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Abstract. Designing the representation languages for the input,Lg,
and output, Ly, of a learning algorithm is the hardest task within ma-
chine learning applications. This paper emphasizes the importance of
constructing an appropriate representation Lg for knowledge discovery
applications using the example of time related phenomena. Given the
same raw data — most frequently a database with time-stamped data
— rather different representations have to be produced for the learning
methods that handle time. In this paper, a set of learning tasks dealing
with time is given together with the input required by learning meth-
ods which solve the tasks. Transformations from raw data to the desired
representation are illustrated by three case studies.

1 Introduction

Designing the representation languages for the input and output of a learning
algorithm is the hardest task within machine learning applications. The “no free
lunch theorem” actually implies that if a hard learning task becomes easy be-
cause of choosing appropriate representations, the choice of or the transformation
into the appropriate representation must be hard [38]. The importance of Ly,
the representation of the output of learning, is well acknowledged. Finding the
hypothesis space with most easily learnable concepts, which contains the solu-
tion, has been supported by systems with declarative language bias [18], [11], [7]
or representation adjustment capabilities [35],[39]. It is also the key idea of struc-
tural risk minimization, where the trade-off between complexity and accuracy of
a hypothesis guides the learning process [37].

The importance of Lg, the representation of the input of learning, has re-
ceived some attention only recently. Transforming the given representation of
observations into a well-suited language Lr may ease learning such that a sim-
ple and efficient learning algorithm can solve the learning problem. For instance,
first order logic examples and hypothesis space are transformed into proposi-
tional logic in order to apply attribute-value learning algorithms [23], [22]. Of
course (and in accordance with the “no free lunch theorem”), the transformed
set of examples might become exponentially larger than the given one. Only
if some restrictions can be applied, the transformation plus the transformed



learning problem are indeed easier than the original learning problem on the
original representation. The central issue is to find appropriate restrictions and
corresponding transformations for a given task [19].

The problem of designing Lg is not limited to the representation formal-
ism but includes the selection or construction of appropriate features within a
formalism [24]. The problem has become particularly urgent, since knowledge
discovery confronts machine learning with databases that have been acquired
and designed for processes different from learning. Given mature learning algo-
rithms and the knowledge of their properties, the challenge is now to develop
transformations from raw data Lg to suitable Lg:. The transformation can be
a learning step itself so that Lg, delivers Ly, = Lg,, or it can be another
aggregation or inferential step. In general, we consider a series of transforma-
tions from the given raw data Lg, to the input of the data mining step, Lg,*.
The technical term of “preprocessing” seems euphemistic when considering the
effort spent on this transformation sequence in comparison to the effort spent
on the data mining step. Rather we might view the exploration and design of
tranformations a representation race where the winner leads to the most efficient
and accurate learning of the interesting concept, rules, or subgroups. The new
European project MININGMART aims at supporting end-users in winning the
representation race.

This paper emphasizes the importance of transforming given data into a form
appropriate for (further) learning. The MININGMART approach to supporting a
user in this difficult task is illustrated by learning tasks which refer to time
phenomena. First, the project is briefly described. Since it has just begun, only
the main idea and the goals are reported. Second, time phenomena are discussed.
Handling time is an excellent example of how data sets can be transformed in
diverse ways according to diverse learning tasks and algorithms that solve them.
Different views of time phenomena are elaborated and an overview of existing
methods is given. Third, preprocessing operators for handling time phenomena
are discussed on the basis of three case studies.

2 The MiningMart Approach

The MININGMART will be a system supporting knowledge discovery in databases.
A set of transformation tools/operators will be developed in order to construct
appropriate representations Lgs. Machine learning operators are not restricted
to the data mining step within knowledge discovery. Instead, they are seen as pre-
processing operators that summarize, discretize, and enhance given data. This
view offers a variety of learning tasks that are not as well investigated as is
learning classifiers. For instance, an important task is to acquire events and their
duration (i.e. a time interval) on the basis of time series (i.e. measurements at
time points). The tools improve the quality of data with respect to redundancy
and noise, they assist the user in selecting appropriate samples, in discretizing

! This relates the issue of preprocessing closely to multistrategy learning [26].



numeric data and provide means for the reduction of the dimensionality of data
for further processing. Making data transformations available includes the de-
velopment of an SQL query generator for given data transformations and the
execution of SQL queries for querying the database.

