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Abstract. Today, many private households as well as broadcasting or film com-
panies own large collections of digital music plays. These are time series that differ
from, e.g., weather reports or stocks market data. The task is normally that of
classification, not prediction of the next value or recognizing a shape or motif.
New methods for extracting features that allow to classify audio data have been
developed. However, the development of appropriate feature extraction methods is
a tedious effort, particularly because every new classification task requires tailoring
the feature set anew.

This paper presents a unifying framework for feature extraction from value se-
ries. Operators of this framework can be combined to feature extraction methods
automatically, using a genetic programming approach. The construction of features
is guided by the performance of the learning classifier which uses the features. Our
approach to automatic feature extraction requires a balance between the complete-
ness of the methods on one side and the tractability of searching for appropriate
methods on the other side. In this paper, some theoretical considerations illustrate
the trade-off. After the feature extraction, a second process learns a classifier from
the transformed data. The practical use of the methods is shown by two types of
experiments: classification of genres and classification according to user preferences.

1. Introduction

Since music is stored in digital form and distributed via the internet,
there is a need for the management and retrieval of audio data. How can
we index large numbers of audio records? How can we structure music
databases according to genre (e.g., classic, pop, hip hop) or occasions
(e.g., dinner, party, wedding)? How can a system automatically recom-
mend music records to users? Information retrieval has started several
efforts to automatic indexing (Kurth and Clausen, 2001) and retrieval
(e.g., querying by humming (Ghias et al., 1995)). Machine learning has
shown its benefits for text classification and ranked document retrieval
with respect to user preferences (Joachims, 2002a; Joachims, 2002b). It
is straightforward to expect a similar benefit for the classification and
personalized retrieval of music records.

Confronted with music data, machine learning encounters a new
challenge of scalability:

− Music databases store millions of records.
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− Given a sampling rate of 44100 Hz, a three minute music record
has a length of about 8 · 106 values.

Moreover, current approaches to time series indexing and similarity
measures rely on a more or less fixed time scale (Keogh and Smyth,
1997; Keogh and Pazzani, 1998). Music plays, however, differ consider-
ably in length. More general, time series similarity is determined with
respect to some (flexible and generalized) shape of curves (Yi et al.,
1998; Kahveci and Singh, 2001). However, the shape of the audio curve
does not express the crucial aspect for classifying genres or preferences.
The i-th value of a favourite song has no correspondence to the i-
th value of another favourite, even if relaxed to the (i ± n)-th value.
The decisive features for classification have to be extracted from the
original data. Some approaches extract features from music given in the
form of Midi data, i.e. a transcription according to the 12 tone system
(Loy, 1989)1. This allows to include background knowledge from music
theory. Usually, music data is given in the form of – possibly compressed
– waves records, the audio data. Hence, feature extraction from audio
data has become a hot topic recently (Liu et al., 1998; Zhang and
Kuo, 1998; Guo and Li, 2003; Tzanetakis, 2002). Several specialized
extraction methods have shown their performance on some task and
data set. It is now hard to find the appropriate feature set for a new
task and data set. In particular, the problems are:

Unifying framework missing: The large set of extraction methods has
not yet been systematically investigated, a unifying framework is
still missing. This makes it hard to compare the proposed feature
sets and to detect missing feature extraction methods.

Variety of feature sets: Different classification tasks ask for different
feature sets (see Section 4). It is not very likely that a feature
set delivering excellent performance on the separation of classical
and popular music works well also for the separation of techno and
hip hop music. Classifying music according to user preferences even
aggravates the problem.

Large search space for feature sets: There is no concisive feature set
from which we would select an appropriate subset for a new task
and data set by standard wrapper approaches (Kohavi and John,
1997). Even if it existed, it would be most cumbersome to enumer-
ate it.

In this paper, we present our approach to tackle the problems. We
present a unified framework for extraction methods in Section 2. The

1 For an overview, see (Pickens, 1996).
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Figure 1. The overall process of automatic feature construction for classification.

framework covers the known methods, and several new ones have been
added. The repository of elementary extraction operators allows us to
handle feature extraction as a sequence of data transformations which
delivers a feature set in the end. Hence, we construct a feature set for
each given task and data set, anew. Since it would be tedious to do
so by hand, we apply a learning algorithm to construct the feature set
for us. Section 3 describes the genetic programming approach to the
automatic construction of (nested) sequences of data transformations,
the method trees. The search within the universe of method trees is
guided by a fitness function. Here, we embed a classification learner:
the better the learning result using the transformed data, the higher
the fitness of the feature set (i.e., the method tree). Genetic program-
ming puts together the building blocks of feature extraction operators
according to the targeted classification task and data set. It outputs a
feature extraction method tree. Applying a method tree to the given
audio data delivers a transformed data set, i.e., the examples rewritten
by the corresponding feature set. This becomes the input to a second
learning step, namely classifier learning. Figure 1 shows the overall
process with the two learning steps, one using genetic programming,
the other using the support vector machine mySVM (Rüping, 2000)
for classifier learning. Please note that the learning scheme used in
the second learning step is also part of the feature extraction training.
In contrast to the second learning step described here the embedded
learning scheme works on an excerpt of the examples to estimate the
accuracy and provide a fitness value (fitness evaluation). Further details
are explained in Section 3 and 4. The approach is tested on the learning
tasks of genre classification and user preferences (Section 4).
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2. Methods for feature extraction

Audio data are time series, where the y-axis is the current amplitude
corresponding to a loudspeaker’s membrane and the x-axis corresponds
to the time. They are univariate, finite, and equidistant. We may gen-
eralize the type of series which we want to investigate to value series.
Each element xi of the series consists of two components. The first is
the index component, which indicates a position on a straight line (e.g.,
time). The second component is a m-dimensional vector of values which
is an element of the value space.

