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Abstract. On the one hand side operational concepts enable the user to get information about

what a robot has been done and on the other hand side, they enable the user to control the robot.

In this way, they function as elements of a high level command language, easy to understand by

human users. Operational concepts should be general enough to be applied in di�erent but similar

environments like o�ce rooms even if the environment is totally unknown. They combine sensing

and action of a mobile robot situated in the real world without the need of additional environmental

knowledge. In this paper, we complete the representation of operational concepts and show, how this

work is combined with results presented previously. Furthermore, we sketch the learning of concept

descriptions to reach a high adaptivity of the robot and we suggest the application of these concepts

for planning and control.
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1 Introduction

During the last years, mobile systems have be-
come more and more powerful and hence more
complex. Nevertheless, the interface between the
human user and the robot is still tailor-made for
the robot. So, the robots are mainly programmed
by giving the exact locations of the positions the
robot has to move to. In the best case, the map
the robot uses for navigating consists not only
of free and occupied areas, but also of identi�er
for special positions, i.e., landmarks. These land-
marks can then be used by the user to command
the robot. However, this kind of informationmust
be known a priori, goal driven navigation in un-
known environments is impossible with this ap-
proach. Our intention of commanding a robot
is to use high-level concepts like doorways, walls,
desks, or, more precisely, operational concepts like
moving through a doorway or moving along a wall.
How to build up a representation for such con-
cepts, how to acquire them, and how to apply
them will be presented in this paper.

Many approaches to command and control mobile
systems base on the early work of Fikes and Nils-
son [3]. This way of action planning is located on
a cognitive high level allowing a human user to
command the robot easily and to understand the
generated plans. To be able to plan and to execute
the plans, the environment must be known. The

tors, usually they are explicitly programmed. So,
the systems are not much adaptive and they can-
not react to unforeseen events. To reach a higher
adaptivity, the plans used for navigation can be
acquired automatically while moving in the en-
vironment [2, 20], e.g., by detecting free and oc-
cupied areas. To enable the use of cognitive ele-
ments in these maps, like, e.g., an occupied area
representing a desk, the classi�cation of the per-
ceptions is necessary. In those approaches, this
work is mostly done by the user.

The weaknesses of the approaches described pre-
viously is the necessity of reasoning exclusively
on a high and very complex level, leading to
slow and un
exible systems. Behavior based
systems [11, 10] are the contrasting approaches.
Their behavior is determined by a set of very sim-
ple stimuli-response-rules, i.e., rules that trigger
a speci�c action depending on the sensed pat-
tern. The intelligent behavior of these systems
is reached by an e�ect called emergency, i.e., that
the di�erent simple rules create a complex behav-
ior when they work together (see [19] for a deeper
discussion about emergent and hierarchical sys-
tems). In these approaches, no global knowledge
about the environment is represented, thus they
are very well suited for unknown environments.
Because of the simple reactive rules, these sys-
tems can react very fast to sudden changes of
the environment. However, the �rst of these sys-



time. Additionally, these system cannot commu-
nicate in a human adequate way with the user, be-
cause they lack a cognitive level. By Firby, an ap-
proach is presented controlling di�erent behaviors
by switching on or o�, resp., some of the stimuli-
response-rules, to perform an externally requested
behavior [4]. Steels presented an approach to clas-
sify the perceptions of a robot using a frame sys-
tem and to control the behavior dependent on dif-
ferent internal states, which can also be requested
from outside [18].

In our approach, we want to go one step further.
One of the main issues is, that the cognitive el-
ements can immediately be used for communica-
tion with the user. For this task, it is necessary
that the concepts, used as elements of speech,
span the whole hierarchy from high-level cogni-
tive concepts to raw data gathered by the robot.
In this way, the concepts can be used to classify
the perceptions and actions and thus enables the
user to get information about what the robot has
been done in terms of high-level concepts. More-
over, the concepts are executable, i.e., the robot
must be able to perform the action intended by the
concept. Because of this capability we call them
operational concepts, distinguishing them from the
concepts usually occurring in machine learning lit-
erature.

In [8], two main aspects of operational concepts
necessary to achieve these properties are presented
in detail: First, the concepts must integrate action
and perceptions, where actions are perception-
oriented and perceptions are action-oriented. So,
classi�cation depends not only on perceptions, but
also on the performed actions and thus, the suc-
cess of the action. In this way, an object is only
an instance of a concept, if the intended purpose
of it is achieved.

