reasoning procedure based
on substructure matching like subsumption would be incomplete otherwise, e.g.
h(X) ← a(X, Y ) ⇔ h(X) ← (≥ 1a)(X), but h(X) ← a(X, Y ) 6`θI⊥ h(X) ←
Φ(≥ 1a,X) h(X)← Φ(≥ 1a,X) 6`θI⊥ h(X)← a(X, Y ).

If the rules were ground, the interaction between HL- and DL-terms would
correspond to what is called ABox reasoning in description logic, i.e. inferring
HL-literals corresponds to ABox completion [Baader and Sattler, 2000] and in-
ferring DL-literals corresponds to computing the most specific concept [Baader
and Küsters, 1998] for every variable. Goasdoué, Rouveirol and Ventos [2001]
have put them together as completion rules to formalize example saturation for
learning under OI-subsumption. The adaptation of their rules to θ-subsumption
lead to the following completion rules to be applied to a set of DLP facts, i.e.
either background knowledge B or the body B of a DLP rule H ← B.

Definition 10 (Disjointness Clique). A set of terms {X1, ..., Xn} is called
a disjointness clique of size n of a rule body B, iff for all pairs {Xi, Xj} ⊆
{X1, . . . , Xn}, with i 6= j either Xi and Xj are not unifiable terms, i.e. different
constants, or {Ci(Xi), Cj(Xj)} ⊆ B and Ci u Cj ≡ ⊥, i.e. there must be no
model, where they are interpreted as the same individual.

10 Primitive roles and concepts strictly belong to both classes, but we will reference
and handle primitive roles and primitive concepts as HL-literals



Definition 11 (Completion for DLP under θ-Subsumption). Let B a set
of DLP facts.

1. apply at-least restriction: if there exists a substitution σ such that ((≥
n r)(X0))σ ∈ B for n ≥ 1 and ({r(X0, X1)})σ 6∈ B then B ⇀ B ∪
({r(X0, U)})σ, and U is a new variable not occurring in B (and σ) so far.

2. apply value restriction: if there exists a substitution σ such that
({(∀r.C)(X0), r(X0, X1)})σ ⊆ B and C(X1)σ 6∈ B then B ⇀ B∪{C(X1)σ}.

3. infer at-least restriction: If there exists a substitution σ such that
– ({r(X0, X1), . . . , r(X0, Xn)})σ ⊆ B, and there is no further r(X0, Xn+1)σ

in B, and
– k is size of the maximal disjointness clique of {X1, . . . , Xn}σ in B, and
– ((≥ m r)(X0))σ 6∈ B for any m ≥ k

then B ⇀ B ∪ {[≥ k r](X0)}σ.
4. infer value restriction: If there exists a substitution σ such that

({(≤ n r)(X0), r(X0, X1), . . . , r(X0, Xn), C1(X1), . . . , Cn(Xn)})σ ⊆ B, and
{X1, ..., Xn}σ is a disjointness clique is of size n, let C = lcs(C1, . . . , Cn)
and ((∀r.C)(X0))σ 6∈ B then B ⇀ B ∪ {[∀r.C](X0)}σ,

5. collect and normalize concept-terms over the same variable: if
C(X0)σ ∈ B and D(X0)σ ∈ B with C and D are DL-terms then B ⇀
B \ {C(X0)σ,D(X0)σ} ∪ {[norm(C uD)](X0)}σ

This corresponds to ABox reasoning presented as equivalent to tableux-based
terminological component reasoning in [Baader and Sattler, 2000], but for learn-
ing a tableux reasoning approach which does only consistency checking is not
sufficient. We need a constructive normalisation approach to have the conse-
quences available as input for learning. This of course is only feasible for a simple
DL like ALN . It in fact corresponds to inferring for each term t occurring in B
a depth-bounded acyclic approximation of it’s (cyclic) most specific concept as
done for ALN -ABoxes in [Baader and Küsters, 1998].

Lemma 2 (The completion rules are correct). For any B, if B ⇀ B′,
then ∃B |= ∃B′.