DEFINITION 1. A value series is a mapping x : IN → IR × C| m

where we write xn instead of x(n) and (xi)i∈{1,...,n} for a series of length
n.

This general definition covers time series as well as their transforma-
tions. All the methods described in the following refer to value series.
They are not only applicable to audio data, but to value series in
general. The usage of a complex number value space instead of a real
number value space allows a convenient way to use basis transforma-
tions like the Fourier transformation. Finally, the introduction of the
index component allows both equidistant and non-equidistant value
series.

Feature extraction methods for value series can be described in a
general framework. Such a framework offers the following advantages:

− Missing features for classification can be detected and their extrac-
tion methods be developed.

− Specialized methods can be decomposed into their general extrac-
tion methods.

- The repository of general extraction methods can easily be
implemented and extended.

- Combinations of extraction operators can be built, generating
a large variety of feature sets.

In other words, organizing a repository of elementary feature extraction
methods allows us to see the feature extraction for a certain learning
task as a sequence of methods. The known methods are fixed sequences
of such elementary extraction methods. Here, we give an overview of
the building blocks, so that we later on can flexibly construct sequences.
Details are omitted 2. Only the new notions of general windowing and
interval mark-up are presented in more detail.

2 For details and the comprehensive set of methods see the Yale system which
is available at http://yale.cs.uni-dortmund.de.
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2.1. Basis transformations

Basis transformations map the data from the given vector space into an-
other space. Audio data – like all univariate time series – are originally
elements of the vector space IR2. The basis B of a vector space V is a
set of vectors which can represent all vectors in V by their linear com-
bination. The only required operation on vector spaces as the domain
of transformations is the scalar product. Since the most common basis
transformation performed on audio data is the transformation into the
infinite space of harmonic oscillations we assume Hilbert spaces.

DEFINITION 2. Let H be a vector space with an inner product 〈f, g〉.
H is called Hilbert space if the norm defined by |f | =

√

〈f, f〉 turns
H into a complete metric space, i.e. any Cauchy sequence of elements
of the space converges to an element in the space.

The assumption of Hilbert spaces is no constraint, because all finite-
dimensional spaces with a scalar product (such as Euclidean space with
ordinary scalar product) are Hilbert spaces. However, we use Hilbert
spaces with an infinite number of dimensions to introduce the concept
of Fourier transformations. Therefore, we need an infinite-dimensional
Hilbert space of functions.

DEFINITION 3. Let P be a Hilbert space. If the elements f ∈ P are
functions, P is called a function space.

EXAMPLE 1. The set of all functions f : IR → IR with a finite integral

∞
∫

−∞

f2(x)dx

together with the inner product

〈f, g〉 =

∞
∫

−∞

f(x)g(x)dx

form a well known function space: L2.

2.1.1. Frequency space
The goal of Fourier analysis is to write the series (xi)i∈{1,...,n} as a
(possibly infinite) sum of multiples of the given base functions, which
are eiνx for all frequencies ν. A Fast Fourier Transformation (Cooley
and Tukey, 1965) maps the given time space into this frequency space
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Figure 2. Overlay of two curves, ν1 = 2Hz, a1 = 3 and ν2 = 8Hz, a2 = 1, shown
left in time space, right in frequency space after a Fourier transformation.

and is valid for audio data (Figure 2). The frequency space is a special
case of a function space. Therefore, the transformation uses the infinite
number of complex valued dimensions of a Hilbert space. Complex
numbers are necessary because Fourier transformations actually deliver
two values: the intensity of occurring frequencies and the phase shifts.

2.1.2. Correlation space
The frequency space expresses a sort of correlation between values in
terms of frequencies. For some features it would be more appropriate
to express the correlation in terms of time dependencies. Therefore, the
transformation into another space is used.

DEFINITION 4. The calculation of correlations of values between two
points in time, i and i + k, produce the correlation space, where
for each lag k their correlation coefficient in [−1,+1] is indicated.

Transforming audio data into the correlation space eases the recognition
of the speed of the music, measured in beats per minute. Assuming T
is the number of beats per measure and SR the sampling rate. If we
shift the original time series by shift = T · SR · 60/X for several
values of X we can determine the correlation between the original and
the shifted time series. Maximal correlation corresponds to minimal
difference between the shifted and the original series. Figure 3 shows
the differences of original values with the shifted ones. Clearly, the
difference at 97 beats per minute is minimal.

2.1.3. Reconstruction of state space
Nonlinear dynamic systems can be described with the aid of non-linear
differential equations. The number of variables which must be known
to completely describe the behavior of such a system corresponds to
the dimension of this system. These variables are called state variables.
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Figure 3. Autocorrelation differences for a phase shift depending on speeds ranging
from 90 to 170 beats per minute.