Second, the features used for classifying the ob-
jects should depend directly on the real world
data, they should by anchored in the environment.
This problem encloses the hard problem of feature
generation, because the quality of these basic fea-
tures determines the powerfulness of the overall
representation.

The concepts are represented on di�erent lev-
els of abstraction, the process of classi�cation
passes through multiple, di�erently detailed lev-
els to eliminate faulty measurements and noise.
The di�erent elements of this representation hier-
archy are described in Section 2, accompanied by
some examples. To reduce the e�ort to create a
new representation if the kind of environment, the
kind of tasks, or the robot itself changes, we want
to learn concept descriptions instead of modeling

features are already presented [13], here we only
describe the approach for learning action features
and integrating concepts (Sect. 3). Since opera-
tional concepts will not only be used to classify
perceived objects but also to control the robot,
in Section 4, we present an approach to use these
concepts for action planning as well as for exe-
cution and veri�cation of plans. As usual, the
paper ends with a short conclusion, summarizing
the results and showing some weaknesses of our
approach.

2 Representing Operational Concepts

Before we start to describe the representation of
operational concepts, we sketch the framework in
which this work is embedded.

A) The robot we use to apply the ideas about
operational concepts is Priamos, developed at
the University of Karlsruhe [1]. Priamos moves
on four separately controlled Mecanum-wheels, al-
lowing the robot to move in three degrees of free-
dom. 24 sonar sensors are mounted on the robot,
three of them at each side and three at each cor-
ner, all in the same height. Besides other data, at
each time of sensing, Priamos delivers the sensed
distances, the current position, and the current
orientation relative to its coordinate system.

B) During a trace, the sensors of Priamos get
measurements characterizing the environment in
their own way of sight. To conclude from these
measurements the composition of the environ-
ment, it is necessary to �nd typical patterns, also
called features. The sensing of these features dur-
ing the same interval of time or with a short delay
during an action of the robot allows to conclude
objects. Morik, Klingspor, and Rieger describe
the representation of these features on di�erent
levels of abstraction and how to learn descriptions
for them [13, 9]. In particular, they distinguish
basic perceptual features, sensor and sensor group

features, and action-oriented perceptual features,
each of them de�ned in terms of the next lower
level. Action-oriented perceptual features repre-
sent objects of the environment, considering the
path of the robot relative to this object. They em-
body the perceptual part of operational concepts
in contrast to the action part and the integrating
part presented in this work. Examples for percep-
tual features are: through door/6, along door/6,
in front of wall/4, and in front of door/4.

The goal pursued while developing operational
concepts is to combine the action of a robot with
the perceptions got while executing these actions.



as to execute and control actions. The following
requirements have led our work:

� For each operational concept, the situation
in which it is applicable (the precondition)
and the situation in which its application usu-
ally ends (the postcondition) must be repre-
sented.

� To use concepts for planning, pre- and post-
conditions must be suitable to choose the
next sensible concept dependent on the e�ect
of the current one.

� The name of the concept must re
ect the in-
tended e�ect of its application to allow the
usage of concepts as high-level elements of a
command language.

� Descriptions for operational concepts and the
features at all intermediate levels should be
acquired by machine learning methods.

As far as the last item is concerned, note that
we distinguish learning phases and performance

phases. During the learning phase, we present
Priamos examples of the concepts in a known
environment. From these examples, the system
learns general descriptions of the concepts. In the
performance phase, the learned concepts can be
applied in di�erent, unknown environments.

In this section we present the representation of
basic actions, which are incrementally computed
from the data delivered from the robot during
its trip. We show how to combine basic actions
and action-oriented perceptual features to inte-
grated features, perception integrating action fea-

tures. They represent actions of the robot in de-
pendency on the perceived objects. In this way,
they build the basic elements to represent the op-
erational concepts themselves. Fig. 1 shows the
overall hierarchy.

operational concepts

applied to learned from

sensing              and             action

sensor features

basic features

perceptual features

action features

perception−integrating actions

Figure 1: The representation hierarchy

Basic actions serve two tasks. During the learning
phase, they are incrementally computed from the
data delivered by the robot. During the perfor-
mance phase, they trigger the elementary opera-

stand(Trc,T1,T2),
move(Trc,T1,T2,Speed,RDir),
a move(Trc,T1,T2,Speed,ADir),
rotate(Trc,T1,T2,RSpeed,RODir).

