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Abstract. The task of information filtering is to classify texts from a stream of documents into relevant and non-
relevant, respectively, with respect to a particular category or user interest, which may change over time. A filtering
system should be able to adapt to such concept changes. This paper explores methods to recognize concept changes
and to maintain windows on the training data, whose size is either fixed or automatically adapted to the current
extent of concept change. Experiments with two simulated concept drift scenarios based on real-world text data and
eight learning methods are performed to evaluate three indicators for concept changes and to compare approaches
with fixed and adjustable window sizes, respectively, to each other and to learning on all previously seen examples.
Even using only a simple window on the data already improves the performance of the classifiers significantly as
compared to learning on all examples. For most of the classifiers, the window adjustments lead to a further increase in
performance compared to windows of fixed size. The chosen indicators allow to reliably recognize concept changes.
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1 Introduction
With the amount of online information and communi-
cation growing rapidly, there is an increasing need for
automatic information filtering. Information filtering
techniques are used, for example, to build personal-
ized news filters, which learn about the news-reading
preferences of a user, or to filter e-mail. The concept
underlying the classification of the texts into relevant
and non-relevant may change. Machine learning tech-
niques ease the adaption to (changing) user interests.

This paper focuses on the aspect of changing concepts
in information filtering. After reviewing the standard
feature vector representation of text and giving some
references to other work on adaption to changing con-
cepts, this paper describes indicators for recognizing
concept changes and uses some of them as a basis for
a window adjustment heuristic that adapts the size of a
time window on the training data to the current extent
of concept change. The indicators and data manage-
ment approaches with windows of fixed and adaptive
size are evaluated in two simulated concept drift sce-
narios on real-world text data.

2 Text Representation
In Information Retrieval, words are the most common
representation units for text documents and it is usual-
ly assumed, that their ordering in a document is of mi-

nor importance for many tasks. This leads to an attri-
bute-value representation of text, where each distinct
wordwi corresponds to a feature with the number of
times it occurs in the documentd as its value (term fre-
quency, TF (wi; d)). The length of the feature vector
is reduced by considering only words as features that
occur at least3 times in the training data and are not in
a given list of stop words (like “the”, “a”, “and”, etc.).

For some of the learning methods used in the exper-
iments described in this paper, a subset of the fea-
tures is selected using theinformation gaincriterion
[11], to improve the performance of the learner and/or
speed up the learning process. The remaining com-
ponentswi of the document feature vector are then
weighted by multiplying them with theirinverse doc-
ument frequency (IDF). Given thedocument frequency
DF (wi), i. e. the number of documents wordwi oc-
curs in, and the total number of documentsjDj, the in-
verse document frequency of wordwi is computed as
IDF (wi) = log jDj

DF (wi)
. Afterwards each document

feature vectors is normalized to unit length to abstract
from different document lengths.

In the experiments described in this paper, the perfor-
mance of a classifier is measured by the three metrics
accuracy, recall, and precision.Accuracyis the proba-
bility, that a random document is classified correctly.
It is estimated as the number of correct classifications



divided by the total number of classifications.Recallis
the probability, that the classifier recognizes a relevant
document as relevant, and is computed as the number
of relevant documents classified as relevant divided by
the total number of relevant documents.Precision is
the probability, that a document classified as relevant
actually is relevant. It is estimated by the number of
relevant documents classified as relevant divided by
the total number of documents classified as relevant.
The metrics can be computed froma contingency table:

RelevantNon-relevant
Classified as relevant a b
Classified as non-relevant c d

Accuracy =
a + d

a+ b+ c+ d
(1)

Recall =
a

a+ c
(2)

Precision =
a

a+ b
(3)

3 Adapting to Changing Concepts
In machine learning, changing concepts are often han-
dled by time windows of fixed or adaptive size on the
training data (see for example [15], [8]) or by weight-
ing data or parts of the hypothesisaccording to their
age and/or utility for the classification task ([6], [13]).
The latter approach of weighting examples has already
been used in information filtering by the incremental
relevance feedback approach [1] and by [2]. In this pa-
per, the earlier approach maintaining a window of
adaptive size and explicitly recognizing concept chan-
ges is explored in the context of information filtering.
More detailed descriptions of the methods described
above and further approaches can be found in [5].