The main problem is, that nobody has yet been able to identify reliable rules
predicting when one algorithm should be superior to others. Beginning with the
MLT-CONSULTANT [34] there was the idea of having a knowledge-based system
support the selection of a machine learning method for an application. The MLT-
CONSULTANT succeeded in differentiating the nine MLT learning methods with
respect to specific syntactic properties of the input and output languages of the
methods. However, there was little success in describing and differentiating the
methods on an application level that went beyond the well known classification
of machine learning systems into classification learning, rule learning, and clus-
tering. Also, the European STATLOG-Project [27], which systematically applied
classification learning systems to various domains, did not succeed in establish-
ing criteria for the selection of the best classification learning system. It was
concluded that some systems have generally acceptable performance. In order to
select the best system for a certain purpose, they must each be applied to the task
and the best selected through a test-method such as cross-validation. Theusinger
and Lindner [36] are in the process of re-applying this idea of searching for sta-
tistical dataset characteristics necessary for the successful applications of tools.
An even more demanding approach was started by Engels [13]. This approach
not only attempts to support the selection of data mining tools, but to build
a knowledge-based process planning support for the entire knowledge discovery
process. To date this work has not led to a usable system [14]. The European
project METAL now aims at learning how to combine learning algorithms and
datasets [8]. At least until today, there is not enough knowledge available in
order to propose the correct combination of preprocessing operations for a given
dataset and task.

The other extreme of the top-down knowledge-based approach to finding ap-
propriate transformation sequences is the bottom-up exploration of the space
of preprocessing chains. Ideally, the system would evaluate all possible transfor-
mations in parallel, and propose the most successful sequence of preprocessing
steps to the user. This is, however, computationally infeasible. Therefore, the
MININGMART follows a third way. It allows each user to store entire chains of
preprocessing and analysis steps for later re-use in a case-base (for example, a
case of preprocessing for mailing-actions, or a case of preprocessing for business
reports). Cases are represented in terms of meta-data about operators and data,
are presented to the users in business terms, and are made operational by SQL
query generators and learning tools. The case-base of preprocessing and analy-
sis tasks will not only assist the inexperienced user through the exploitation of
experienced guidance from past successful applications, but will also allow any
user to improve his or her skill for future discovery tasks by learning from the
best-practice discovery cases.



3 Handling Time Phenomena

Most data contain time information in one way or another. Think, for instance,
of a database storing warranty cases. Among data about the sold item including
its production date, there would be data about the sale including the selling date,
data about the warranty case together with the date of the claim, the expiration
time of warranty, and the payment. Time stamps are natural attributes to all
objects described in the database. Depending on the learning task, the same raw
data are transformed into rather different example sets. Some of these simply
ignore the time stamps, but others take particular care of time phenomena. In
this section, first an overall view of time phenomena is presented. This is a
necessary step towards a meta-level description of learning tasks related with
time. Algorithms that solve one such task are briefly presented in the following
subsections. This section concludes wih a list of Lgs required by the learning
methods.

3.1 Structuring time phenomena

For the overall view, we may structure time phenomena by two aspects, linear
precedence and immediate dominance. These terms have been defined in natural
language theory [15]. Linear precedence refers to the ordering of elements in a
sequence. It is the relation between elements occuring along the time axis, hori-
zontally depicted in Figure 1. Most statistical approaches are restricted to this
aspect of time. Immediate dominance refers to categories of the time-dependent
elements. Categories summarize observations to events of increasingly abstract
levels?. The linear precedence relation between most abstract categories is prop-
agated to the lowest level of interest, the actually observable actions or events.
Sequencing rules often refer to categories (events) instead of their elements.

immediate dominance

attributes

time

linear precedence

Fig. 1. The overall view of time phenomena

Learning tasks concerning linear precedence are:

2 Mannila and Toivonen name the basic observations events and the higher level cat-
egories episodes.



Prediction: Given a sequence of elements until time point ¢;, predict the ele-
ment that will occur at time point #;4,,. We call n the horizon.

Characterization: Characterize a time ordered sequence of elements by its
trend (i.e. the elements are increasingly or decreasingly ordered over time),
a seasonal increasing or decreasing peak, or a cyclic ordering of elements. The
cyclic ordering can be described by a function (e.g., sinus, cosinus, wavelet).