The variable Trc represents the identi�er of the
considered trace, T1 and T2 describe the �rst and
the last instant of time of the represented action.
RDir and ADir describe the relative or absolute
direction of the action, i.e., left, right, front, back.
The variables Speed and RSpeed represent classes
of speed for movements and rotations. RODir
speci�es the direction of a rotation.

Accordingly, for movements we designated two
predicates. The �rst one, move/5, represents the
direction of the the movement intrinsically, i.e.,
dependent on the current direction of motion and
independent of a speci�c a priori given front of the
robot. Starting with a movement, the direction
the robot moves in becomes its front. If the robot
rotates, the front of the robot does not change.
At the level of operational concepts, this kind of
representing directions yields the advantage that,
e.g., the denoted direction right in the command
move through the doorway and then go to the right,
is independent of the particular orientation of the
robot.

To transform the relative direction speci�ed by
a basic action move into elementary operations,
a computation of an absolute direction accord-
ing to the reference system of the robot is nec-
essary. This absolute direction is represented by
the a move/5-predicate. Thus, we use the com-
putation from a move to move during the learn-
ing phase and vice versa during the performance
phase. This transformation as well as the compu-
tation of a move is easy and is therefore not de-
scribed in this paper, details can be found in [16].
Fig. 2 illustrates the di�erence, the black spot at
the robot marks its absolute front.

a_move(..., a_left)

move(..., right)

rotate(..., right)

a_move(..., a_back)

move(..., left)

Figure 2: Directions of movements

At the next higher level of the hierarchy, percep-
tion integrating actions are represented. Before
describing them in detail, we present two exam-
ples, illustrated in Fig. 3.

The feature p moving/7 characterizes a parallel
movement along the perceived object. The fact



p_moving/7 standing/7

Picture 1) Picture 2)

Figure 3: perception integrating action features

e.g., represents a slow movement along a doorway,
perceived by the right side sensors during the time
interval [13,25] (Fig. 3, Pict. 1). Picture 2) shows
a situation, in which the robot is standing in front
of a wall after having perceived a movement along
a doorway. This situation is represented by the
fact

standing(t25,25,29,in front of wall,right,large side,

along door).

standing/7 can be used as a memory for the pre-
vious perception. This knowledge is necessary in
some planning situations, e.g., if the robot shall
move through the door, it must previously has
been moved along a door. In particular, we distin-
guish between four predicates to represent action-
integrating perceptual features:

standing(Trc,T1,T2,Perc,PDir,PSide,LPerc),

rotating(Trc,T1,T2,RSpeed,RODir,Perc,PDir),

moving(Trc,T1,T2,Speed,RDir,Perc,PDir),

p moving(Trc,T1,T2,Speed,RDir,Perc,PDir).

In addition to the previously described variables,
these predicates specify further arguments. Perc
de�nes the perception the robot got during the
action, i.e., the name of an action-oriented per-
ceptual feature. LPerc states the last perception
before the current action. The direction in which
the object was perceived is de�ned by PDir, PSide
additionally states whether this side was a large
one or a small one of the robot. This informa-
tion is necessary in situations, where the next ac-
tion can only be performed with the small side
oriented to an opening, e.g., if the robot should
move through a doorway. If the wide side is ori-
ented towards the object, the robot must perform
a rotation �rst.

Perception-integrating action features are char-
acterized by rules combining basic actions and
action-oriented perceptual features. How these
rules can be learned is described in Sect. 3, as an
example, we present some intended rules here:1

per. perc(Trc,T0,T1,Perc,PDir,PSide,Orien) &

pt. perc(Trc,T1,Perc1,PDir1,PSide1) &

stand(Trc,T1,T2)

!standing(Trc,T1,T2,Perc1,PDir1,PSide1,Perc).

move(Trc,T1,T2,Speed,RDir) &

pt. perc(Trc,T2,Perc,PDir,PSide)

!moving(Trc,T1,T2,Speed,RDir,Perc,PDir).

move(Trc,T1,T2,Speed,RDir) &

per. perc(Trc,T1,T2,Perc,PDir,PSide,parallel)

!p moving(Trc,T1,T2,Speed,RDir,Perc,PDir).