DEFINITION 5. The basis of the state space of a dynamic system
is given by the state variables of the system, i.e. the variables which
must be known to describe the system. The elements of a state space
represent the values of the state variables at the examined (time) points.

The state space emphasizes characteristics which can hardly be seen
in the original space. Since the state variables are often unknown, a
topologically equivalent space is constructed (Takens, 1980). This is
known as reconstruction of state space.

DEFINITION 6. Vectors within phase space are constructed, where
the components are parts of the original series:

pi = (xi, xi+d, xi+2d, ..., xi+(m−1)d)

where d is the delay, and m the dimension of the phase space. The set

Pd,m = {pi | i = 1, ..., n − (m − 1)d}

is the phase space representation of the original series (xi)i∈{1,...,n}.

Within the phase space, several features can be extracted, e.g.,
the angles between vectors. Small variances of angles indicate smooth
changes of the state variables, large variances harsh changes. This is
a dominant feature when separating classic from the more percussive
pop music as shown in Figure 4.

2.1.4. Reversibility
Basis transformations most often are reversible, because only the basis,
not the position of the elements is changed. In contrast, if intervals in
the index dimension are used, the transformation is not reversible. If,
for instance, we summarize the original series by some time intervals
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Figure 5. Intervals found in the index dimension are summarized.

and assign a value to each interval, the transformed series has still the
same number of elements but fewer different values (see Figure 5 for
illustration). We will discuss some possible ways to detect intervals in
different dimensions of a value series in Section 2.3.

2.2. Filters

Filters transform elements of a series to another location within the
same space. Moving average and exponential smoothing, for instance,
are filters. Many known transformations are subsumed by weighting
functions. We consider the window functions Bartlett, Hanning, Ham-
ming, Blackman-Harris, linear and exponential functions as particular
instances of a function fw(i) which weights the position within the
window.

DEFINITION 7. Given a value series (xi)i∈{1,...,n}, a filter yi = fw(i) ·
xi is a weight filter. The weighting function fw only depends on
the position i.

Other filters are the frequency passes, filtering the extremes, the Bark-
filter, and the ERB filter, which are all often used when analyzing music
data.
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2.3. Mark-up of intervals

In analogy to mark-up languages for documents, which annotate seg-
ments within a text, also segments within a time series can be anno-
tated.

DEFINITION 8. A mark-up M : S → C assigns an arbitrary char-
acteristic C to a segment S.

We define special instances of mark-up by assigning characteristic value
types to intervals in one of the dimensions of the considered space.

DEFINITION 9. An interval I : S → C is a mark-up within one
dimension. The segment S = (d, s, e) is given by the dimension d, the
starting point s, and the end point e. The characteristic E = (t, %)
indicates a type t and a density %.

Often clustering (e.g., k-means) is used in order to detect suitable inter-
vals (Hastie et al., 2001). A clustering scheme is only usable in dimen-
sions with a non-equidistant value distribution. Additionally, clustering
in one or several dimensions is a batch process to be applied to the
complete series. An incremental process is the signal to symbol process
(Morik and Wessel, 1999):

Signal to symbol processing: Given the series (xi)i ∈ {1, ..., n} with n
values, a decision function fe and an interval dimension,

initialize the interval counter with t = 1, start a new interval It

and add the first point.

For the remaining points of the series, do:

1. If fe(It, xi) = 1, then add xi to the current interval It.

2. Else close It, increase t by 1, and add xi to the new It.

Typical examples of the decision function fe refer to the gradient, deliv-
ering characteristics such as, e.g., increase, decrease. Signal to symbol
processing is applied to the index dimension (time). If intervals have
already been found in the value dimension, these can be used to induce
intervals in the index dimension. For instance, whenever a interval
change in the value dimension has been found, the current interval
in the index dimension is closed and a new one is started. Figure 6
illustrates this combination.
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(a) Series (b) Value intervals

(c) Index intervals (d) Result

Figure 6. The process of finding intervals in a series (a), first in the value dimension
(b), then projected on the index dimension (c), delivering (d).

2.4. Generalized windowing

Many known operators on times series involve windowing. Separating
the notion of windows over the index dimension from the functions
applied to the values within the window segment allows to construct
many operators of the kind.

DEFINITION 10. Given the series (xi)i∈{1,...,n}, a transformation is
called windowing, if it shifts a window of width w over (xi)i∈{1,...,n}

using a step size s and evaluates in each window the function F :

yj = F ((xi)i∈{(j·s+1,...,j·s+w}).

All yj together form again a series (yj)j∈{0,...,b(n−w)/sc}.

DEFINITION 11. A windowing which performs an arbitrary number
of transformations in addition to the function F is called general

windowing.

The function F summarizes values within a window and thus pre-
vents general windowing from enlarging the data set too much. Since
the size of audio data is already rather large, it is necessary to consider
carefully the number of data points which is handled more than once.

DEFINITION 12. The overlap of a general windowing with step size
s and width w is defined as g = w/s.

Only for windowings with overlap g = 1 the function can be omitted.
Such a windowing performs transformations for each window and is
called piecewise filtering. Section 2.6 investigates the runtime effects of
transformations used within general windowing and the overlap.
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Figure 7. Constructing the cepstral method from elementary extraction operators.