For windows of fixed size, the choice of a“good” win-
dow sizeis a compromise between fast adaptability
(small window) and good and stable learning results
in phases without concept change (large window). The
basic idea of theadaptive window managementis to
adjust the window size to the current extent of con-
cept drift. In case of a suspected concept drift or shift,
the window size is decreased by dropping the oldest,
no longer representative training instances. In phases
with a stable concept, the window size is increased to
provide a large training set as basis for good general-
izations and stable learning results. Obviously, reliable
indicators for recognizing concept changes play a cen-
tral role in such an adaptive window management.

3.1 Indicators for Concept Drifts

Different types of indicators can be monitored to de-
tect concept changes:

� Performance measures(e. g. the accuracy of the
current classifier): independent of the hypothesis
language, generally applicable.

� Properties of the classification model(e. g. the
complexity of the current rules): dependent on
a particular hypothesis language, applicable only
to some classifiers.

� Properties of the data(e. g. class distribution, at-
tribute value distribution, current top attributes
according to a feature ranking criterion, or cur-
rent characteristic of relevant documents like
cluster memberships): independent of the hy-
pothesis language, generally applicable.

The indicators of the window adjustment heuristic of
the FLORA algorithms [15], for example, are the ac-
curacy and the coverage of the current concept de-
scription, i. e. the number of positive instances cov-
ered by the current hypothesis divided by the number
of literals in this hypothesis. Obviously the coverage
can only be computed for rule-based classifiers. The
SIFTER information filtering system [7] determines
clusters of similar documents and monitors the prob-
ability to be relevant for documents ofeach cluster
seperately. Changes in the user interest are recognized
by changes of these probabilities. The performance of
the classifier is not monitored. This approach is inde-
pendent of the learning method underlying the system.

The window adjustment approach for text classifica-
tion problems proposed in this paper only uses per-
formance measures as indicators, because they can be
applied across different learning methods and are ex-
pected to be the most reliable indicators. The compu-
tation of performance measures like accuracy requires
user feedback about the true class of filtered docu-
ments. In some applications only partial user feed-
back is available to the filtering system. For the ex-
periments described in this paper, complete feedback
about all filtered documents is assumed. In most in-
formation filtering tasks, the irrelevant documents sig-
nificantly outnumber the relevant documents and a de-
fault rule predicting all new documents to be irrele-
vant achieves a high accuracy, because accuracy does
not distinguish between different types of misclassifi-
cations. As equation (1) shows, the accuracy does not
only depend ona, but ond, the number of non-relevant
documents classified correctly, as well. Ifd is assumed
to be a very large, constant number, the accuracy does
not reflect concept changes as much as recall and pre-
cision (equations (2) and (3)) and hence is alone only
of limited use as performance metric and indicator for
text classifiers. Therefore the metrics recall and pre-
cision are used as indicators in addition toaccuracy,
because they assess the performance on the smaller,
usually more important class of relevant documents.

3.2 Adaptive Window Adjustment

The texts are presented to the filtering system in bat-
ches. Each batch is a sequence of several texts from



the stream of documents to be filtered. In order to rec-
ognize concept changes, the values of the three indica-
tors accuracy, recall, and precision are monitored over
time and the average value and the standard sample er-
ror are computed for each of these indicators based on
the lastM batches at each time step. Each indicator
value is compared to a confidence interval of� times
the standard error around the average value of this
indicator. The confidence niveau� is a user-defined
constant (� > 0). If the indicator value is smaller
than the lower end point of this interval, a concept
change is suspected. In this case, a further test deter-
mines, whether the change is abrupt and radical (con-
cept shift) or rather gradual and slow (concept drift).
If the current indicator value is smaller than its prede-
cessor times a user-defined constant� (0 < � < 1), a
concept shift is suspected, otherwise a concept drift.

In case of a concept shift, the window is reduced to
its minimal size, the size of one batch (jBj), in order
to drop the no longer representative old examples as
fast as possible. If only a concept drift has been recog-
nized, the window is reduced less radically by a user-
defined reduction rate
 (0 < 
 < 1). Thereby some
of the old, still at least partially representative data for
the current concept is kept. This establishes a com-
promise between fast adaptivity via a reduction of the
window size and stable learning results as a result of a
large training data set. If neither a concept shift nor a
drift is suspected, all seen examples are stored, in or-
der to provide a training set of maximal size, because
in case of a stable concept, text classifiers usually per-
form the better, the more training examples they have.