Proof. For ALN it is easy to verify, that whenever an interpretation is a model
of a B satisfying the premises of a completion rule it is a model of the conclusion
of this completion rule.

If ((≥ n r)(X0))σ is in B, then by table 1 and constraint 7 of definition 7 rI

of every model of B contains at least n tuples starting with I(X0σ). If n ≥ 1
then I(∃r(X0, U)σ) = 1 in all these interpretations by Definition 7 constraint 4.

If ({(∀r.C)(X0), r(X0, X1)})σ is in B, then by table 1 and constraint 7 of
definition 7 XI

1 ∈ CI and therefore I(C(X1)) = 1.
If ({r(X0, X1), . . . , r(X0, Xn)})σ is in B and for each pair Xi, Xj of {X1, ..., Xn}σ

I(Xi) 6= I(Xj) can be shown by definition 7 constraint 1 then rI contains at-least
n tuples starting with I(X0), therefore I([≥ n r](X0)}σ) = 1

If ({r(X0, X1), C1(X1), . . . , r(X0, Xn), Cn(Xn)})σ is in B and for each pair
Xi, Xj of {X1, ..., Xn}σ Ci u Cj < ⊥ can be show then it follows by definition



7 constraint 2 that I(Xi) 6= I(Xj) and therefore rI contains at-least n tuples
starting with I(X0), i.e. I([≥ n r](X0)}σ) = 1

If ({(≤ n r)(X0), r(X0, X1), . . . , r(X0, Xn), C1(X1), . . . , Cn(Xn)})σ is in B
and for each pair I(Xi) 6= I(Xj) can be shown as above, then X1, . . . Xn are
all possible fillers of role r and therefore everything true on all of them (see
definition lcs) is true as all restriction.

If C(X0)σ is in B then X0 ∈ CI and if D(X0)σ is in B then X0 ∈ DI ,
therefore X0 ∈ CI ∩DI and [I(C uD](X0)) = 1. ut

Lemma 3 (The completion rules are complete). For all atoms a ∈ AT ,
whenever B0 is consistent (∃B0 6|= ∃⊥(X)), if ∃B0 |= ∃a, there exits a chain of
B0 ⇀ B1 ⇀ . . . ⇀ Bn such that for some substitution σ either aσ ∈ Bnσ or
aσ = C1(t) and there exist a C2(t)σ ∈ Bnσ and C2 v C1.

Proof. To show completeness, we have to argue that every atom deducible from
a consistent B can be generated by the rules and whenever it is not possible to
generate an atom with a rule we have to construct a model of B where the atom
is not true. From logic programming we know that atoms not related to the DL-
part of B are not deducible if not already present except for variable renaming,
but that is covered by the ∃ quantification in the lemma. If you look at table 1
it is clear that the membership of a term in a primitive concept, it’s negation or
an at-most restriction (see the OWA discussion above) can only follow from con-
junctions or all restrictions. For conjunctions this is covered by the C2 v C1 test
in the lemma. For the all-restrictions this is covered by rule 2, which one two one
encoded the semantic of all. Membership of a tuple in a primitive role cannot be
deduced as well, only the existence of a role-filler can be required by an at-least
restriction, this is encoded one to one by rule 1. In all these cases it is simple to
construct an interpretation, which is not a model of the atom in question, as B
is only able to specify the minimal content of an interpretation to be a model
of B, i.e. by simply extending the interpretation by violating elements. As said
B is able to specify the minimal content of an interpretation, and by that at-
least restrictions become deducible. Whenever B contains n different constants
as fillers of a role (constants are required to be interpreted as different domain
elements by definition 7 restriction 1) for an element an at-least n restriction
restriction can be inferred, that is done by rule 3. For variables this is in general
not true and with pure horn-logic facts (without a build-in 6=) it is impossible
to prevent unification of variables as it is impossible to enforce that an relation
is interpreted as irreflexive (the reflexive tuples can always be added to the in-
terpretation). That is only different for the DL-literal pairs P (X),¬P (Y ) and
[≤ n1r](X), [≥ n2r](Y ) (with n1 ≤ n2) which enforce that there is no model,
where X and Y can be interpreted as the same element. We have already argued
that our rules are complete for primitive concepts, their negations, primitive
roles and at-most restrictions, i.e. there exist a chain of Bi, such that they are
present, if they are true (base case of complete induction). The open question
is, is there a sequence of Bi such that all at-least restrictions needed to infer the
next one are already present (inductive step). The answer is, if one is needed to



