
Master thesis

A Machine Learning Approach for
Aspect-based Sentiment Analysis on Social

Media

Weihan Pang
March 2018

Gutachter:
Prof. Dr. Katharina Morik
M.Sc. Lukas Pfahler

Technische Universität Dortmund
Fakultät für Informatik
Lehrstuhl für Künstliche Intelligenz (LS-8)
http://www-ai.cs.tu-dortmund.de

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Structure of this Thesis . 2

2 Background 5
2.1 Sentiment Analysis and Opinion Mining . 5
2.2 Natural Language Processing . 6

2.2.1 Text Classification . 6
2.2.2 Sequence labeling . 7

2.3 Task Description . 7

3 Machine Learning Approaches 11
3.1 Word Representation . 11

3.1.1 One-hot Representation . 11
3.1.2 Distributed Representation . 12

3.2 Neural Networks . 16
3.2.1 Convolutional Neural Networks . 17
3.2.2 Recurrent Neural Networks . 23

3.3 Baseline Models . 28
3.3.1 Support Vector Machines . 28
3.3.2 Conditional Random Fields . 31

3.4 Train a Classifier on top of Neural Network Features 34
3.4.1 Combine Convolutional Neural Networks and Support Vector Ma-

chines . 34
3.4.2 Combine Bidirectional-LSTM and Conditional Random Fields . . . 34

4 System Structure 39
4.1 Relevance Model . 41
4.2 Document-level Sentiment Model . 41
4.3 Aspect-level Sentiment Model . 41

4.3.1 Aspect Model . 42

i

ii CONTENTS

4.3.2 Aspect-level Polarity . 43

5 Implementation 45
5.1 Library . 45

5.1.1 Scientific Python . 45
5.1.2 BeautifulSoup . 46
5.1.3 Tensorflow . 46
5.1.4 Keras . 47

6 Experiments 49
6.1 Evaluation Metrics . 49
6.2 Network Training and Regularization . 50

6.2.1 Data Processing . 50
6.2.2 Optimization Algorithm . 52

6.3 Task Evaluation . 53
6.3.1 Relevance Classification . 53
6.3.2 Document-level Polarity . 56
6.3.3 Aspect-level Polarity . 58
6.3.4 Opinion Target Extraction . 61

6.4 Summary . 62

7 Conclusion and Outlook 63

A Appendix 65

List of Figures 70

Algorithms 71

Bibliography 77

Chapter 1

Introduction

In the connected modern world, customer feedback is a valuable source for insights on
the quality of products or services. This feedback allows other customers to benefit from
the experiences of others and enables businesses to react on requests, complaints or rec-
ommendations. However, the more people use a product or service, the more feedback is
generated, which results in the major challenge of analyzing huge amounts of feedback in
an efficient, but still meaningful way.

Recent years has seen rapid growth of research on sentiment analysis. Sentiment
analysis has both business importance and academic interest [56]. The typical sentiment
analysis focus on predicting the positive or negative polarity of the given texts. This task
works for the text that has only one aspect and polarity. A more general and complicated
task is to predict the aspects mentioned in a sentence and the sentiments associated
with each one of them. This generalized task is called Aspect-based Sentiment Analysis
(ABSA) [56], i.e., mining opinions from text about specific entities and their aspects,
which can provide valuable insights to both consumers and businesses.

In the Germeval Shared Task 2017 competition1, a shared task on aspect-based sen-
timent in social media customer feedback is proposed, which is to automatically analyze
customer reviews about "Deutsche Bahn" - the german public train operator with about
two billion passengers each year. The Germeval 2017 Task consists of four subtasks: rele-
vance classification (subtask A); document-level polarity (subtask B); aspect-level polarity
(subtask C); opinion target extraction (subtask D). This thesis aims to find appropriate
machine learning approaches for these four subtasks.

1https://sites.google.com/view/germeval2017-absa/home

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

The relevance classification, document-level polarity and aspect-level polarity subtasks are
essentially text classification problems. Text classification is a classic topic for natural
language processing, in which one needs to assign predefined categories to documents.