While in real applications an upper bound for the
size of the adaptive window seems reasonable, no
such bound was used for the experiments described in
this paper. Figure 1 describes the window adjustment
heuristic. For the firstM0 initial batches, the window
size is not adapted, but left at its initial value ofjW0j
to establish the average indicator values and their stan-
dard errors.jWtj denotes the current window size and
jWt+1j the new window size.jBj is the number of doc-
uments in a batch.Acct is the current accuracy value,
Acct�1 is the previous accuracy value,AvgM (Acc)
is the average accuracy of the lastM batches, and
StdErrM (Acc) is the standard error of the accuracy
on the lastM batches.Rect, Rect�1, AvgM (Rec),
and StdErrM (Rec) denote the corresponding re-
call values, andPrect, Prect�1, AvgM (Prec), and
StdErrM (Prec) the corresponding precision values.

4 Experiments
The experiments use a subset of the data set of theText
REtrieval Conference (TREC)consisting of English
business news texts. Each text is assigned to one or
several categories. Table 1 shows the names and sizes

Category Name of the Category Number of
Documents

1 Antitrust Cases Pending 400
3 Joint Ventures 842
4 Debt Rescheduling 355
5 Dumping Charges 483
6 Third World Debt Relief 528

Total 2608

Table 1 Categories of the TREC data set used in the
experiments.

of the categories 1, 3, 4, 5, and 6 used here. For the
experiments, two concept change scenarios are simu-
lated. The texts are randomly split into 20 batches of
equal size containing 130 documents each1. The texts
of each category are distributed as equally as possible
to the 20 batches.In the first scenario (scenario A), first
documents of category 1 (AntitrustCases Pending) are
considered relevant for the user interest and all other
documents irrelevant. This changes abruptely (con-
cept shift) in batch 10, where documents of category 3
(Joint Ventures) are relevant and all others irrelevant.
Table 2 specifies the probability of being relevant for
documents of category 1 and 3 for each time step
(batch). Classes 4, 5, and 6 are never relevant. In the
second scenario (scenario B), again first documents
of category 1 (Antitrust Cases Pending) are consid-
ered relevant for the user interest and all other doc-
uments irrelevant. This changes slowly (concept drift)
from batch 8 to batch 12, where documents of cate-
gory 3 (Joint Ventures) are relevant and all others ir-
relevant. Table 3 specifies the probability of being rel-
evant for documents of category 1 and 3 for each time
step (batch). Classes 4, 5, and 6 are never relevant.

4.1 Experimental Setup

The experiments are performed according to the batch
learning scenario, i. e. the learning methods learn a
new classification model whenever they receive a new
batch of training documents. Each of the following
data management approachesis tested in combination
with each of the learning methods listed further below:

� “Full Memory” : The learner generates its clas-
sification model from all previously seen exam-
ples, i.e. it cannot “forget” old examples.

� “No Memory”: The learner always induces its
hypothesis only from the least recently seen
batch. This corresponds to using a window of the
fixed size of one batch.

� Window of “Fixed Size”: A window of the fixed
size of three batches is used.

� Window of “Adaptive Size”: The window adjust-
ment heuristic (figure 1) is used to adapt the win-
dow size to the current concept drift situation.

1Hence, in each trial, out of the 2608 documents 8 randomly
selected texts are not considered.



Procedure DetermineNewWindowSize ( jWtj, M , �, �, 
)

if ((Acct < AvgM (Acc)� � � StdErrM (Acc)) and (Acct < � � Acct�1)) or
((Rect < AvgM (Rec)� � � StdErrM (Rec)) and (Rect < � � Rect�1)) or
((Prect < AvgM (Prec)� � � StdErrM (Prec)) and (Prect < � � Prect�1))

then jWt+1j := jBj; /* concept shift suspected: reduce window size to one batch */

else if (Acct < AvgM(Acc)� � � StdErrM (Acc)) or
(Rect < AvgM (Rec)� � � StdErrM (Rec)) or
(Rect < AvgM (Prec)� � � StdErrM (Prec))

then jWt+1j := max(jBj; jWtj � 
 � jWtj); /* concept drift suspected: reduce window size by
 � 100% */

else jWt+1j := jWtj+ jBj; /* stable concept suspected: grow window by one batch */

return jWt+1j;

Figure 1 Window adjustment heuristic for text categorization problems.

Cate- Relevance of the categories for each batch
gory 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 2 Relevance of the categories in concept change scenario A (abrupt concept shift in batch 10).