prevent unification of the role-filler it is a model that the role-filer are unified and
the at-least restriction does not hold. This completes the prove of completeness
of rule 3 to infer all at-least restriction (without reasoning by case). The prove
of completeness of rule 4 to infer all all restrictions is similar. Just note, that
rule 4 together with rule 5 is able to handle a set of facts B like the following
correctly: B = {[≤ 2r](X), r(X, Y1), p1(Y1), C1(Y1), r(X, Y2),¬p1(Y2), C1(Y2),
r(X, Y3), p2(Y3), C2(Y3), r(X, Y4),¬p2(Y4), C2(Y4)}. In this example {Y1, Y2} and
{Y3, Y4} are disjointness-cliques of size 2. So rule 4 is applicable to both of them
leading to [∀r.C1](X) and [∀r.C2](X) for which rule 5 (together with normalisa-
tion) produces [∀r.[C1 u C2]](X), which is exactly ([≥ 2r](X) of course follows
from rule 3) what follows from such a B, as in all possible models of B either
Y1, Y 3 and Y2, Y 4 or Y1, Y 4 and Y2, Y 3 have to be interpreted as the same do-
main elements. ut

Theorem 2 (Subsumption between completed encoded rules is sound).
Let depth(C) the depth of the deepest ∀ nesting in C, let ϕ(D, i) denote the
completion of D up to depth i, i.e. the application of the rules 1-5 as often
as possible, without generating a ∀ nesting deeper than i and Φr the extension
of Φ to rules, such that all DL-literals DL(X) in the rule are encoded with
Φ(norm(DL), X) and everything else is returned unchanged. A non-recursive
DLP rule C implies a non-tautological DLP rule D (C |= D), if and only if
the encoding Φr of C θI⊥-subsumes the encoding Φr of the completion ϕ of D
(Φr(C) `θI⊥ Φr(ϕ(D, depth(C)))).

Proof. Correctness and completeness follow from Theorem 1 (Completeness of
Φ and θ-subsumption to test C2 v C1), the correctness and completeness of
θ-subsumption for non-recursive non-tautological LP rules and the correctness
(lemma 2)and completeness (lemma 3) of the completion rules to infer for every
term its most specific concept (up to depth i), the fact that for a rule (h ←
B) all variables only in the body B can be seen as existential quantified (as
required in the above lemma), the fact that a rule is tautological, if it’s body B
is contradictory (another requirement in the above lemma). Further note that
in a C2 v C1 test, no sub-term of C2 deeper than the deepest sub-term in C1 is
needed (could not be reached). ut

Theorem 3 (Completion is polynomial for depth-bounded DL terms).

Proof. For a set of Carin-ALN atoms like {(≥ 2ru∀r.(≥ 2r)u. . .u
n︷ ︸︸ ︷

∀r. . . .∀r .(≥
2r))(a)}, we don’t generate the whole (exponential in n) binary tree with rule 1
and 2, but just one path from the root to a leaf (linear in n), as all these paths
of existential variables are indistinguishable under θ-subsumption and would
collapse into one path under equivalence (θ-reduction [Plotkin, 1970]). Also the
application of rule 2 and rule 3 is polynomial (depth of DL-terms times number
of literals) in the length of the Carin-ALN rule, if applied to ground facts.
The max-clique search needed in the case of variables in rule 3 and 4 is more