The traditional machine learning methods are applied for text classification, such as
Naive Bayes (NB) [32], Maximum Entropy [2] and Support Vector Machines (SVM) [21]
using features like unigrams, bigrams, i.e., each document is represented as word vectors.
The last subtask, opinion target extraction can be treated as a sequence labeling problem,
which is often addressed by Conditional Random Fileds (CRF) [25] or Hidden Markov
Model [3]. These traditional machine learning algorithms cannot learn complicated in-
variant features, they are incorporated with large amounts of task-specific knowledge in
the form of handcrafted feature engineering and data pre-processing. Therefore, feature
extraction and selection play an important role for their classification performance.

In addition, online reviews are short texts that contain only a few sentences or even a
few words. Sentiment analysis of short texts face a challenge because of the limited contex-
tual information that they normally contain [10]. Solutions for the challenges incurred in
these problems come from neural networks [23]. The neural networks can extract relevant
features from words and sentences of any size [10]. Therefore one has to worry less about
the feature engineering part than the traditional machine learning approaches.

Neural Networks are good at learning invariant features and contexts to predict senti-
ment, but not always optimal for classification or sequence labeling. While Support Vector
Machines are good at producing decision surfaces from well-behaved feature vectors, but
cannot learn complicated invariances [17]. Target to this problem, Convolutional Neural
Networks (CNN) and Support Vector Machines (SVM) are combined for the first three
classification subtasks, CNN is utilized as feature extractor to learn feature vector repre-
sentations corresponding to each sentence. The learned vector representations are then fed
to a SVM classifier as features for topic or sentiment classification [4]. Besides, the opin-
ion target extraction subtask is treated as a sequence labeling task, the sequence labeling
classifier is trained using Conditional Random Fields (CRF). The output of a Bidirec-
tional Long Short Term Memory (BiLSTM) model is used as additional features. Because
BiLSTM is good at modeling context information of each word [19], while Conditional
Random Fields is good at sequence labeling for whole sentence.

1.2 Structure of this Thesis

This thesis consists of 7 chapters. First, the background of sentiment analysis is intro-
duced, including text classification and sequential labeling problems of natural language

1.2. STRUCTURE OF THIS THESIS 3

processing field. Then the formal definition of sentiment analysis on different levels are
introduced, and the Germeval subtasks are described in detail.

In Chapter 3, the architecture of machine learning approaches will be presented, in-
cluding word representations, neural networks and classifiers. Then the four subtasks are
constructed into a whole system. The structure of the system is described in Chapter 4
and which approaches are applied to which model of the system will be discussed.

Chapter 5 introduce the implementation part and the experiment results are discussed
in Chapter 6. Finally, Chapter 7 concludes this thesis and gives an outlook to future
research.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Sentiment Analysis and Opinion Mining

Sentiment analysis, also called opinion mining, is essentially a text classification problem.
Sentiment analysis has been a widely researched area with large amounts of literatures
on document, sentence, phrase and aspect level analyses in different domains. Sentiment
classification is the most extensive topic of sentiment analysis. It aims to classify an
opinion document as expressing a positive or negative opinion or sentiment [29]. In general,
sentiment analysis has been investigated mainly at three levels: Document-level Sentiment
Analysis, Sentence-level Sentiment Analysis and Aspect-level Sentiment Analysis. This
thesis focuses on Document-level and Aspect-level Sentiment Analysis for subtask B and
C.

Document-level Sentiment Analysis The task at this level is to classify whether
a whole opinion document expresses a positive, negative or neutral sentiment. Neutral
usually means no opinion. It is commonly known as document-level sentiment classification
because it considers the whole document as a basic information unit, i.e., each document
expresses opinions on a single entity (e.g., a single product or a single aspect of the
product). Thus, it is not applicable to documents which evaluate or compare multiple
entities.

Sentence-level Sentiment Analysis The task at this level goes to the sentences and
determines whether each sentence expresses a positive, negative, or neutral opinion. If each
sentence of a document contains a single opinion, sentence level sentiment classification
goes further than document level sentiment classification as it moves closer to opinion
targets and sentiments on the targets. However, there is no fundamental difference between
document and sentence level classifications because sentences are just short documents [29].
So it is not considered in this thesis, since the datasets are social media comments that
contain only a few sentences or even a few words.

5

6 CHAPTER 2. BACKGROUND

Aspect-level Sentiment Analysis However, in most applications, the user needs to
know additional details, i.e., what entities or aspects of entities are liked and disliked. As
the document level, the sentence level analysis still does not do that. Although a sentence
may have an overall positive or negative tone, some of its components may express opposite
opinions. For example, although the sentence "Although the service is not that great, i
still love this restaurant" clearly has a positive tone, we cannot say that this sentence is
entirely positive. In fact, the sentence is positive about the restaurant, but negative about
its service [29].