Combining general windowing with the mark-up of intervals allows
to consider each interval being a window. This results in an adaptive
window width w and no overlap, i.e. g = 1. Of course, this speeds up
processing considerably.

2.5. Functions

Transformations convert a series into another series. In contrast, func-
tions calculate single values from a series. The group of functions in-
cludes all kinds of statistics like different averages, variance and stan-
dard deviation. They refer to the value dimension. We may also consider
the index dimension, for instance, the point with the largest value or
highest amplitude. Often used functions are those indicating peaks.

DEFINITION 13 (k-Peaks function). The k-peak function delivers for
a series (xi)i∈{1,...,n} the position (index dimension), the height, and
the width of the k largest peaks.

It is an instance of finding extremes (minimum, maximum). Sim-
ilarly, the gradient of a regression line can be formulated. For audio
data, the spectral flatness measure or the spectral crest factor can be
expressed as an arithmetic combination of simple functions (Jayant and
Noll, 1984). The mel-frequency cepstral coefficients can be constructed
as a general windowing, where the frequency spectrum of the window
is calculated, its logarithm is determined and a psychoacoustic filtering
is performed, and the inverse Fourier transformation is applied to the
result. Figure 7 shows how the methods for feature extraction are put
together to compute the cepstral coefficients. From these coefficients
additional features can be extracted. It is easy to see how variants of
this series can be generated, e.g., replacing the frequency spectrum and
its logarithm by the gradient of a regression line.
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2.6. Some properties of the methods

Since large amounts of data have to be processed, each method must be
fast. Of course, the mere sequence of methods is then fast, too. What
needs to be checked is the effect of general windowing. How much does
the runtime increase, if we apply methods running in O(n2) within the
windows? How many data points are handled more than once? If the
step size s is 1, k windows of width n− k can be built. The number of
values to be processed increases from n to k ·(n−k). The value k = n/2
maximizes this product. In other words, for a step size of 1 the worst
case is a window size of w = n/2 for a series of length n. Then g = n/2
values are handled more than once.

In general, the number of windows for a series of length n and a step
size s is

k =
n − w

s
+ 1 =

n

s
− g + 1 (1)

We assume that all transformations occur only once in a sequence
of methods and that the number of methods is finite. The resulting
runtime for methods in O(n) is generally stated by Lemma 1.

LEMMA 1. General windowing using methods in O(n) has the worst
case runtime of O(gn − gw + w), where g is the overlap.

Proof. Processing data within a window costs O(w). k windows are
to be processed. The overall runtime is k · w:

k · w =

(

n

s
− g + 1

)

· w

=
n

s
w − gw + w

= gn − gw + w

Lemma 1 means, that for g = 1, a series is processed in O(n).
For g = 2 the effort becomes 2n − w which is more expensive than
processing the methods on the overall series since w is always less than

n. If g = n/2, the general windowing effort becomes n2

2 − wn
2 +w which

is an order of magnitude larger than the runtime of the inner methods
applied to the whole series.

Analogously, we state the runtime for general windowing for meth-
ods with logarithmic complexity, with quadratic complexity, and those
with exponential complexity.

LEMMA 2. Assuming that each method is applied at most once, gen-
eral windowing using methods in O(n log n) has the worst case runtime
of O(gn log w−gw log w+w log w), where g is the overlap, n the length
of the series, and w the width of the windows.
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LEMMA 3. Assuming that each method is applied at most once, gen-
eral windowing using methods in O(n2) has the worst case runtime of
O(gnw − gw2 + w2), where g is the overlap, n the length of the series,
and w the width of the windows.

LEMMA 4. Assuming that each method is applied at most once, gen-
eral windowing using methods in O(np) has the worst case runtime of
O(gnwp−1−gwp+wp), where g is the overlap, n the length of the series,
and w the width of the windows.

LEMMA 5. Assuming that each method is applied at most once, gen-
eral windowing using methods in O(an) has the worst case runtime of
O( gn

w aw − gaw + aw), where g is the overlap, n the length of the series,
and w the width of the windows.

We elaborate on the most common overlap of 2 and the worst of n/2.
The result indicates, when to use windowing and when to process the
overall series. For all but the linear complexity methods, the general
windowing is faster than applying the methods to the overall series,
if g = 1, and at least as fast if g = 2. If g = n/2, the runtime for
windowing is worse than the runtime for applying the methods to the
overall series except for exponential inner methods3.

3. Automatic construction of method trees

The elementary methods described above are combined in order to con-
struct more complex features for classification tasks. Figure 7 already
showed how elementary methods can be used for the reconstruction of
known complex feature extraction methods. There are many more com-
plex feature extraction methods which can be built using the framework
described above (Section 2). For instance, the general windowing may
apply a Fourier transformation so that the peaks of the transformed
series can be related with windows in time:

yj = maxindex(FT ({xi}i∈{j·s+1,...,j·s+w})))

The result is a value series, where the value of yj denotes the highest
frequency for each window. From this series, the average and variance
is built, yielding a good feature for the separation of techno and pop
music – the variance is greater in pop music.