For the adaptive window management approach,
the initial window size is set to three batches
(jW0j := 3 � jBj), the number of initial batches to five
(M0 := 5), and the number of batches for the averag-
ing process to 10 (M := 10). The width of the confi-
dence interval is set to� := 5:0, the factor� := 0:5,
and the window reduction rate
 := 0:5. These values
are arbitrarily set and not result of an optimization.

The parameters of thelearning methodslisted below
were found to perform well in a prelimenary experi-
ment for a different classification task on the TREC
data set, but are not optimized for the concept drift
scenarios considered here: theRocchio Algorithm[12]
with �Rocchio := 1:0, �Rocchio := 1:0, and a thresh-
old � determined viav-fold crossvalidation (v = 4),
a Naive Bayes Classifier[4], thePrTFIDF Algorithm
[4], a distance-weightedk-Nearest Neighbors (k-NN)
method [10] withk := 5, the Winnow Algorithm[9]
with learning rate
 := 1:1 and40 iterations for learn-
ing, aSupport Vector Machine (SVM)[14] with poly-
nomial kernel and polynom degree one (= linear ker-
nel), the symbolic rule learnerCN2[3] with the default
paramters for unordered rules, and the symbolic deci-
sion tree and rule learning systemC4.5 [11] with the
default parameters to induce a decision tree, transform
it to an ordered rule set, and post-prune the result-
ing rules. In the experiments described here, Winnow
is not used as an online learner, but generates a new
classification model on the current training set, when-
ever a new batch of documents is received. For Win-
now, C4.5, and CN2 the1000 best attributes accord-
ing to the information gain criterion are selected. All
other methods use all attributes. The results reported
in the following sections are averaged over four trials
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Figure 2 Accuracy of CN2 with the different data
management approaches for scenario A.

for each combination of learning method, data man-
agement approach, and concept drift scenario.

4.2 Results for Scenario A (Concept Shift)

Table 4 shows accuracy, recall, and precision of all
combinations of learning methods and data manage-
ment approaches averaged over 4 trials according to
scenario A (table 2). In addition, table 4 compares a
pair of data management approaches in each of its
three right most columns. Column “(2) vs. (1)” is the
performance gain obtained by approach (2) (No Mem-
ory) over (1) (Full Memory). Accordingly, the last two
columns compare the Adaptive Size approach to the
approaches with fixed window size, i. e. No Memory
and Fixed Size, respectively.

Column “(2) vs. (1)” shows that for all learning
methods a significant improvement is achieved by us-
ing the simple No Memory window approach instead
of learning on all known examples (Full Memory).



Cate- Relevance of the categories for each batch
gory 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 3 Relevance of the categories in concept change scenario B (slow concept drift from batch 8 to batch 12).

Full Memory No Memory Fixed Size Adaptive Size (2) vs. (1) (4) vs. (2) (4) vs. (3)
(1) (2) (3) (4)

Rocchio Accuracy 75.95% 84.63% 87.93% 89.38% +08.68% +04.75% +01.45%
Recall 49.77% 93.59% 87.41% 91.74% +43.82% –01.85% +04.33%

Precision 48.64% 61.77% 70.43% 72.91% +13.13% +11.14% +02.48%
Naive Accuracy 81.96% 93.59% 91.97% 93.97% +11.63% +00.38% +02.00%
Bayes Recall 68.51% 86.96% 84.67% 88.18% +18.45% +01.22% +03.51%

Precision 67.63% 87.32% 84.69% 87.68% +19.69% +00.36% +02.99%
PrTFIDF Accuracy 80.67% 88.18% 87.44% 88.87% +07.51% +00.69% +01.43%

Recall 85.33% 93.49% 93.31% 94.19% +08.16% +00.70% +00.88%
Precision 56.78% 67.66% 66.21% 64.42% +10.88% –03.24% –01.79%

k-NN Accuracy 79.32% 91.26% 90.14% 92.33% +11.94% +01.07% +02.19%
Recall 49.82% 76.60% 74.45% 80.74% +26.78% +04.14% +06.29%

Precision 63.34% 87.14% 84.29% 87.02% +23.80% –00.12% +02.73%
Winnow Accuracy 74.48% 89.94% 89.15% 91.64% +15.46% +01.70% +02.49%

Recall 41.44% 70.09% 70.77% 78.33% +28.65% +08.24% +07.56%
Precision 48.46% 83.12% 82.03% 85.95% +34.66% +02.83% +03.92%