If we go to the aspect-level sentiment analysis, the problem is solved. It is highly
dependent on both content and its aspects. It refers to determining the opinions or
sentiments expressed on different aspects. An aspect is represented as an entity and aspect
pair (E#A), e.g., the service and the food of the restaurant are respectively represented
as Restaurant#Service and Restaurant#Food.

2.2 Natural Language Processing

Natural Language Processing, or NLP for short, is an area of research and application
that explores how computers can be used to analyze, understand and manipulate natural
language text or speech [7]. By utilizing NLP, developers can organize and structure
knowledge to perform tasks such as translation, named entity recognition, relationship
extraction, sentiment analysis, speech recognition, and topic segmentation.

2.2.1 Text Classification

Text classification is an important task in many areas of natural language processing,
including sentiment analysis, question answering, or dialog management. In classification
tasks, one needs to produce a classification function which can give the correlation between
a certain feature and a class.

Let x denote a text and y denote the corresponding class. A training example is a pair
(xi, yi) consisting of a text and its associated class label. We assume that the training
examples are drawn independently and identically from the joint distribution P (xi, yi),
and we will refer to a set of N such examples as the training data. A classifier is a function
h that maps from text to classes. The goal of the learning process is to find an h that
correctly predicts the class y = h(x) of new text x [9].

Traditional text classification mainly classifies documents of different topics, e.g., poli-
tics, sciences and sports. In such classification, topic-related words are the key features [29].
In this thesis, we focus on applying machine learning techniques to the sentiment classifi-
cation problem. A challenging aspect of this problem that seems to distinguish sentiment
classification from traditional topic-based classification is that topics are often identifiable

2.3. TASK DESCRIPTION 7

by keywords alone, sentiment can be expressed in a more subtle manner [35]. In sentiment
classification, sentiment or opinion words that indicate positive or negative opinions are
more important, e.g., great, excellent, amazing, bad, worst, etc. [29]. For example, the
sentence: "Although the service of this restaurant is not that great, i still love its food." is
classifiable as restaurant relevant. In addition to the topic, the sentiment of the document
can also be used to classify this text. A positive sentiment can be assigned to the entity
food, whereas a negative one could be assigned to service. Furthermore, sentiment analysis
can deal with more implicit expressions. For example, the sentence "How could anyone sit
through this movie?" contains no single word that is obviously negative. Thus, sentiment
seems to require more understanding than the usual topic-based classification [35].

In general, for the sentiment classification, sentiment is incredibly subjective, and
depends upon a number of variables. Therefore, sentiment analysis goes far beyond tradi-
tional topic-based text classification, and the traditional text classification methods should
be augmented in order to advance towards the problem of textual emotion recognition [48].

2.2.2 Sequence labeling

In many NLP problems, we would like to model pairs of sequences. Sequence labeling or
tagging such as Part-of-speech tagging is perhaps the earliest, and most famous, example
of this type of problem. The goal of sequence labeling is to build a model whose input is
a sentence, for example:

The train is coming.

and output is a label sequence, for example:

DNV Adj

(here we use D for a determiner, N for noun, and V for verb, and Adj for adjective).
Let (xi, yi)Ni=1 be a set of N training data. Each training data is a sequence pair

(xi, yi), where xi = xi1 , xi2 , ..., xil and yi = yi1 , yi2 , ..., yil . The label sequence is the same
length as the input sentence, therefore a single label is specified for each word in the
sentence. The labeling classifier model h is constructed from the given training data. For
an input sequence x, this model can correctly predict its corresponding labeling sequence
y = h(x) [9].

2.3 Task Description

The Germeval Task 2017 specifically focuses on the natural language processing problem
of german language. The datasets and four subtasks are desribed in this section.

8 CHAPTER 2. BACKGROUND

Figure 2.1: Data in TSV format.

Figure 2.2: Data in XML format.

Datasets Germeval Task 2017 provides both training and test data1. All the data
consists of 22,000 messages from various social media and web sources.

The whole data is available in both TSV (Fig. 2.1) and XML (Fig. 2.2) format.
Subtask (D), however, can only be done by using the XML format, as the spans of the
opinion target expression are not available in TSV.