It is rather cumbersome to find such combinations that perform well
for a classification task. We are looking for chains of method applica-
tions. Moreover, there might be some windowing within which such

3 When constructing features from audio data, exponential methods are not used.

MLJaudio.tex; 7/10/2004; 12:19; p.13



14 Mierswa and Morik

Filter

FFT MaxIndex

 Root

Avg/VarWindow.ExpSmo

Figure 8. A method tree for feature extraction built of elementary methods. Solid
arrows show the data flow, dashed lines define the tree structure.

chains are applied. This is a rather large search space (see Section 3.3).
It is too large to be inspected manually. Hence, genetic programming is
applied in order to look for the best combination of methods (Holland,
1986; Koza, 1992). The result is a complex method. Its use for the
classifier learning will be shown in Section 4.

In order to structure the huge search space, we may separate func-
tions, chains of method applications, and general windowing, where a
chain of method applications is applied to each window.

DEFINITION 14. A chain consists of an arbitrary number of trans-
formations and a function at the end.

A function is a chain with no transformations. It has the length 1. A
longer chain consists of some transformations followed by a function.
In any case, a chain delivers one value. Incorporating windowings leads
to the concept of method trees:

DEFINITION 15. A method tree is a general windowing whose
children build a chain. If the chain entails a windowing, this becomes
the root of a new, embedded method tree.

The methods which are performed on each window can be seen as
children of the windowing operator. Together they output a value series.
The tree structure emerges from the nesting of windowing operators.

An example of a method tree is shown in Figure 8, where the root
identifies the element within the search space. Its four children are
exponential smoothing, a filtering, another method tree consisting of
the chain just described (Fourier transformation with peaks applied to
windows), and the average of the peaks. This last child returns the
desired features.

Before the genetic programming approach is technically described,
Figure 9 presents the process of automatically extracting features for
a given classification task and data set. The picture details on the first
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Figure 9. Automatic feature extraction using genetic programming.

box of Figure 1 above which shows the overall process. The search space
within which the best method tree is to be found is called the universe
of method trees. A population is a set of method trees. The navigation
within the universe of method trees is a cycle of selecting a population,
applying the method trees to the raw data, evaluating the fitness of the
population, and enhancing the fittest method trees further to build a
new population (Section 3.2). This cycle corresponds to the standard
process of genetic algorithms. What differs from the standard is that
method trees instead of binary vectors form the search space, that the
search space is structured, and that the fitness evaluation is not merely
a function but the result of running another learning algorithm.

3.1. Representation

Genetic programming constructs finite automata. Here, method trees
are to be constructed. They are represented by XML expressions. Fig-
ure 10 shows the representation of the method tree from Figure 8.
The Yale system executes such trees and takes care of the syntactic
well-formedness.

The restriction that chains are concluded by a function implies a
level-wise structure of all possible method trees. The lowest level 1
entails only functions. These are chains of length 1. The next level, 2,
covers chains with a concluding function. Levels 3 and above entail
windowing. Method trees are constructed according to their levels.
The level-wise growing means small changes to a current method tree.
On the one hand, this reduces the probability of missing the optimal
method tree. On the other hand, it may slow down the search, if the
fitness of the lower levels does not distinguish between good and bad
method trees.
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<operator name="Root" class="ValueSeriesPreprocessing">

<operator name="Chain 1" class="OperatorChain">

<operator name="ExpSm" class="ExponentialSmoothing" />

<operator name="Filter" class="FilterTransformation" />

<operator name="Windowing" class="Windowing">

<parameter key="overlap" value="2"/>

<operator name="Chain 2" class="OperatorChain">

<operator name="FFT" class="FastFourierTransform" />

<operator name="MaxIndex" class="MaxIndexPoint" />

</operator>

</operator>

<operator name="Avg" class="AverageFunction" />

</operator>

</operator>

Figure 10. XML method tree representation for Yale.

3.2. Mutation, crossover, and selection

The operations of genetic programming are mutation and crossover. By
random, mutations insert a new method, delete a method, or replace a
method by one of the same class, i.e. by a function or transformation.
Crossover replaces a sub-tree from one method tree by a sub-tree from
another method tree, respecting the well-formedness conditions. This
means that the roots of the sub-trees must be of the same type of
methods.

For selection purposes, the fitness of all method trees is expressed
by a roulette wheel, i.e. fitness proportional parts of a wheel’s 360
degrees. The larger the portion, the more likely it becomes that the
particular individual is selected for the next generation or crossover.
Other possible selection schemes include tournament selection, where t
method trees are randomly chosen from the population and the winner
of this set, i.e. the method tree with the largest fitness, is added to
the next generation. The parameter t allows the definition of selection
pressure.

3.2.1. Fitness evaluation
Since method trees serve classification in the end, the quality of clas-
sification is the ultimate criterion of fitness. Individuals which provide
better classification results when used as features for the classification
task at hand should have a greater probability to survive into the next
generation. To evaluate the fitness of each method tree in a population
the following steps are performed:

1. Each individual method tree is applied to an excerpt of the raw
data.
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2. This method application returns a transformed data set, which is
used by classifier learning.

3. A k-fold cross validation is executed to estimate the performances of
the learning scheme in combination with the feature sets provided
by the method trees.