SVM Accuracy 79.48% 92.64% 91.80% 94.48% +13.16% +01.84% +02.68%
Recall 51.03% 74.24% 77.11% 83.95% +23.21% +09.71% +06.84%

Precision 64.65% 91.27% 87.32% 91.49% +26.62% +00.22% +04.17%
CN2 Accuracy 77.72% 90.50% 90.16% 92.45% +12.78% +01.95% +02.29%

Recall 41.20% 68.45% 69.68% 76.74% +27.25% +08.29% +07.06%
Precision 56.49% 85.89% 85.37% 89.56% +29.40% +03.67% +04.19%

C4.5 Accuracy 78.49% 91.40% 90.29% 92.83% +12.91% +01.43% +02.54%
Recall 49.22% 79.02% 76.49% 83.47% +29.80% +04.45% +06.98%

Precision 51.24% 82.10% 81.84% 86.03% +30.86% +03.93% +04.19%

Average Accuracy +11.76% +01.73% +02.13%
Recall +25.76% +04.36% +05.43%

Precision +23.63% +02.35% +02.86%

Table 4 Accuracy, recall and precision of all learning methods combined with all data management approaches
for scenario A averaged over 4 trials with 20 batches each.
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Figure 3 Recall of CN2 with the different data
management approaches for scenario A.

The average gain is11:8% in accuracy,25:8% in re-
call, and23:6% in precision. An additional improve-
ment is achieved by using the Adpative Size approach
instead of an approach with fixed window size (see
columns “(4) vs. (2)” and “(4) vs. (3)” in table 4).
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Figure 4 Precision of CN2 with the different data
management approaches for scenario A.

The average gain of Adaptive Size compared to the
best approach with a window of fixed size is1:7%
in accuracy,4:4% in recall, and2:4% in precision. A
closer look at the last two columns of table 4 shows,
that some methods like CN2, C4.5, the SVM, Win-
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Figure 5 Window size for CN2 and PrTFIDF with
the different data management approaches
for scenario A.

now, Rocchio, and k-NN gain significantly by using
Adaptive Size, while other methods like PrTFIDF and
Naive Bayes do not show a significant improvement.
For PrTFIDF, the precision actually drops by more
than3:2%. Figures 2 to 5 show the values of the three
indicators and the window size over time for the learn-
ing method CN2 in combination with all data manage-
ment approaches and thereby allow a more detailed
analysis of the results than table 4. The figures 2 to 4
with the accuracy, recall, and precision values of CN2
show two things. First, in this scenario all three indi-
cators can be used to easily detect the concept shift,
because their values decrease very significantly in the
batch the shift occurs in (batch 10). Recall and preci-
sion indicate the shift even more clearly than accuracy.

Second, in this scenario the data management ap-
proaches demonstrate their typical behaviour in rela-
tion to each other. Before the shift, the Full Mem-
ory approach has the advantage of the largest training
set and hence shows the most stable performance and
outperforms the other three approaches, but recovers
only very slowly from its break-down after the con-
cept shift. The Fixed Size approach shows a relatively
good performance in phases with stable target con-
cept, but needs several batches to recover after the con-
cept shift. The No Memory approach offers the maxi-
mum flexibility and recovers from the shift after only
one batch, but in phases with a stable concept, this ap-
proach is less stable and performs worse than the other
approaches. In this scenario and in combination with
CN2, the Adaptive Size approach obviously manages
to show a high and stable performance in stable con-
cept phasesandto adapt very fast to the concept shift.
Hence Adaptive Size here is able to combine the ad-
vantages of different window sizes.

Figure 5 shows the window size of the four data man-
agement approaches in combination with CN2 over
time. The window of the Full Memory approach grows
linearly in the number of examples seen, while the
No Memory approach always keeps a window of one
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Figure 6 Accuracy, recall, and precision for PrTFIDF
with Adaptive Size for scenario A.

batch size. The window of the Fixed Size approach
grows up to a size of three batches, which it keeps
afterwards. The Adaptive Size window grows up to
its initial size of three batches (user-defined constant
jW0j) and keeps this size until the last of the initial
batches for establishing the average values and stan-
dard errors (user-defined constantM0 = 5). From the
sixth batch on, the window adjustment becomes active
and the window grows until the concept shift occurs in
batch 10. Then the window is set to its minimal size of
one batch, but starts growing again immediately after-
wards, because no further shift or drift is detected.