The aspects in the data are chosen from predefined inventories of categories. The
Table A.1 in Appendix gives an overview on them. Each category is described as an
Entity#Aspect pair, which has several sub-aspects (e.g., Atmosphere#Temperature, At-
mosphere#Cleanliness, Atmosphäre#Geruch). While we provide these sub-aspects in the
data, we will evaluate only on the categories.

Subtask A: Relevance Classification. Relevance classification is formulated as a
binary text classification problem, true and false. It is to determine whether a social media
post contains feedback about the "Deutsche Bahn" or if the post is off-topic/contains no
evaluation.

For the post in Fig. 2.2, the task is to identify that the post is relevant.

Subtask B: Document-level Polarity. The task is the document-level sentiment clas-
sification because it considers the whole comment as a basic information unit. It aims to
identify, whether the customer evaluates the "Deutsche Bahn" or travel as positive, nega-
tive or neutral.

For the post in Fig. 2.2, the task is to identify the polarity as negative.

1https://sites.google.com/view/ germeval2017-absa/data

2.3. TASK DESCRIPTION 9

Subtask C: Aspect-level Polarity. The objective of subtask (C) is to identify all
aspects which are positively, negatively and neutrally evaluated within the review. A set
of aspect terms are given for a specific entity, we need to determine the sentiment assigned
to each unique aspect. In order to increase comparability, the aspects are previously
divided into categories. Consequently, the aim of the subtasks is to identify all contained
categories and their associated polarity. For the post in Fig. 2.2, the task is to identify
the aspects (and their polarity): Atmosphäre#Geruch:negative.

Subtask D: Opinion Target Extraction. Subtask (D) identify the linguistic expres-
sion in the posts which are used to express the aspect-based sentiment (subtask C). The
opinion target expression is defined by its starting and ending offsets. For the post in Fig.
2.2, the extracted opinion target is Nebenschwitzer.

10 CHAPTER 2. BACKGROUND

Chapter 3

Machine Learning Approaches

Machine learning is a subfield of Artificial Intelligence dealing with algorithms that allow
computers to learn. This usually means that an algorithm is given a set of data and
subsequently infers information about the properties of the data, that information allows
it to make predictions about other data that it might come across in the future. The
ability to make predictions about unseen data is possible because almost all non-random
data contains patterns that allow machines to generalize [45]. In order to generalize, the
computer trains a model with what it determines are the important aspects of the data [46].
This chapter surveys the machine learning approaches applied to sentiment analysis-based
applications. The main emphasis of this chapter is to discuss the research involved in
applying machine learning methods for text classification and sequence labeling.

3.1 Word Representation

Neural networks have achieved good results in the fields of computer vision and speech.
In the field of natural language processing, many researchers use neural network models
to learn word vectors and then compound word vectors into sentence or paragraph vectors
and apply them to classification tasks.

Instead of image pixels, the inputs of neural networks are sentences or documents
represented as a matrix. Each row of the matrix corresponds to one token, typically a
word, but it could be a character [59]. That is, each row is a vector that represents a
word. There are two ways commonly used to represent word, one-hot representation and
distributed representation [58].

3.1.1 One-hot Representation

Before neural networks was applied to natural language processing, text data was generally
expressed by using one-hot representation. In one-hot representation, word is represented
as a boolean vector whose length is equal to the size of vocabulary. For every word, the

11

12 CHAPTER 3. MACHINE LEARNING APPROACHES

position corresponding to the word in the representation vector is set to one and the re-
mainders are set to zeros, which make the feature convenient to be stored by a sparse
model. "Bahn" and "Zug" are taken as an example:

"Zug" is represented as: [0001000000...]
"Bahn" is represented as: [0000000100...]

This representation method can solve some natural language processing problems by
using statistical-based machine learning algorithms such as Naive Bayes, Support Vector
Machines and Hidden Markov Models. Though it is used widely as it is simple and easy to
implement, but the one-hot vectors in the representation space are independent even the
original words are very similar [58], so we can not get the similarity among word vectors.

3.1.2 Distributed Representation

The idea of distributed representation was originally proposed by Hinton in 1986, it is
different from one-hot representation [14]. The distributed representation of words, also
known as word embeddings, is a real-valued, dense, and low-dimensional vectors. Word
embeddings represent words as low dimensional vectors that are trained by a language
model like word2vec [33] and make the related or similar words closer in the vector space.
Thus it can overcome the disadvantage of one-hot representation that feature vectors
cannot reflect the dependency relationship between words [58].