Time regions: Given time gaps between occurences of elements, predict a time
interval in which an element is to be expected.

Level changes: Detect time points in a sequence of elements, where the ele-
ments are no longer homogenous according to some measure.

Clustering: Given subsequences in a sequence of events find clusters of similar
sequences.

Note, that methods about linear precedence can be used to solve the problem of

forming (basic) categories. It is evident, that finding trends, seasons, cycles, level

changes, and clusters can be used to discretize time series. Hence, these learn-

ing tasks can be considered as preprocessing for the learning tasks concerning

immediate dominance. They are valuable tasks in their own right, though.
Learning tasks concerning immediate dominance are:

Frequent Sequences: Given sequences of events, learn the precedence relation
between sets of events. The sets of events in precedence relation have also
been called episodes.

Non-determinate sequence prediction: Given a sequence of observations
and the background knowledge about characterizations and categories of
the basic observations, learn a set of rules that is capable of producing legal
sequences.

Relations: Given events and their duration (i.e. a time interval), learn se-
quences of events in terms of relations between time intervals. Time relations
are the ones defined in Allen’s time calculus [4, 5]: overlap, inclusion, (direct)
precedence, ...

Higher-level categories: Given events and their duration together with a clas-
sification in terms of a category c of the next higher level, learn the definition
of c.

Non-determinate sequence prediction has been solved by [25] and has currently
received attention in the context of biochemical analyses [31]. It is also the task
that has to be solved for language learning. Since the datasets for sequence pre-
diction do not include any explicit time stamp, we do exclude this very interesting
issue here.

A more detailed structure of time phenomena distinguishes between handling
abstract and actual time. Consider, for instance, the action of sweetening tea.
This category summarizes the actions of putting sugar into the tea and stiring.
These categories, in turn, can be instantiated by various alternative observable
actions (e.g., using a spoon or pouring the sugar into the cup). It is not at all
important, how long after putting the sugar in, one has to start stiring. Nor
is the actual time in seconds interesting for the duration of stiring — stiring is



performed as long as the sugar is not yet dissolved. This illustrates abstract time.
Consider, in contrast, the duration of drawing the tea. Here, the actual time of
3 minutes is important. In principle, all the tasks listed above could be solved
with respect to abstract or to actual time. However, learning tasks concerning
linear precedence are typically solved using actual time.

An important choice when describing actual time is the scale. We may use
seconds, minutes, days, months or even milleniums. Moreover, even for the same
granularity, we may choose different scales of referene. For instance, measure-
ments of vital signs in intensive care units are recorded on a minute to minute
basis. Counting the minutes does not start at midnight (day time), but when the
patient is connected to the monitoring machines (duration of stay). Transform-
ing the data from one scale to the other allows to discover different regularities.
The morning visit, for instance, explains why the therapy is adjusted in a time
interval where the patient’s state it not worse than, say, at 2 o’clock in the night.
Other therapeutical interventions can better be explained using the scale refer-
ring to the duration of stay. Hence, the description of Lg should indicate the
scale.

3.2 Statistical Approaches

Statistical approaches view time series as observing a process where a mea-
surement depends on previous measurements®. In principle, the time axis is
structured into three areas: the relevant past, the current observations and the
observation to be predicted. Diverse functions are chosen to compute a value
for the measurements of the relevant past: the average (in simple moving av-
erage procedures), the weighted average, where more recent measurements are
multiplied by a higher weight than the ones that occured longer ago (weighted
moving average), or the weights are such that weights for the relevant past and
the weight for the current observation sum up to 1 (exponential moving average),
smoothing algorithms use the median for values of the relevant past. Another
algorithm uses the gradient [30]. Autocorrelation procedures (ARMA) consider
whether past values and current value show the same (r = 1) or opposite di-
rection (r = —1) and possibly use 72. Choices regarding moving average models
refer to noise models, the number of observations in the window (lag) of the
relevant past, and whether more than one current observation is considered.

Filtering approaches consider the function over time and filter out the peaks
(high pass) or the slow move (low pass). Possibly, Fourier analysis is applied
decomposing the original curve into a set of sinus and cosinus curves. This is, of
course, only possible, if measurements are not received on-line, but the curve is
given in total.