complex (NP-hard), but to learn from ground-facts we do not need that. The
unrestricted application of rule 4 may lead to an infinite term for cyclic FOL-
literals, e.g. h(X) ← r(X, X), (≤ 1r)(X) implies the infinite term ≤ 1r u ∀r.(≤
1ru∀r.(≤ 1ru∀r.(. . .)))(X). In general there are two solutions, the use of cyclic
definitions in the terminological component as in [Baader and Küsters, 1998]
(see footnote 4 as well), or to restrict the depth of the terms to be generated.
This does not lead to an incompleteness of the subsumption test if we choose
the depth with respect to the clause we test subsumption against, i.e. greater
than the deepest present DL-term. Rule 4 may generate a complete tree, i.e.
in the worst case it is exponential in the depth i, but for a fixed depth limit
i it is polynomial as well. Rule 5 is needed to collect all terms together for
normalization and is linear. ut

As Φ and ϕ are polynomial for ground clauses, the complexity of C |= D is
that of θ-subsumption, if C is ground. From [Kietz and Lübbe, 1994] we know,
that θ-subsumption is NP-complete in general and polynomial for an arbitrary
horn clause D, if C = C0 ← CDET , LOC1, . . . , LOCn is a horn clause where
C0 ← CDET is determinate11 with respect to D and each LOCi, 1 ≤ i ≤ n, is a
k–local12. In that case, C `θ D can be decided with O(‖C‖ ∗ ‖CDET ‖ ∗ ‖D‖ +
‖LOC1, . . . , LOCn‖2 + n ∗ (kk ∗ ‖D‖)) unification attempts.

Theorem 4 (Simulation of lgg). Let E = Φ−1
r lggI⊥(Φr(ϕ(C, i)), Φr(ϕ(D, i))).

E is the least general generalization (lgg) with depth at-most i of C and D, i.e.
E |= C and E |= D and if there is an E′ with depth at most i with E′ |= C and
E′ |= D, then E′ |= E.13

3.4 Learning Carin-ALN

With the definition of learning and theorem 2 we can immediately conclude on
the learnability of DLP programs consisting of a single rule.

Corollary 1. A IDLP rule learning problem (|= ,ground DLP facts, ground
HL facts, 1− clause DLP programms) is polynomially learnable, if and only
if the corresponding ILP learning problem (|=, Φr(ϕ(ground DLP facts,i)),
ground HL facts, Φr(ϕ(1− clause DLP programms,i))) is polynomial learn-
able.

As the boarder line of polynomial learnability is quite well known for ILP due
to a lot of positive and negative learnability results (see [Kietz, 1996; Kietz and
Džeroski, 1994; Cohen and Page, 1995] for overviews), we are now able to char-
acterize it for DLP rules as well. One of the most expressive (single horn clause)

11 The n-ary generalisation of what is called an attribute in DL, i.e. there is a deter-
minate way to find a unique match of the output variables.

12 It does not share variables with another local, which not also occur in C0 or CDET

and it has at-most k literals (k–literal local) or at-most k variables (k–variable local)
13 Without depth limit the lgg may not exist, i.e. is infinite due to rule 4.



ILP-problem that is polynomial learnable, is learning a i, j-determinate-k-literal-
local horn clause (see [Kietz and Lübbe, 1994] for definitions and discussions of
these restrictions).

Theorem 5. A 1-clause DLP program, where the HL part is i, j-determinate-
k-literal-local and DL-terms are depth-bounded by i and are only allowed on head
or determinate variables is polynomial learnable14.

Proof. The encoding of such a clause is a 2 ∗ i, j-determinate-k-literal-local horn
clause as the DL-term encodings are in itself determinate, start on a determinate
variables and are bound in depth by i as well and as such they are polynomial
learnable [Cohen, 1995]. ut

4 Applying the results

This encoding does not only produce theoretical results it also works in practise.
Let us demonstrate this with the ILP dataset (available from MLNet) for Mesh-
Design [Džeroski and Dolsak, 1992].

4.1 Learning from databases using closed world assumption

As discussed in section 3.2, datalog facts or databases are not adequate to learn
DLPs under OWA and the CWA is quite natural a way out for learning [Helft,
1989] as well as for databases. We do not want to close the world totally, but
just locally, i.e we assume that if an object is described at all it is described
completely, but we don’t want to assume that we know about all objects of any
world. The following two non-monotonic rules are doing just that.