Let a word embedding W : words→ <n be a paramaterized function mapping words
to high-dimensional vectors (perhaps 200 to 500 dimensions). For example, we might find:

W (”Bahn”) = (0.2, 0.7,−0.5, ...)

W (”Zug”) = (0.15, 0.6,−0.33, ...)

As mentioned before, the one-hot vectors are independent in the representation space
and the similarity among words cannot be calculated. In contrast, word embeddings are
easy to work with because they enable efficient computation of word similarities through
low-dimensional matrix operations [28]. We can use cosine similarity as a metric to calcu-
late similarity of words. Words that are semantically similar often occur near each other
in text, and so embeddings that are good at predicting neighboring words are also good
at representing similarity [22].

Word2vec1 is a tool for computing continuous distributed representations of words,
which was created by a team of researchers led by Tomas Mikolov at Google [33]. The
word2vec tool takes a text corpus as input and produces the word vectors as output. They
have published pre-trained vectors that are trained on part of Google News dataset (about

1https://code.google.com/archive/p/word2vec/

3.1. WORD REPRESENTATION 13

Figure 3.1: CBOW and Skip-gram model

100 billion words). The model contains 300-dimensional vectors for 3 million words and
phrases.

There are two main learning algorithms in word2vec : Continuous Bag-of-Words model
(CBOW) and continuous Skip-gram model. They are described as the following.

Skip-gram model Skip-gram model predict the context words [wt−2, wt−1, wt+1, wt+2]
based on the current word wt. More precisely, it uses each current word as an input to a
log-linear classifier with continuous projection layer, and predicts words within a certain
range before and after the current word [58]. Next, the architecture of skip-gram model
is introduced in detail.

Fig. 3.2 shows a simple neural network with a single hidden layer. First, a vocabulary
of words from our training documents is builded. In this example, we have a vocabulary
of 10,000 unique words, an input word "Bahn" is represented as an one-hot vector. This
vector have 10,000 components (one for every word in the vocabulary) and a "1" is placed
in the position corresponding to the word "Bahn", and "0"s in all of the other positions.
The output of the network is a single vector (also 10,000 dimensional) containing, for every
word in the vocabulary, that a randomly selected nearby word is that vocabulary word2.

But neither the well-trained neural network nor the output are used. Instead, the goal
is the learned weights of the hidden layer.

The output neurons use softmax, but there is no activation function on the hidden
layer neurons. As shown in figure 3.2, if the word vectors are learned by 300 features

2http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

14 CHAPTER 3. MACHINE LEARNING APPROACHES

Figure 3.2: Architecture of Skim-gram model

(300 features is what Google used in their published model trained on the Google news
dataset) 3. Then the hidden layer is represented by a weight matrix with 10,000 rows (one
for every word in the vocabulary) and 300 columns (one for every hidden neuron).

If we look at the rows of this weight matrix (Fig. 3.4), these are actually word vectors
that we need. So the end goal of all of this is just to learn this hidden layer weight matrix.

Therefore, the skip-gram model actually learns two separate embeddings for each word
w: the word embedding v and the context embedding c. These embeddings are then encoded
in two matrices, the word matrix W and the context matrix C. Fig. 3.4 shows an example,
each row i of the word matrix W is the 1 × 5 vector embedding vi for word i in the
vocabulary, each column i of the context matrix C is a 5 × 1 vector embedding ci for word
i in the vocabulary [22]. If we multiply the word matrix W by a context matrix C, it will
effectively just select the matrix row corresponding to the "1" of the vector embedding vi.

This means that the hidden layer of this model is just operating as a lookup table.
The output of the hidden layer is just the "word vector" for the input word.

CBOW The CBOW (continuous bag of words) model is roughly the mirror image of
the skip-gram model. It is also based on a predictive model, but predicting the current
word wt from the context window of words around it [22].

3https://code.google.com/archive/p/word2vec/

3.1. WORD REPRESENTATION 15

Figure 3.3: Weight matrix of hidden layer.

Figure 3.4: An example for the computation of input and hidden layer.

16 CHAPTER 3. MACHINE LEARNING APPROACHES

Figure 3.5: Neural network model with two hidden layers.