Multivariate time series analysis is capable of considerung the dynamics over
time of up to about 5 attributes. Frequently, a multivariate time series is decom-

3 Since this overview of statistical approaches corresponds to textbooks, I do not give
references, if the particular method will not be used in succeeding sections. Focusing
on data mining, [32] explains statistical approaches comprehensively.



posed into a set of univariate time series, thus disregarding the dependencies of
different attributes.

In addition to the learning task of predicting the next measurement, the
detection of trends, cycles, and seasons is investigated. For abstracting the time
point view of linear precedence into time intervals of actual time, the detection
of level changes can be used. An interesting recent approach is to transform the
time series into a phase space [6]. The visualisation clearly shows regularities
that cannot be recognized in the original form. The summary of time intervals
according to a level can be seen as a first step towards immediate dominance.

The task of clustering subsequences has been solved in order to obtain cat-
egories as input to finding frequent sequences [9]. All subsequences of window
length w are formed and similar subsequences are clusterd together. The clus-
ters are labeled. The original sequence is transformed into the sequence of labels.
The categories apply to overlapping sections of the original curve. This has to be
taken into account, when using clustering as preprocessing for rules discovery.

The notion of examples becomes difficult when investigating time series. For
instance, all minutely measurements of n attributes of a process are just one
example for an n-variate time series. The prediction task is solved for one exam-
ple, although by the technique of moving windows, many subseries are obtained
and exploited for learning. The learning result is then applied to the very same
process. If the process is something like the stock market or the wheather, there
is, in fact, no other similar process available. We do not want to generalise the
American, the Japanese, and the German stock market, if they are not (yet)
observations of the same global economical process. Nor do we want to gen-
eralise the “wheather” of different planets. Hence, time series analysis really
differs from the well established paradigm of empirical risk minimization, which
assumes many independent observations of different individuals (processes). Let
us look at other time stamped data. If warranty claims are analysed, the recall
of mailing actions, or christmas sales, the aim is to generalize over sets of cus-
tomers. This is in accordance with the principle of risk minimization. In order
to apply time series methods, we have to perform the generalization step in ad-
vance. This can easily be done, for instance, by summing up the sales data of all
shops. The result is one time series. It looks exactly like the time series of one
process. However, it makes a difference in that less observations from the past
are needed, because the present “observation” is already empirically based.

3.3 Frequent groups

The discovery of subgroups is one of the most common tasks of knowledge dis-
covery. Originated in the database field, there is no assumption about the process
producing the data. The typical database stores a huge amount of independent
elements (e.g., contracts, sales, warranty cases). Frequent patterns in the data
generalize over masses of time series. Association rules describe that some ele-
ments frequently occur together (frequent item sets). According to the confidence
measure, the set is divided into an indicator set and an expected set. Although



presented for basket analysis, the well-known APRIORI algorithm exploits an or-
dering of the items [1,2]. Hence, it can easily be applied to sequences [3]. We only
need to interpret the ordering as the time attribute. The confidence measure re-
quires some adjustment. Rules of the form A —1 B state that if A occurs, then
B occurs within time 7. The frequency F(A, B,T) is determined by counting,
how often A precedes B, given a window of size T'. The confidence for the rule
can be defined as %, where F'(A) denotes the frequency of A [9]. A vari-
ety of algorithms concerning the discovery of frequent sequences exist, ranging
from just testing a user-specified sequence pattern [16] to relational approaches
[10]. Frequent subsequences can be detected using atual or abstract time. The
algorithms can be applied directly to the time stamped data, or a categorisation
step is performed in advance.

3.4 Relational learning

Often, it is interesting to find relations between durations of diverse events or
categories. We might be interested in dependencies between events that are pro-
duced by different processes or abstract relations such as “as long as” or “directly
after” or “in parallel”. A natural way to represent time relations are rules with
time points as chaining arguments, chain rules [12], [33]. Although chain rules are
not restricted to time as the chaining arguments, they are particularly well suited
for modeling time phenomena in both aspects, linear precedence and immediate
dominance.