The predicates period of time perception/7 and
timepoint perception/7 are used to distinguish fea-
tures perceived during a time interval of arbitrary
length, e.g., along door, and features perceived at
a single time, in front of door. Both kinds of fea-
tures are described by transformation rules, con-
verting a predicate name into a constant argument
of one of the two predicates:

in front of door(Trc,T1,PDir,PSide)

!pt. perc(Trc,T1,in front of door,PDir,PSide).

through door(Trc,T1,T2,PDir,PSide,Orien)

!per. perc(Trc,T1,T2,through door,PDir,PSide,Orien).

The highest level of the hierarchy represents oper-
ational concepts themselves. As described above,
pre- and postcondition of the operator must be
speci�ed by their de�nition, and, additionally,
pre- and postcondition should allow the linking of
the di�erent concepts to enable planning. These
requirements yield in descriptions of the following
structure:

<standing> &

<moving> j <p moving> j <rotating> &

<standing>

! <operational concept>

Some of the intended concepts need additional
background knowledge to determine direction in-
formation. This background knowledge is rep-
resented by a set of facts characterizing di�er-
ent relations between directions. The predicate
bg opposite direction(Dir,NDir), e.g., relates two
opposite sides of the robot, e.g., left and right.

To extend the reader's comprehension, we ex-
plain a conceivable de�nition of the concept
move in front of door in detail:

standing(Trc,T1,T2,in front of wall,PDir,PSide,

along door) &

bg opposite direction(PDir,PDir1) &

moving(Trc,T2,T3,Speed,back,in front of door,PDir1)
standing(Trc,T3,T4,in front of door,PDir1,PSide,

in front of door)

!move in front of door(Trc,T1,T3,T4).

The example is illustrated in Fig 4. The precon-
dition of this concept is to stand in front of a wall
and having perceived the feature along wall dur-
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Figure 4: The concept move in front of door

rule. To move in front of the door, the robot must
move backwards until it perceives that it stands
centered in front of the door. This action, Pict. 2)
in Fig. 4, is represented by the third premise. Be-
cause the direction of the movement has changed,
the doorway is perceived in the direction oppo-
site to the one in which the wall has been per-
ceived previously. This transformation is made
by the background fact in the second premise. Af-
ter having perceived the doorway, the robot stops
(Pict. 3), the fourth premise of the concept be-
comes true, and the concept is achieved. How
to apply such a concept exactly, is described in
Sect. 4.

In addition to the concept describe above, simi-
lar concepts are necessary for navigating in o�ce
environment. To solve tasks like moving through
doors the following concepts are imaginable: mo-
ve closer to wall/4, rotate in front of wall/4,move-
parallel in corner/4, rotate in corner to front wall-
/4,move along door/4, move through door/4. The
meaning of the concepts can easily be �xed by
their names. In the following section, we describe
how to learn descriptions at the di�erent levels.
In Sect. 4 we show our ideas on using concepts for
planning, execution, and control.

3 Learning Operational Concepts

In the previous section, we described a represen-
tation of operational concepts, which is compati-
ble with the representation of perceptual features
described by [13]. The basic features of this rep-
resentation can be delivered incrementally during
the trip of the robot. In this section, we show how
to learn descriptions for perception-integrating ac-
tion features and operational concepts, using logic
based inductive learning. Learning perceptual fea-
tures is described in [13, 9].

The learning algorithm used is rdt [7], one of
the algorithms of the area inductive logic program-

ming (ILP) [14]. ILP-algorithms can be divided
in two main groups, dependent on their objective.
Algorithms of the �rst group try to induce a con-
cept description from a set of positive and nega-
tive examples of the concept and additional back-
ground knowledge. The description must cover

�nd regularities in a set of formulas. In contrast
to the �rst group, these algorithms do not neces-
sarily cover all examples of a concept [5]. These
views have in common restricted �rst order logic
as representation formalism. We apply rdt in the
way described by Helft [5], and we only learn from
positive examples2.