4. The mean accuracy, recall, and/or precision of the result becomes
the fitness value of the applied feature construction method trees.

5. The fitness values of the method trees are used to build the next
population with one of the selection schemes described above.

3.3. Some properties of the search space

Automatically constructing methods for feature extraction which de-
liver well suited feature sets for classifier learning is a demanding task.
How fast can we expect a good result to be found? This general question
can be split into three more specific ones. First, the size of the search
space is important. Second, the complexity of processing one individual
in the search space helps to bound the overall complexity of search.
Third, the convergence to an optimum determines the speed of the
genetic programming. The last issue is not yet solved. Even simple evo-
lutionary algorithms demand complicated proofs (Droste et al., 1998).
Here, we answer the first and second question.

3.3.1. Size of the search space
If all mathematical operations were allowed within method trees, the
search space would become infinite, hence only a fixed set of trans-
formations and functions are allowed. Let T0 be the number of trans-
formations and F the number of functions, n the length of the input
series. The number of possible methods at level 1 becomes F . At level
2, transformations could be applied once in any order. The two levels
can be summarized. For chains of length k, there exist the following
number of different chains:

K0 = F ·
T0
∑

k=0

T0!

(T0 − k)!
(2)

The higher levels are produced by windowing. Within the windows, a
chain of transformations is executed, if no nested windowing is allowed.
Hence, there exist as many windowing operations as there are chains
(equation 2). Adding the number of windowed transformation chains
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K0 to the other transformations T0 returns the number of method trees
at level 3:

T1 = T0 + K0 = T0 + F ·
T0
∑

k=0

T0!

(T0 − k)!
(3)

For nested structures, the recursive structure can be illustrated by
equation 4:

T2 = T0 + K1 = T0 + F ·
T1
∑

k=0

T1!

(T1 − k)!
(4)

The depth of nested windowing is restricted by the length of the series:
after n − 1 levels of embedded windowing, there is no data of a series
with n points left for further windowings. Hence the overall size of the
search space of all method trees is upper bounded by:

|SearchSpace| ≤ F ·

Tn−1
∑

k=0

Tn−1!

(Tn−1 − k)!
(5)

Each element in the search space delivers as many features as are
determined by the concluding function. If genetic programming has
to construct more features, it can either be applied several times, or
transformations can be applied more than once. In the latter case,
equation 5 states the lower bound of the search space size.

3.3.2. Processing a method tree
Until now we have ignored that the window size of embedded window-
ings must become smaller for increased depth of embedding. Regarding
the embedded windowing operators leads to the notion of dynamic
windowing.

DEFINITION 16. Let (xi)i∈{1,...,n} be the original value series of length
n and d ∈ {2, ...n/2}. Windowing with overlap g, width w = n/d and
step size s = n/gd is called dynamic windowing.

The maximal depth of a method tree can now be determined.

LEMMA 6. Given a value series (xi)i∈{1,...,n} of length n, a method
tree using dynamic windowing cannot exceed the depth of logd n − 1.

Proof. Dynamic windowing splits the series into windows of width
n/d. The width depends on the length of the series as well as on
parameter d. For embedded windowing, only n/d values are available.
Windows on this smaller series have a window width of n/d2. Only
logd n − 1 repetitions are possible. The last embedding of windowing
with width

n

dlogd n−1
=

n
dlogd n

d

=
nd

n
= d
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does not allow any further windowing, because then only one value
would remain for a window.

Remember that the number of windows with overlap g on a series
of length n is n/s− g + 1 (equation 1). Combining the maximal depth
of a method tree with the number of windows and their computation
efforts estimates the worst runtime complexity of a method tree.

THEOREM 7. Let CM(n) be the complexity of applying an internal
method of at most quadratic time complexity to a series of length n.
Using dynamic windowing, no method tree requires a runtime which is
exponential in the length of the series (xi)i∈{1,...,n}.

Proof. The number of windows times the effort per window deter-
mines the overall effort. Using equation 1 this is for a first level:

(

n

s
− g + 1

)

· CM

(

n

d

)

= (g(d − 1) + 1) · CM

(

n

d

)

Embedding a further windowing delivers at level i the following effort
estimation:

(g(d − 1) + 1)i · CM

(

n

di

)

Using Lemma 6 for the bound of i results in the total effort:

(g(d − 1) + 1)logd n−1 · CM

(

n

dlogd n−1

)

= (g(d − 1) + 1)logd n−1 · CM

(

n · d

n

)

= (g(d − 1) + 1)logd n−1 · CM(d) (6)

For the worst case of CM(d) = d2, equation 6 becomes:

(g(d − 1) + 1)logd n−1 · d2

=
d2

g(d − 1) + 1
· n

1
logg(d−1)+1 d

=
d2

g(d − 1) + 1
· nlogd(g(d−1)+1)

As is easily seen, the runtime is not exponential in the length of the
series, but is limited by the overlap and the parameter d and is therefore
pseudo-polynomial.