General chain rule: Let S be a literal or a set of literals. Let args(S) be a
function that returns the Datalog arguments of S. A normal clause is a
general chain rule, iff its body literals can be arranged in a sequence
By + Bi1, Bas,, ...,By, Brt1 such that there exist Datalog terms Begin, End €
args(By), Begin, Ty € args(B1), T1,T» € args(Ba), ...,.Tk—1, Tk € args(Byg),
and T, End € args(Bg+y1)-

Chain rules can express relations between time intervals, form higher-level cate-
gories, and dependencies between different multivariate time series. They require
facts as input that include two arguments referring to time points that mark the
begin and the end of the time interval. Most algorithms of inductive logic pro-
gramming are capable of learning chain rules. Hence, they solve the learning
tasks related with immediate dominance. Either actual or abstract time may
be used. However, they are weak in numerical processing. Therefore, time series
with numerical attributes should be discretized beforehand.

3.5 Required Lg

The input formats for the selection of methods presented, are now listed. We
write attributes A; and their values a;, abstract time points T; and actual time
points t;, the class that is described by the attributes I; and an instance ¢;. This
notation is meant to be close to the one of database theory. Note, however, that



the semantic notion of the class being described can be mapped to the database
relation or its key or even to one of the attributes of the database relation.

Lp, multivariate time series: From a vector with measurements of attributes
Ay, .. Ag, ie 4t tiaq, ... a1y, - - -, a4, - .. a;, methods solving the predic-
tion task output %; : tiynQitn, -- - Qitn,, methods characterizing the time
series output a label for a trend (e.g., increasing), a time interval for a sea-
son, or a function for the cycle. Note, that a;; are numerical values.

Lg,, univariate time series: The vector of measurements here only contains
one numerical attribute: i; : t1a1, - .., t;a;- The output for prediction, trend,
season, or cycle is similar to the one of multivariate series. Methods for
detecting level changes deliver ; : t,,, t0mn, where a,,, is a computed value,
e.g., the average. Clustering delivers a sequence of Label;[t;, t; )], where w
is the window size and the label is some computed summary of the attribute
values a; ... 4qy-

Lg, nominal valued time series: From a vector of nominal attribute values

that can already be considered events, i.e. i; : t1a1, ...a1,,...,tai ... Qi -,

the time region approach [40] outputs a set of rules of the form

I:ay,...,ay =[4,1.] @z, where u,v,z € [1,k] and b,e € [1,4]. The rule

states that within the time interval [tp,t.] the event a, is to be expected if

Qy, - - - , Ay have been observed.

sequence vectors: A large set of vectors with nominal or numerical at-
tribute values is the input to finding frequent sequences. The scheme of the
vectors is similar to univariate time series, but the example set always con-
sists of a large number of individuals that are described by the attribute. The
time span is fixed to the given number of fields in the vector. The scheme

I:T1A,,...,T;A;. is instantiated by all individuals about which data are

stored in the database. The time points can vary from instance to instance,

but the ordering is fixed. Rules learned are of the form I : ay,...,a, =[] az
with the meaning introduced for nominal valued time series.

Lg, facts: A set of facts possibly concerning individuals of different classes,

indicating a time interval of abstract or actual time ([T}, 7,]) for an event
given by several attributes are the input to relational learning. The number
and type of attributes may vary for different predicates p that instantiate
P. The facts have the form P(I,T,, T, Ay, ..., As), where some attribute
A can denote another class.
If the learning task is to define higher-level categories, a classifying fact must
be given for each example that is represented by a set of facts of the above
form. The classifying fact has at least a time interval as arguments and the
predicate denotes the higher-level category.

Lg

3

We have now developed a set of frequently used representations for the input
of (time related) learning. In addition, many methods require the parameters
window size w, the number of current observations head, and the prediction
horizon n. The time scale has to be indicated by the granularity and the start-
ing point of reference. Whereas Lg, and Lg, internally produce a large set of



data for one example by moving windows, Lg, and Lg, are representations for
sets of examples (independent observations). Lg, in addition possibly combines
different classes of individuals within one example. The notation for the examples
already covers some semantical aspects. This is important in order to preprocess
data appropriately, namely, to distinguish between attributes that refer to time,
to a class, to features of an individual, or to relations between individuals of
different classes.

4 Preprocessing for Time Phenomena

In order to discuss the transformations into the desired formats, let us now look
at typical cases of raw data. We illustrate the representations by three cases that
each stands for a large range of applications. The first case is a typical database
with time-stamped database tuples, the second is a set of robot traces, where
the measurements of 24 sensors are recorded over time, the third is a database
of intensive care patients with their vital signs and infusions measured every
minute.
The most frequent representation of raw data is

Lg,,, database table: a set of individuals and a set of time points is given
according to the scheme I : Th Ay ... Ag,..., T;A; ... Ag. It is a large set of
multivariate time series with nominal or numerical values for the attributes.