The learner rdt is integrated in the knowledge
acquisition tool mobal [12]. It uses a extended
function free horn logic as representation formal-
ism, also allowing negated literals. A special fea-
ture of rdt is the use of rule schemata, i.e., for-
mulas with predicate variables instead of predicate
symbols. They de�ne sets of formulas of the same
syntax. In this way, the rule schemata de�ne the
hypotheses space of rdt. The learning tasks can
now be formulated:

LT 1: Learning Percept.-Integr. Action Features
Given: � Examples for basic action features

� Examples for action-oriented
perceptual features

� Rules about pt. perc. and per. perc.
� Examples for perception-integrating
action features

� Rule schemata
Goal: � Rules characterizing perception-

integrating action features

LT 2: Learning Operational Concepts
Given: � Examples for perception-integrating

action features
� Background knowledge to transform
given directions

� Examples for operational concepts
� Rule schemata

Goal: � Rules characterizing operational
concepts

For the experiments described here, �ve training
traces of the robot are used. Fig. 5 displays one
of them. This trace can be described by the oper-
ational concepts:

move parallel in corner(t201,1,13,17).
rotate in corner to front wall(t201,13,26,30).
move along door(t201,26,52,55).
move in front of door(t201,52,69,72).
rotate in front of door(t201,69,81,83).
move through door(t201,81,109,112).

We generated these examples manually using a
graphical interface that visualizes the details of
the trace and enables the user to edit the exam-
ple set. The automatical generation of examples
driven by the interface is a further issue of our
work. Fig. 6 shows the visualization component
of the interface.
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Figure 6: The human computer interface

Since we have given examples for each of the lev-
els, independent of the rules to be learned, the two
learning tasks can be solved in parallel. For each
one, we performed three learning passes with dif-
ferent con�rmation criterions. The con�rmation
criterions control the learning process by deter-
mining which hypotheses are acceptable. The dif-
ferent criterions we used are:

CC1: A hypothesis is acceptable, if it covers at
least one positive example of the goal con-
cept.

CC2: A hypothesis is acceptable, if it covers at
least one positive example, but it does not
derive any further, i.e. unknown, facts.

CC3: A hypothesis is acceptable, if it covers at
least three positive examples, and at least
50 % of all facts derived by this rule are pos-
itive examples.

The tables 1 and 2 show the results of learning.
The �rst column presents the number of learned
rules, the second one the total number of exam-
ples, i.e., the number of input and derived facts.

#rules #exampl. #input #deriv. %cover.

perception integrating action features

CC1 6 98 65 98 100%

CC2 4 65 65 43 66.15%

CC3 4 65 65 43 66.15%

Table 1: Quality of the rules learned for
integrating action features

#rules #exampl. #input #deriv. %cover.

operational concepts

CC1 26 30 30 30 100%

CC2 19 30 30 30 100%

CC3 12 30 30 27 90%

Table 2: Quality of the rules learned for
operational concepts

the learned rules. The percentage of covered input
examples is presented in column �ve.

The results of learning perception-integrating ac-
tion features show, that the coverage of the rule
set learned with CC1 is much better than the cov-
erage of the two other rule sets. With CC1, ex-
actly two more rules are learned, one for stand-
ing and one for moving. Both rules are rejected
by CC2 and CC3, because they derive too many
additional facts. This problem can be solved by
using more example traces.

The in
uence of our small learning set is even
more relevant for learning operational concepts.
For some of the concepts, we can present only a
single example. Clearly, these concepts cannot be
learned with the third con�rmation criterion. We
assume the coverage of the examples to be better
when we use more examples.

Since the two learning tasks are performed in-
dependently, we have not yet given a statement
about the quality of the whole rule set. Table 3
shows the results of applying all rules to the in-
put data, i.e., the perceptual features and the ba-
sic actions. The poor coverage of the concepts for
the rules set learned with CC2 and CC3 can be
traced back to the missing rules for standing and
moving. Especially standing is used very often in
the descriptions of operational concepts, the miss-
ing facts thus result in few examples that can be
covered. This insight re
ects the results we also

#rules #exampl. #input #deriv. %cover.

operational concepts

CC1 26 30 30 30 100%

CC2 19 30 30 4 13.33%

CC3 12 30 30 4 13 33%



got from earlier tests. Because of the multi-level
representation hierarchy, it is in most cases better
to learn more rules also covering faulty situations,
than to learn few but correct rules. The faulty
facts are mostly eliminated when climbing the hi-
erarchy.