Dynamic windowing avoids a particular case with exponential effort,
which otherwise could easily be constructed. If, for instance, the series

MLJaudio.tex; 7/10/2004; 12:19; p.19



20 Mierswa and Morik

classifier learning

classifier learning:

mySVM

learned feature extraction

method tree

transformed

training set

feature selection

optimized

training set

raw
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learned

classifier

Figure 11. Classifier learning step using the best method tree found by the genetic
programming approach.

was divided into two windows at each level with a fixed step size but
dynamic window width, the effort would be 2i ·O( n

2i ) at the i-th level.
After n−1 splits, no further embedding of windowing is possible, since
only two values are left. Hence, the overall effort would be 2n. This
exponential construction, however, does not obey dynamic windowing
with fixed overlap and dynamic width. Hence, it cannot happen in our
scenario.

4. Classification using learned method trees

Automatic feature construction aims at good results of a second learn-
ing step which uses the features, namely classifier learning. Remember
Figure 1 from the introduction, where genetic programming were pre-
sented to deliver the input to classifier learning. Now, Figure 11 details
the second box of the overall picture.

Feature construction is already guided by the classification task in
that cross-validated learning determines the fitness of method trees
(individuals of genetic programming). Now, also feature selection is per-
formed by a simple evolutionary method, namely the (1+1)EA (Bäck
et al., 1997). Again, the classification task decides upon the fitness. The
feature set is built using a subset of the training data. The selected
method trees are then applied to all the training data. The support
vector machine mySVM is applied to these rewritten data and learns
a classifier.

4.1. Classifying genres

Since results are published for the genre classification task, we have
applied our approach to this task, too. Note, however, that no pub-
lished benchmark data sets exist. Hence, the comparison can only show
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Table I. Classification of genres with a linear SVM using the
task specific feature sets.

Classic/pop Techno/pop Hiphop/pop

Accuracy 100% 93.12% 82.50%

Precision 100% 94.80% 85.27%

Recall 100% 93.22% 79.41%

Error 0% 6.88% 17.50%

that feature construction and selection leads to similar performance as
achieved by other approaches. For the classification of genres, three
data sets have been built.

− Classic/pop: 100 pieces for each class were available in Ogg Vorbis
format.

− Techno/pop: 80 songs for each class from a large variety of artists
were available in Ogg Vorbis format.

− Hiphop/pop: 120 songs for each class from few records were avail-
able in MP3 format with a coding of 128 kbits/s.

The classification tasks are of increasing difficulty. Using mySVM with
a linear kernel, the performance was determined by a 10-fold cross
validation and is shown in Table I. Concerning classic vs. pop, 93%
accuracy, and concerning hiphop vs. pop, 66% accuracy have been
published (Tzanetakis, 2002; Tzanetakis et al., 2001).

41 features have been constructed for all genre classification tasks.
For the distinction between classic and pop, 21 features have been
selected for mySVM by the evolutionary approach. Most runs selected
features referring to the phase space (angle and variance). The use of
features can also be inspected by restricting a top-down induction of
decision trees to a few levels. For a one level stump, 93% accuracy could
be achieved by just using the RMS volume, i.e. the root mean square
average of the series.

For the separation of techno and pop, 18 features were selected for
mySVM, the most frequently selected ones being the filtering of those
positions in the index dimension where the curve crosses the zero line.
The decision tree starts with a phase space feature, the average of
angles. A one level stump uses the starting value of the second frequency
band, giving a benchmark of 76% accuracy.

For the classification into hiphop and pop, 22 features were selected
with the mere volume being the most frequently selected feature. The
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Table II. Classification performance using the same
non-tailored standard feature set for all classification
tasks (linear SVM).

Classic/pop Techno/pop Hiphop/pop

Accuracy 96.50% 64.38% 72.08%

Precision 94.12% 60.38% 70.41%

Recall 95.31% 64.00% 67.65%

Error 3.50% 35.63% 27.92%

Table III. Classification errors with respect to
different learning schemes.

Classic/pop Techno/pop

SVM (linear) 0.00% 6.88%

SVM (rbf) 1.50% 14.38%

C4.5 0.00% 7.50%

k-NN 3.00% 9.38%

Naive Bayes 2.50% 10.63%

decision tree classifying hiphop against pop is rather complex. It starts
with the length of the songs. Experiments with naive Bayes and k-NN
did not change the picture: an accuracy of about 75% can easily be
achieved, increasing the performance further demands better features.

To demonstrate the effect of tailored feature sets for each classifica-
tion task we performed experiments with the same feature set for all
data sets. We used only features which were used in at least 50% of
all subsets produced by feature selection for all data sets to simulate a
reasonable standard feature set. Table II shows the classification per-
formance for a linear SVM estimated with a 10-fold cross validation.
The performance is significantly lower than the performance which can
be achieved using the tailored feature sets (see Table I).

Table III shows the achieved classification errors with respect to
different learning schemes. Since the extraction of features and the
transformation in another feature space is performed by the applied
method tree, the usage of a linear kernel function is actually no restric-
tion. Therefore, we use a linear SVM for all our experiments and as
inner learner to estimate the fitness of the method trees. The conclu-
sions which can be drawn from Table II and III indicate that a tailored
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Table IV. Classification according to user prefer-
ences.

User1 User2 User3 User4

Accuracy 95.19% 92.14% 90.56% 84.55%

Precision 92.70% 98.33% 90.83% 85.87%

Recall 99.00% 84.67% 93.00% 83.74%

Error 4.81% 7.86% 9.44% 15.45%

set of task specific features and not the quality of the learning scheme
is the crucial aspect for the successful classification of audio data.