While CBOW and skip-gram are similar algorithms and produce similar embeddings,
they do have slightly different behavior, and often one of them will turn out to be the
better choice for any particular task [22]. Word embeddings trained by CBOW contains
more syntax information which can obtain a better result in syntax test while trained
by Skip-gram contains more semantic information which can perform better in semantic
test. Obviously, the semantic information plays a more important role in sentiment, as
several sentiment words which are not grammatical can also express the sentiment of
document [58]. Thus skip-gram model is used to train the word embeddings for the tasks
of this thesis.

The pre-trained word embeddings can then used as input for neural networks, and
performs better than words which are randomly initialized [23].

3.2 Neural Networks

Neural Networks (NNs) are widely used in a variety of NLP tasks such as Machine Trans-
lation [26], Question Answering [11] and Text Summarization [42]. Neural Networks are
computing systems vaguely inspired by the biological neural networks that constitute
brains [53]. A standard neural network consists of a input layer, output layer and one or
more hidden layers. Fig. 3.5 shows a neural netwrok model with two hidden layers.

Each layer consists of many simple, connected processors called neurons, each produc-
ing a sequence of real-valued activations. Input neurons get activated through sensors
perceiving the environment, other neurons get activated through weighted connections
from previously active neurons. Some neurons may influence the environment by trigger-
ing actions. Learning or credit assignment is about finding weights that make the neural
network exhibit desired behavior. Depending on the problem and how the neurons are con-

3.2. NEURAL NETWORKS 17

nected, such behavior may require long causal chains of computational stages , where each
stage transforms (often in a non-linear way) the aggregate activation of the network [44].

The training and development datasets provided by Germeval Shared Task 2017 are
short texts that contain only a few sentences or even a few words. Sentiment analysis
of short texts face a challenge because of the limited contextual information that they
normally contain [10]. Solutions for the challenges incurred in these problems come from
neural networks [23]. Convolutional Neural Network (CNN) and Recurrent Neural Network
(RNN) are two efficient neural network models in machine learning methods, the former is
able to extract local feature from words and sentences of any size and the latter is designed
for learning general sequences. Another advantage is that one has to worry less about the
feature engineering part than the other machine learning approaches.

In recent years, applying neural network to text classification (e.g., Sentiment Analysis,
Spam Detection or Topic Categorization.) was proven to be competitive to traditional
models.

Yoon Kim [23] has partially improved the convolutional neural network for text sen-
timent analysis tasks, and achieved good classification performance. Zhang et al. [59]
apply convolutional neural networks only on characters without the knowledge of words.
Working on characters also has the advantage that abnormal character combinations such
as misspellings and emotions may be naturally learnt. The recurrent neural network is
applied to opinion target extraction(subtask D), recurrent network could easily be adapted
to perform sequence labeling instead of text classification. Furthermore, for opinion target
extraction, syntactic relationships and long-distance dependencies may play a significant
role and that such phenomena may be better modeled with a recurrent network [50].

The neural network architecture without manual feature-engineering can be trained to
do different tasks on varies language datasets.

3.2.1 Convolutional Neural Networks

Yann LeCun et. al. have developed first application of Convolutional Neural Networks
in [27]. A convolutional neural network is a special neural network used to process
meshed topological data. For example, topological data can be time-series data of a
one-dimensional lattice structure over a time interval, as well as it can be a picture of
a two-dimensional grid structure of pixels. It is named as convolution neural network
because the network model contains convolution operations, in addition, it also includes
the pooling operation.

Convolution neural network is a kind of artificial neural network, which is a simple
neural network constructed by using convolution operation instead of matrix multiplication
operation of at least one layer in neural network [34]. Convolutional neural network has
been able to enhance the machine learning system is mainly because the use of three

18 CHAPTER 3. MACHINE LEARNING APPROACHES

Figure 3.6: The input node and output node connection strategy of convolutional neural network
(left) and traditional neural network (right).

important concepts: local receptive fields, shared weights (or weight replication), and
spatial or temporal pooling.

In addition, convolutional neural networks can also handle different sized inputs.
The two diagrams in Figure 3.6 show the sparse connection of convolutional neural

network and the matrix multiplication connection of traditional neural network respec-
tively, where x1, x2, x3, x4, x5 are the input nodes and s1, s2, s3, s4, s5 are the output nodes.
Traditional neural networks connect input nodes and output nodes through matrix multi-
plication operations, which means that there is a connection between each input node and
each output node. Convolutional neural networks, on the other hand, employ a strategy of
sparse connections (also called sparse weights) that implement sparse connections between
input and output nodes by making the convolution kernel smaller than the input. Sparse
connections mean that convolutional neural networks only need store a small number of
parameters, which in turn can reduce the memory requirements of the model and increase
its statistical efficiency.