Figure 6 with the indicator values for PrTFIDF in
combination with the adaptive window management
shows, that the three indicators work for PrTFIDF as
well, i. e. they indicate the concept shift by a signifi-
cant decrease in their values. Figure 5 with the win-
dow size for PrTFIDF in combination with the four
data management approaches shows that the window
adjustment for PrTFIDF works almost as the one for
CN2. But, unlike for CN2, this is not reflected by an
increase in the performance of PrTFIDF. A window of
the size of one batch already seems to be sufficiently
large for PrTFIDF in this scenario, so that the window
adjustments cannot provide any improvement.

4.3 Results for Scenario B (Concept Drift)

Table 5 compares accuracy, recall, and precision of the
same pairs of data management approaches as table 4
in combination with all learning methods averaged
over 4 trials according to scenario B (table 3). Like in
scenario A, using the simple No Memory approach in-
stead of the Full Memory approach yields significant
performance improvements (column “(2) vs. (1)”). On
average, accuracy is improved by10:2%, recall by
22:5%, and precision by21:2%. The average increase
in performance gained by the Adaptive Size approach
over the best approach with fixed window size is0:3%
in accuracy,1:3% in recall, and0:9% in precision.
(columns “(4) vs. (2)” and “(4) vs. (3)” in table 5).
The average positive effect of the window adjustments



(2) vs. (1) (4) vs. (2) (4) vs. (3)

Rocchio Accuracy +08.16% +04.79% +01.53%
Recall +41.63% –03.15% +02.77%

Precision +11.12% +11.91% +03.31%
Naive Accuracy +09.85% +00.28% +00.44%
Bayes Recall +16.15% +01.94% +01.93%

Precision +17.71% –00.39% +00.83%
PrTFIDF Accuracy +06.17% –00.58% –00.39%

Recall +09.86% +00.70% –01.80%
Precision +08.75% –00.94% –00.70%

k-NN Accuracy +11.41% –00.59% –00.41%
Recall +24.09% +00.14% –00.10%

Precision +23.88% –01.30% +00.23%
Winnow Accuracy +12.66% +00.15% –00.14%

Recall +23.14% +04.48% +01.10%
Precision +29.42% +00.52% +00.50%

SVM Accuracy +12.15% +00.83% +00.54%
Recall +17.27% +07.52% +01.58%

Precision +23.74% –00.73% +01.49%
CN2 Accuracy +10.78% +01.65% +00.47%

Recall +22.97% +03.51% +02.36%
Precision +25.86% +03.60% +00.25%

C4.5 Accuracy +10.21% +01.12% +00.68%
Recall +24.49% +02.99% +02.89%

Precision +28.89% +02.80% +01.03%

Average Accuracy +10.17% +00.96% +00.34%
Recall +22.51% +02.26% +01.34%

Precision +21.17% +01.93% +00.87%

Table 5 Accuracy, recall and precision of all learning
methods for scenario B compared for the data
management approaches Full Memory (1), No
Memory (2), Fixed (3) and Adaptive Size (3).

is obviously smaller than in scenario A. While three
methods show no significant positive or even a nega-
tive effect through the adjustments, namely PrTFIDF,
k-NN, Bayes, most of the methods, i. e. CN2, C4.5,
Rocchio, Winnow, and the SVM, profit by the win-
dow adjustments. As figure 7 shows for the example
CN2, the three indicators work reliably in scenario B.
Recall and precision again indicate the concept change
much better than accuracy. The window size of Adap-
tive Size with CN2 (figure 8) shows, that the window
adjustment works in this scenario as well. The concept
drift is already detected in batch 9 and the window
size is reduced accordingly. The reduction of the win-
dow size continues until the end of the concept drift
in batch 12. The fact, that the window was not radi-
cally set to its minimal size of one batch, shows, that
the concept drift was not mistakenly suspected to be
a concept shift. Although PrTFIDF does not profit by
the window adjustments as CN2, its window adjust-
ment works almost as well as for CN2 (figure 8).