4.2. User preferences

Recommendations of songs to possible customers are currently based
on the individual correlation of record sales. This collaborative filtering
approach ignores the content of the music. A high correlation is only
achieved within genres, because the preferences traversing a type of
music are less frequent. The combination of favourite songs into a set
is a very individual and rare classification. It is not a generalization of
many instances. Therefore, the classification of user preferences beyond
genres is a challenging task, where for each user the feature set has to
be learned. Of course, sometimes a user is interested only in pieces of
a particular genre. This does not decrease the difficulty of the classi-
fication task. In contrast, if positive and negative examples stem from
the same genre, it is hard to construct distinguishing features. Genre
characteristics might dominate the user-specific features. As has been
seen in the difficulty of the data set for hiphop vs. pop, sampling from
few records also increases the difficulty of learning. Hence, four learning
tasks of increasing difficulty have been investigated.

Four users brought 50 to 80 pieces of their favourite music ranging
through diverse genres. They also selected the same number of negative
examples. User 1 selected positive examples from rock music with a
dominating electric guitar. User 2 selected positive as well as negative
examples from jazz music. User 3 selected music from classic over latin
and soul to rock and jazz. User 4 selected pieces from different genres
but only from few records. Using a 10-fold cross validation, mySVM
was applied to the constructed and selected features, one feature set
per learning task (user). Table IV shows the results.

The excellent learning result for a set of positive instances which
are all from a certain style of music corresponds to our expectation
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(user 1). The expectation that learning performance would decrease if
positive and negative examples are taken from the same genre is not
supported (user 2). Surprisingly well is the learning result for a broad
variety of genres among the favourites (user 3). This fact indicates that
for this user the constructed feature set supports the building of pref-
erence clusters in feature space instead of dominating genre clusters. In
contrast to this result the (negative) effect of sampling from few records
can be seen clearly (user 4). Applying the learned decision function to
a database of records allowed the users to assess the recommendations.
They were found very reasonable. No particularly disliked music was
recommended, but unknown plays and those, which could have been
selected as the top 50.

Of course, this method of user preference recognition is just the first
step. There are several ways to improve the results. For instance, users
could indicate those examples that must be classified correctly, because
they feel that it is an essential expression of their taste. Weighting
examples as a further cost function for learning has been investigated in
(Klinkenberg, 2004). The inspection of the chosen features by the users
themselves is not yet possible. Regular users are not acquainted with
Fourier transformation and peaks, for instance, but would like to see
understandable and interpretable features. Perhaps some visualization
of features and mySVM results could satisfy the users’ curiosity. An
open question is how to circumvent or at least decrease the required
number of negative examples, since users don’t like to go through long
play lists in order to gather negative examples.

5. Conclusion

In this paper, operators for the analysis of large collections of audio data
have been presented in a unifying framework. Some new operators have
been developed, for instance those in the phase space. Other operators
have been generalized, for instance, the windowing and mark-up op-
erators. The operators are organized by method trees, which extract
complex features. All known feature extraction methods for audio data
are covered, either directly as an operator, or as the result of a method
tree. Many different method trees (features) can be built from the prim-
itives of the framework. The method trees are automatically generated
for a certain classification task by a genetic programming approach.

Of course, complexity has been an issue. The construction of method
trees is restricted to functions at the first level, chains concluded by
a function at the second level, and to windows embedding chains at
higher levels. The complexity of windowings including methods of a
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certain complexity has been investigated. It was shown under which
circumstances windowing decreases runtime, compared to processing
the overall value series. Dynamic windowing with reasonable parame-
ters prevents the approach from becoming infinite or exponential in the
length of a series. The countable search space for method trees has been
shown to be very large but at least not infinite if each transformation
is only allowed once. On the one hand, the size of the search space
makes automatic feature extraction a hard task. This seems to be a
disadvantage. On the other hand, the large number of elements in the
search space means that very many feature extraction methods are
covered by the implemented system. This seems to be an advantage. A
tight bound tells how many different method trees can be constructed.

The crucial question is whether the covered methods and their au-
tomatic construction are tractable, feasible, and deliver good classifi-
cation results in the end. Two types of classifier learning tasks have
been tried in order to answer this question: classifying genres and user
preferences. The experiments showed encouraging results. Further work
should decrease the required number of negative examples and ease
user interaction by visualization of both, features and classification
results. Since all methods are defined for value series in general, it
would be interesting to see whether the approach can also be applied
to image data in the form of vectors or other high-dimensional series
data. Another topic for further research is the real-time classification
according to user preferences. Genre classification can be done in real-
time, because an appropriate feature set can be learned in advance. In
contrast, a real-time classification of the preferences of diverse users
does not allow to find the feature sets beforehand. Recommendation
systems address different users, so that they cannot adjust to a partic-
ular one. Real-time recommendation would require automatic feature
construction while the user classifies some examples. Here, a combina-
tion of collaborative filtering and feature extraction for types of users
could be combined. Finally, an electronic DJ would be a challenging
system to develop. In addition to the classification of single music
plays, appropriate sequences of plays would then need to be taken into
account.
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