6. infer at-most restriction: If there exists a substitution σ, such that
– ({r(X0, X1), . . . , r(X0, Xn)})σ ⊆ B, and there is no further r(X0, Xn+1)σ

in B, and
– k is size of the maximal disjointness clique of {X1, . . . , Xn}σ in B, and
– there is no [≤ m r](X0)σ in B such that m ≤ k

then B := B ∪ {[≤ m r](X0)}σ.
7. infer concept negation: Let c be a constant appearing in some literal of

B, and P be any primitive concept, if P (c) 6∈ B, then B := B ∪ {¬P (c)}.

Given N constants (or variables) in the rule, and M primitive concepts, only
N ∗M additional literals are introduced at the literal level by the local CWA rule
7, i.e. only a polynomial amount. An ∀r.¬P can only be added, by rule 4 out of
the introduced literals. But ∀r.¬P does not follow for every role under CWA, i.e
under CWA only the literal ¬P (b) is added by rule 7 to R(a, b), R(a, c), P (c), but
(∀r.¬P )(a) is obviously not true and not added. Theorem 2 proves polynomial
complexity in the size of the input of rule 4 under OWA. Therefore the complexity
under CWA is polynomial as well.
14 This includes that they are PAC learnable and polynomial predictable, as Φ is a

polynomial prediction preserving reduction.



4.2 Learning Mesh-Design in DLP

We have chosen Mesh-Design as it only contains unary and binary predicates,
i.e. perfectly fits description logic without the need for further preprocessing.
We have chosen Cilgg [Kietz, 1996] as the ILP-systems to learn the encoding
descriptions as it has interval handling, is optimized for determinate literals
(e.g. like Golem [Muggleton and Feng, 1992]) and is able to learn k-literal-local
clauses completely for small k. As depth limit we had chosen 1 for HL-literals. In

mesh(A,2):- [usual u
≥ 2 neighbour u
≤ 3 neighbour u
∀ neighbour.not loaded
](A).

mesh(A,2):- [usual u
≥ 1 opposite u
≤ 1 opposite u
∀ opposite.[fixed u

≥ 2 opposite u
≤ 2 opposite
]

](A).

Fig. 1. Two of the description logic rules learned for Mesh-Design

Mesh-Design this produces 4-literal-local ground starting (bottom) clauses. We
restricted DL-terms to the head variable/object as this is the only determinate
one and to the depth of 3, as deeper terms are very difficult to understand.
We have made three experiments, one with only the literals generated from
the DL-term, one with only the HL-literals, and one with both (CL). Cilgg
[Kietz, 1996] has two possibilities to use the learned rules for testing, the normal
deductive one for most general discriminations (generated similar as in Golem
from the learned lggs), and a k-nearest neighbor classification (20-NN in this
case) using the learned lggs. The results are in table 2 together with the results
reported in [Džeroski and Dolsak, 1992] and Indigo [personal note from P. Geibel,
1996]. The table gives the number of correctly (and uniquely) classified edges
per object using rules learned from the other objects. The results indicates that
the extended language helps to learn better rules in Mesh-Design. The used
runtime also reflects the theoretical result that learning the DL-part is easier
than learning the HL-part. However, this single experiment is not sufficient to
claim the usefulness of Carin-ALN as a hypothesis language in general. But it
clearly shows, that this gain in expressivity of the language can help to achive
better results, and that the price to pay for this gain in terms of complexity and
computational costs is not very high, i.e. it enables normal ILP-system to learn
rules like the ones in Figure 1 efficiently, which are not in the normal ILP bias
and which may be useful in some application domains.