4 Planning and Control

To plan actions, an operator must not only consist
of the situation in which it is applicable, but also
of the situation, that arises from applying it, to be
able to chain multiple operators. In the STRIPS-
approach [3], operators are presented as structures
with a list of preconditions, of facts to be deleted,
and facts to be added; add- and delete-list de�ne
the new situation. In that context, action plan-
ning is de�ned to �nd a sequence of operators, the
use of which satis�es the given goals, i.e., they oc-
cur in the add-list of an operator of the sequence
without being deleted afterwards by another oper-
ator. Such a plan is usually found by goal-directed
search, starting with the list of open goals and try-
ing to solve each goal.

In our context, precondition and delete-list of a
STRIPS-operator correspond to the �rst premise
of the rule de�ning an operational concept and
the add-list corresponds to the third premise.
The action itself is not represented by STRIPS-
operators. In contrast, operational concepts rep-
resent them by the second premise.

In principal it is easy to �nd a plan consisting of
operational concepts, because the applicability of
a concept can be tested by unifying its precondi-
tion with the postcondition of the previous oper-
ator. So, the algorithm starts with the goal con-
cept thereby and gets the �rst precondition to be
satis�ed. By unifying this precondition with the
postconditions of the existing concepts, we get all
possible predecessors the execution of which will
ful�ll the precondition of the goal concept. By
applying this step recursively for the predecessors
until the precondition of a concept can be uni�ed
with the current state | which is in general a ba-
sic action and a corresponding perception | we
get a sequence of operational concepts which is ex-
ecutable and reaches the goal. This very intuitive
way of concept based planning is, unfortunately,
too weak in the domain of navigating in unknown
environments, because of the uncertainties that
can arise. We will be back on this issue later in
this section, but �rst, we suppose that a planner
of the previously described kind has found a plan,
represented as a sequence of operational concepts.
This plan should now be executed, i.e., each of

the robot is standing in front of a doorway and it
shall move through it, i.e., it shall execute the con-
cept move through door. This concept is de�ned
by the rule:

standing(Trc, T1, T2, in front of door, PDir, small side,

LPerc) &

p moving(Trc, T2, T3, slowly, PDir, through door,

right and left) &

standing(Trc, T3, T4, in front of door, back, small side,

through door)

! move through door(Trc, T1, T3, T4).

The �rst premise, standing(: : : ), is already sat-
is�ed, its arguments PDir, Trc, T1, and LPerc
are instantiated according. To ease their under-
standing, instantiated arguments are underlined.
A usual PROLOG-interpreter would now try to
verify the second premise, p moving(: : : ), de�ned,
e.g., by the following rule3:

move(Trc,T2,T3,Speed,RDir) &
per. perc.(Trc,T2,T3,Perc,PDir, PSide,parallel)
! p moving(Trc,T2,T3,Speed,RDir,Perc,PDir).

So �rst, move(...) must be veri�ed. move is a ba-
sic action, i.e., a predicate which could be proven
by triggering an elementary operation of the used
robot, here to move slowly in the speci�ed direc-
tion. At the moment the robot starts moving, the
variable T2 gets the current time. Then, the in-
terpreter waits for getting the perceptual feature
per. perc.(: : : )which will be derived from the mea-
surements as soon as possible4. As soon as this
feature is delivered, the argument T3 is instanti-
ated. To stop the command move through door,
its third premise, standing(: : : ), must now be
proven. standing is de�ned by the rule:

pt. perc.(Trc, T3,Perc,PDir,PSide) &
stand(Trc,T3,T4)
! standing(Trc,T3,T4,Perc,PDir,PSide,LPerc).

At the moment the robot perceives that it is
standing in front of the doorway, perceiving the
opening at its rear, pt. perc.(: : : ), the interpreter
tries to satisfy stand(: : : ), again a basic ac-
tion and thus a predicate triggering an elemen-
tary operation, namely stopping. The concept
move through door is now executed and at the
same time its execution is veri�ed, because the
trace is classi�ed as an instance of the concept.

To reduce the e�ort for proving the goal concept
during runtime, a sequence of basic actions and
corresponding perceptual features can be gener-
ated a priori. To do so, the list of concepts of the

3In the following, time-point perceptions are abbrevi-
ated by pt. perc., period-of-time perceptions by per. perc.