4.4 Setting the Parameters of the Window
Adjustment Heuristic

The parameters�, �, and
 of the window adjustment
heuristic were fixed in the experiments described in
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Figure 7 Accuracy, recall, and precision for CN2
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for scenario B.

the two previous sections. In order to evaluate how
much the performance of the classifiers depends on
the choice of the values for these parameters, an addi-
tional experiment is performed on scenario B, whose
concept drift is a little bit more difficult to recognize
than the concept shift of scenario A. Table 6 shows
the results of applying the learning methods PrTFIDF
and C4.5 with all combinations of� 2 f2:5; 5:0; 7:5g,
� 2 f0:25; 0:50; 0:75g, and
 2 f0:25; 0:50; 0:75g.
For both, PrTFIDF and C4.5, the choice of a good
value for� seems to be more crucial than the choices
of � and
. If �, which describes the width of the con-
fidence interval for admissible drops in performance,
is too large, the concept drift of scenario B is no longer
properly recognized and the performance of the classi-
fiers drops significantly. Otherwise the window adjust-
ment heuristic seems to be fairly robust to the choice
of the parameters�, �, and
.

5 Conclusions
This paper describes indicators for recognizing con-
cept changes and uses some of them as a basis for a
window adjustment heuristic that adapts the window
size to the current extend of concept change. The ex-
perimental results show, that accuracy, recall, and pre-
cision are well suited as indicators for concept changes




 = 0:25 
 = 0:50 
 = 0:75
� = 2:5 � = 5:0 � = 7:5 � = 2:5 � = 5:0 � = 7:5 � = 2:5 � = 5:0 � = 7:5

PrTFIDF Accuracy 86.76% 85.87% 81.53% 87.11% 86.82% 80.93% 86.87% 86.60% 82.34%
� = 0:25 Recall 94.69% 94.47% 87.81% 93.41% 93.60% 85.80% 94.74% 94.80% 88.88%

Precisiom 65.02% 63.47% 57.43% 66.13% 65.56% 56.87% 65.44% 64.97% 58.62%
Accuracy 87.01% 86.12% 81.52% 87.11% 86.82% 80.93% 86.89% 86.72% 82.34%

� = 0:50 Recall 94.90% 94.68% 87.81% 93.41% 93.60% 85.80% 94.70% 94.39% 88.88%
Precisiom 65.41% 63.86% 57.43% 66.13% 65.56% 56.87% 65.46% 65.06% 58.62%
Accuracy 86.99% 86.72% 82.47% 87.10% 87.01% 80.93% 86.98% 86.71% 82.47%

� = 0:75 Recall 94.33% 94.39% 88.62% 93.41% 93.36% 85.80% 94.33% 94.39% 88.62%
Precisiom 65.53% 65.06% 58.89% 66.11% 65.93% 56.87% 65.51% 65.04% 58.89%

C4.5 Accuracy 89.95% 90.05% 81.89% 89.85% 90.00% 82.22% 89.63% 89.63% 83.10%
� = 0:25 Recall 70.81% 70.57% 51.99% 71.67% 71.42% 52.15% 71.09% 71.49% 54.10%

Precisiom 82.56% 81.47% 61.02% 81.85% 82.07% 62.31% 81.41% 80.36% 64.13%
Accuracy 89.87% 89.85% 83.08% 89.74% 89.76% 83.08% 89.63% 89.71% 83.08%

� = 0:50 Recall 72.17% 71.25% 53.58% 71.52% 71.45% 53.58% 71.09% 71.49% 53.58%
Precisiom 81.31% 81.68% 65.33% 81.54% 81.53% 65.33% 81.41% 81.30% 65.33%
Accuracy 89.82% 89.66% 83.08% 89.72% 89.66% 83.08% 89.60% 89.66% 83.08%

� = 0:75 Recall 71.97% 71.62% 53.58% 71.34% 71.62% 53.58% 70.96% 71.62% 53.58%
Precisiom 81.10% 81.17% 65.33% 81.40% 81.17% 65.33% 81.24% 81.17% 65.33%

Table 6 Effect of varying the parameters�, �, and
 of the window adjustment heuristic on the performance of
PrTFIDF and C4.5 in scenario B averaged over 4 trials (bold font indicates the configuration of the
previous experiments, italic font indicates minimum and maximum values of the particular performance
measure and learning method combination).

in text classification problems, and that recall and pre-
cision indicate concept changes more clearly than ac-
curacy. Furthermore it could be observed that even us-
ing a very simple window of fixed size on the training
data leads to significant performance improvements
for all tested learning methods compared to learning
on all previously seen examples. The proposed adap-
tive window management approach yields further per-
formance improvements over the best approach with
a window of fixed size for most of the learning meth-
ods. Hence both, the indicators for concept changes
and the window adjustment heuristic based on them,
provide promising starting points for future research
and applications in adaptive information filtering.
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