Let us now look at the options for transforming the data into appropriate rep-
resentations for learning.

4.1 The shop application — Representing time implicitly

In our first example, I is instantiated by shops, ¢ = 108 denotes the weeks
of two years, A; is an item, and a; its sale. In our application, the task was
to predict the sales for an item in a time horizon n, that varies from n = 4
to n = 13. The prediction is necessary for optimizing the storage of goods.
Of course, seasonal effects are present. They are already stored as binary flags
within the database. The learning method was the regression mode of the support
vector machine (SVM) [37]. The SVM requires input vectors of fixed length with
numerical values. The method does not handle time explicitly. It is a rather
common approach to compile time phenomena into attributes that are then
handled by the learning method as any other attribute. The most frequently
used choices are:

Multivariate to univariate transformation: For each attribute A; to Ag,
store a vector for the corresponding univariate time series: I : tiaq, ..., t;a;.
The result are k vectors for all ¢ € I. In our example, where the sales of 50
items were analyzed, 50 vectors were stored for each of the 20 shops.



Sliding windows: Choose a window size of w consecutive time points, store
the vector i : t1a1,...a1,, .., twQw, ..-Qu, , Move the starting point by m steps
and repeat, until ¢, = ¢; (in our example ¢; = 108). The result is a set of
i — w vectors for one time series (in our case, window sizes 3, 4, 5 were tried
yielding 103 to 105 vectors).

Summarizing: Attribute values within a window of past observations are sum-
marized by some function f(aj;, ..., @itw;) (€.g., average, gradient, variance).
The original time series is replaced by the discretized one:

i [ty tw)f(as;s e Quw;)s [Ems tmgw] F(@my s ooy G )5« - o

Some approaches do not fix the window size, but find it in a data-driven fash-
ion [9], [30]. Whereas most approaches deliver overlapping time intervals, [30]
deliver a discretized time series with consecutive time intervals. Summariz-
ing time windows is also viewed as a method of feature construction. In our
shop example, we did not summarize the time series.

Multiple learning: Instead of handling diverse individuals in one learning run,
a learning run can be started for each individual. The learning result of this
run is used for the prediction concerning this individual only. In our shop
example, for each shop (20) and each item (50), a separate learning of support
vectors was started. The results are then used to predict the sales of this item
in this particular shop.

Aggregation: Aggregating the shops by summing up the sales made in all
shops did not perform well in our application. In principle, however, this
aggregation is a common transformation. It constructs i’ € I and a;- and
hence produces one time series for all individuals.

The resulting representation for the SVM that proved successful by cross
validation was: 4 : ;4 ai1w, S€as0N, ..., t;a;,. This is a quite common combina-
tion of transformations if we follow a statistic-oriented approach: multivariate
to univariate, sliding windows, and multiple learning.

4.2 The applications in intensive care

The second example, records of patients in an intensive care unit, offers raw
data of the Lg,, form. The difference is that the length of the time series is
not determined once for all patients but denotes the length of the patent’s stay
in the intensive care unit. Hence, the database table is organised as consecutive
parts of the time series.

Lg,,, tuples for time points: The database no longer stores all measure-
ments of one individual in one row, but only the measurements at one point
in time: I : TA; ... Ag. There are several rows for one individual. The num-
ber of measurements needs not be equal for different individuals.

il :tlall BN 7 PR il :tiail - Ay,

iy tiay, ... ag,



We explored a variety of learning tasks within this application. The learning
when and how to change the dosage of drugs is — with respect to prepocessing
and learning — similar to the shop example, but we had to combine different
rows of the table first.

Chaining database rows: Select all rows concerning the same individual and
group its attributes by the time points. Output a vector of the length of the
time series of this individual. The result is a multivariate time series.

Again, we used the SVM, now in the classification mode [17]. We experimented
with many different features that were formed by sliding windows and different
summarization methods. However, the past did not contribute to learning the
decision rule. Hence, we learned from patients’ state at t; whether and how to
intervene at t;41[29]. Therefore, in the end we could use the original data. The
real difference to the shop application is that the decision rule is learned from
a large training set of different patients and then applied to previously unseen
patients and their states.