4Action-oriented perceptual features are always deliv-
ered by forward inferences all other features can be derived



plan must be proven under the condition that all
basic actions and action-oriented perceptual fea-
tures are always true. During the prove, they are
gathered including the variable bindings needed
for the prove. In Fig. 7, a short sequence of oper-
ational concepts and the corresponding sequence
of basic actions and perceptual features are shown.
The features above each concept correspond to its
precondition, the ones beside a concept to its ac-
tion, and below to the postcondition. Note, that
each two concepts share their pre- and postcondi-
tion.

world state stand(Tr,T1,T2)
parallel in corner(Tr,T1,left,large side)

move along- move(Tr,T2,T3,med speed,front)
door along door(Tr,T2,T3,left,parallel)

in front of wall(Tr,T3,left,large side)

stand(Tr,T3,T4)
in front of wall(Tr,T4,left,large side)

move in front- move(Tr,T4,T5,slow speed,back)
of door in front of door(Tr,T5,right,large side)

stand(Tr,T5,T6)
in front of door(Tr,T5,right,large side)

rotate in front- rotate(Tr,T6,T7,slow speed,left)
of door in front of door(Tr,T7,back,small side)

stand(Tr,T7,T8)
in front of door(Tr,T8,back,small side)

move through- move(Tr,T8,T9,slow speed,back)
door through door(Tr,T8,T9,left,parallel)

in front of door(Tr,T9,back,small side)

stand(Tr,T9,Te)
in front of door(Tr,T9,back,small side)

Figure 7: A plan and the corresponding features.

To execute this sequence, nothing unexpected
must arise, because the system cannot react to
those situations. Additionally, often it is not pos-
sible to specify the plan a priori, e.g., if it is not
known how many walls the robot must follow be-
fore �nding a door. How to solve this problem is
not yet developed. However, we want to present
our ideas and discuss them.

The �rst way is to search not only for one plan but
for all plans up to an upper bound. These plans
can be represented as a directed graph, the choice
which successor should be executed in the speci�c
situation is then determined by the current per-
ception. Since some of the plans can be in�nite or
may contain loops | e.g., again and again moving
along a wall and rotating in the corner | parts
of the plans can be represented as cycles in the
graph. The main problem for this approach is to
�nd these cycles and to generate the cyclic, di-

seen events; to represent all exceptions that can
be foreseen unnecessarily enlarges the graph.

The second way to handle uncertainties is to gen-
erate only the shortest plan and to execute this
plan as long as possible, in the best case com-
pletely. At the moment the perception of the
robot does not correspond to the perceptions ex-
pected by the plan, the system creates a new plan,
starting with the current situation. In this way,
the robot can easily react to unforeseen events and
in totally unknown environments. We call this
kind of planning incremental planning. It can be
seen as an approach in between classical planning
and behavior based systems.

Incremental planning, however, is expected to
need much time during the execution phase. In
our example, the system must search for a new
plan whenever it moves into a corner without hav-
ing perceived a door. Thus, a combination of
both of the described approaches is in mind to
be implemented, i.e., we intend to represent plans
which are able to reach the goal if nothing un-
expectable happens by a cyclic graph, and the
system only re-plans in unforeseeable situations.
The graphs found by the �rst approach can be
stored and used as macro operators in further sit-
uations, corresponding to the work on learning
macro-trajectories [17], but on a conceptual level.

5 Conclusion

In this paper, we presented an approach to rep-
resent actions and to integrate them with percep-
tions to de�ne operational concepts in a �rst order
representation formalism. The represented con-
cepts can be used as elements of speech for com-
municating with a robot on a human-adequate
level without loosing the contact to the environ-
ment in which the robot is embedded. We have
shown how to learn concept descriptions to en-
large the adaptivity of robot applications. And we
proposed an approach for action planning and to
\compile" and execute the generated plans, prin-
cipally only using a PROLOG-interpreter.

Clearly, the approach is far away from being fully
developed. To show the e�ectiveness of learning,
we have to perform further learning tests, using
a higher number of more di�cult example traces.
Furthermore, we must develop the planning ap-
proach, e.g., solving the question what happens,
if a concept is de�ned by multiple rules with the
same or di�erent premises.

One of the weaknesses of our approach is the �xed
set of basic actions and the chosen set of basic per-



our system cannot reach the 
exibility and the
robustness of behavior based systems. However,
coupling both approaches seems to make sense.
In [6], a possible coupling of di�erent learning ap-
proaches for di�erent navigation tasks, inter alia
the approach presented here, is described.
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