5 Summary and Outlook

We have characterizes the boarder line of polynomial learnability of Carin-ALN
rules from ground facts by reducing it to the well investigated boarder-line of
polynomial learnability in ILP. This work should be extended to more expres-
sive forms of background knowledge, e.g. terminological axioms (an ontology)



A B C D E Σ % Avg.
Maximum 52 38 28 57 89 268 CPU
Default 9 9 6 13 23 60 22 Time

Foil 17 5 7 9 5 43 16 (5m, in 1992)
mFoil 22 12 9 6 10 59 22 (2h, in 1992)
Golem 17 9 5 11 10 52 20 (1h, in 1992)
Indigo 21 14 9 18 33 95 36 (9h, in 1996)
Claudien 31 9 5 19 15 79 30 (16m, in 1992)
Cilgg(1996) 19 16 6 10 9 60 22 (85s, in 1996)

Cilgg DL 16 8 5 10 12 51 19 8s
Cilgg HL 22 14 8 13 5 62 23 11s
Cilgg CL 19 16 7 14 23 79 30 22s

Cilgg 20-NN DL 20 12 9 16 38 95 36 19s
Cilgg 20-NN HL 17 14 9 18 41 99 38 23s
Cilgg 20-NN CL 26 12 10 18 37 103 39 52s

Table 2. Comparison of ILP-Approaches learning the MESH-Data set

and description logic programs. We also showed in a first experiment, that this
theoretical encoding is applicable in practice. However, careful experimentation
about the usefulness of using Carin-ALN as hypothesis language is still miss-
ing. But, we provided a data preprocessing method, that allows us to do that
with a broad range of ILP-systems on a broad range of ILP-applications. On the
theoretical side the IDLP framework could serve to analyse the learnability of
the related new aggregation-based ILP approaches [Krogel and Wrobel, 2001;
Knobbe et al., 2001] .
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A. Appendix: Schema for background knowledge to learn
Carin-ALN

This code should enable any ILP-system (with intervals, but see footnote 2)
to learn DLP rules from ground facts under local CWA, i.e. it encodes the
completion rules 3-7 under our encoding (But the CWA rule 6. is not applied to
the HL-facts, only it’s consequences for DL-Terms is coded), when it is added
as background knowledge directly, or in form of the ground facts it produces.
The ILP-program must make only mode compatible calls to it, and that there
is a limit on the depth of the relation chain of the starting clauses or facts. The
extension that everything subsumes ⊥(X) is already coded into it, as everything
(every predicate) succeeds, if called with [], i.e. no instances. The first modeb
declaration and the first line of code for rr <R> ’connects’ the DL-term with
the HL-Terms.

Mode declarations are in Progol notation. <Name> indicates that we have
to apply string concatenation to build the predicate or type name. Except for
count solutions - unifying the second argument with the number of solutions of
the call in the first arg - and minimum (maximum) - get the minimum (maxi-
mum) out of a list of numbers - everything is normal Prolog. Dom and Range are
(sorted) lists of terms, they should be treated like atoms, i.e. only their equality
is important.

% For every primitive concept <C> with a modeb(_,C(+<In>) add:
:- modeb(1,cn_<C>(+set_<In>)).
:- modeb(1,cp_<C>(+set_<In>)).
cn_<C>(Dom):- nonvar(Dom), forall(member(D,Dom),\+ <C>(D)),!.
cp_<C>(Dom):- nonvar(Dom), forall(member(D,Dom),<C>(D)), !.

% For every primitive role <R> with a modeb(_,<R>(+<In>,-<Out>) add:
:- modeb(1,rr_<R>(+<In>,#,-set_<Out>)).
:- modeb(1,rr_<R>(+set_<In>,#,-set_<Out>)).
%% use the largest positive integer instead of *
rr_<R>([],[* .. 0],[]):- !.
rr_<R>(Dom,Card,Range):-

(atom(Dom) -> DomL = [Dom] | Dom = DomL),
findall(R,(member(D,DomL),<R>(D,R)),RangeD),
sort(RangeD,Range),
findall(C,(member(D,DomL),

count_solutions(<R>(D,_),C)
),Cards),

min(Cards,Atleast), max(Cards,Atmost),
Card = [Atleast .. Atmost], !.