For a different learning task in the intensive care application, a method for
time series analysis was applied. The learning task was to find outliers and detect
level changes. A new statistical method was used [6]. It transforms measurements
of one vital sign of the patient such that the length of the window is interpreted
as dimensions of Euclidian space. Choosing w = 2, the measurements of two con-
secutive time points are depicted as one point in a two-dimensional coordinate
system. It turns out, that outliers leave the ellipse of homogeneous measure-
ments, and a level change can be seen as a new ellipse in another region of the
space. The method is a special case of sliding windows.

In the intensive care application, current work now uses the detected level
changes as input to a relational learning algorithm. This allows to combine var-
ious time series and detect dependencies among parameters, deviations from
a stable (healthy) state, and therapeutical interventions. The learning task is
to find time relations that express therapy protocols, in other words effective
sequences of interventions.

4.3 The application in robot navigation

The third application to be presented here, is about sensor measurements of a
mobile robot. The raw data are of the Lg,,, type, where I denotes mission
or path, from which the measurements are taken, k is the number of sensors
(in our case 24), and the only attribute is the measured distance to some (un-
known) object. The learning tasks are higher-level concepts that can be used
for navigation planning and execution [21]. Using chain rules with abstract time
arguments allows to apply the learned knowledge to different environments “.
However, relational learners that are capable of learning them, require facts as
input, where the predicate indicates the summary of measurements and two ar-
guments indicate the time interval in which it is valid. The requirements were

4 The post-processing of learned rules into real-time control is summarized in [28].



further that the transformation can be applied on-line, i.e. purely incrementally,
and the time intervals do not overlap. This excludes the standard methods from
statistics as well as the approach of [9]. Hence, we developed our own method
that closes a time interval if the gradient of the current summary and the cur-
rent measurement varies more than a given threshhold [30]. Predicate symbols
denote classes of gradients, e.g. increase, decrease, peak. The first step of
preprocessig was to chain database rows in order to acquire a 24-variate time
series for each mission. The second was to transform each one into 24 univariate
time series. To these our variant of summarizing was applied.

Input to relational learning was first the set of all summarized univariate
time series of all missions, together with the classification of the higher-level cat-
egory (e.g., sensor_along wall). The learned rules describe sequences of sum-
marized sensor measurements that define the higher category. A classification
corresponding to the placement of the sonar sensor at the robot was then used
to combine sequences of several sensors. This led to the learned definition of
sensor group features. In a bootstrap manner a hierarchical logic program was
learned, that integrates all 24 sensors. Moreover, irrelevant relations between
summarized measurements and their time intervals are filtered out by relational
learning. The low accuracy of 27.1% (for sensor_along wall) and 74.7% (for
sensor_through door) at the lowest level increased to 54.3% (along wall) and
93.8% (through _door) at the highest level where all perceptions and actions are
integrated [20]. This is surprising, because the learned rules of the lower level
produced the examples for learning at the next higher level. It clearly shows
the importance of taking into account the aspect of immediate dominance when
handling time. Handling time with respect to linear precedence alone is unable
to discover dependencies between 24 time series in several missions. It also il-
lustrates the power of preprocessing: we could well consider all learning steps
at lower levels as a chain of transformations that allow the highest-level data
mining step.

5 Conclusion

In this paper, nine time-related learning tasks were presented, together with
classes of algorithms that solve them. Five input languages for the methods
were distinguished. Given two standard representations of time-stamped data in
databases, it was shown, how they can be transformed into the desired languages
for learning. All the transformations proved their value in many applications —
not only the ones named in the paper. However, a uniform description of data,
learning tasks, methods and Lg transformations was missing. The description
shown in this paper can now be made operational as meta-data and transfor-
mation tools. I am certain, that the lists of tasks and transformations is not
complete and that new publications will contribute more tasks and methods.
This is not a counter argument, though. In contrast, it emphasizes the need for
a preprocessing library.



Since we do not know which representation will turn out to be the best for
a learning task, we have to try out several representations in order to deter-
mine the winner. This is a tedious and time consuming process. It is the goal
of the MININGMART project to supply users with a workbench offering prepro-
cessing tools in a unified manner. Moreover, a case base will present for several
applications the winners of the representation race.
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