The output of the convolutional layer is then input into the pooling layer, and the
pooled operation adjusts the output by the pooled function. The pooled function replaces
these nodes with their statistical significance in the output node of the previous layer, for
example, the max pooling operation finds the maximum on the rectangular neighborhood
of output. Other pooling operations include finding average or the weighted average over
rectangular neighborhoods. No matter what kind of pooling operation, their role is that
when the input of network changes slightly, the output can remain unchanged. This means
that most values in the output of the pooled layer do not change when the input to the
network is slightly shifted. Figure 3.7 shows an example of a pooling operation.

As the changes from the left to right in Figure 3.7 can be seen, when the input to the
pooling layer (i.e., the output of convolutional layer) shift a unit, left and right examples get
the same pooling layer output. If the model is only concerned with the representation of the
feature but does not care about the exact location of the feature, then the invariance of the
pooling operation is very important to the model. Besides, pooling also allows the model to
accept input data of different lengths. Using a pooling operation in a convolutional neural

3.2. NEURAL NETWORKS 19

Figure 3.7: Left: An example of the maximum pooling operation, the window size of the pooling
operation is 3; Right: A new example that right-shift the output of the convolutional layer of left
example.

network can be viewed as adding a priori knowledge to the model - the function learned
by the model remains unchanged for small changes. In addition, pooling operations can
dramatically increase the statistical efficiency of network models.

Convolution neural network plays a very important role in the evolution of deep learn-
ing. It is one of the successful examples of adding human brain structure into machine
learning. It is also one of the earliest depth models successfully applied in various fields.

Word-level Convolutional Neural Networks

In 2014, Yonn Kim proposed a convolution neural network for sentence classification [23].
The model is shown in Figure 3.8. It is a one-dimensional convolutional neural network
model with two different size filters. This model will be used as a distributed sentence
feature extractor for various classification tasks.

Figure 3.8: Convolutional neural networks for sentence classification

It is composed of a single convolutional layer followed by a non-linearity, max pooling
and a softmax classification layer.
(1) Input layer: The word vectors corresponding to the input of convolutional neural

20 CHAPTER 3. MACHINE LEARNING APPROACHES

network can be either randomly initialized or pre-trained from word2vec. Yoon Kim [23]
proposed three model variants:

(a) CNN-rand: The word vectors of the input samples for convolutional neural network
are randomly initialized, which are then fine-tuned by backpropagation during the model
training.

(b) CNN-static: The input word vectors are pre-trained vectors from word2vec, but
the word vectors keep unchanged during training and only the other parameters of the
model are learned.

(c) CNN-non-static: The input word vectors are pre-trained vectors, and they are fine-
tuned during training CNN model.
(2) Convolutional layer: Learning the local features between adjacent words in the input
sample through multiple convolution filters of different sizes.
(3) Pooling layer: This layer gets the most important features by taking the maximum
value of the output of the convolution layer, and ensures that the same length of output
can be obtained from different lengths of input.
(4) Classification layer: This layer is fully connected softmax layer, the output is the
probability distribution of the input samples on each label.

More formally, for the input layer, letting the d-dimensional vector of the i-th word in
the input sample be w, then a formulation of a sample vector s of length n (padded with
row vectors of 0s to n if the sentence length is less than n) is formulated as:

s = [w1, w2, ..., wn−1, wn] (3.1)

The vector s is obtained by concatenating end-to-end vectors of all the input samples.
Let si:i+j be a part of the vector s consisting of the ith to the (i+ j)th word vectors in the
input sample, concatenated together end to end.

To learn to capture and compose features of individual words in a given sentence from
low-level word embeddings into higher level semantic concepts, the neural network applies
a series of transformations to the input sentence matrix S using convolution, nonlinearity
and pooling operations, which are described next. [47]

For the convolutional layer, the convolutional layer is connected to the input layer
by two convolution filters of different window sizes. Let one of the convolution filters of
window size h be v ∈ Rhk. This convolution filter is applied to a window of h words on
the input sample and a new feature ci is produced . The formula for generating a new
feature is as follows:

ci = f(v · wi:i+h−1 + b) (3.2)

Where f is a non-linear function such as the hyperbolic tangent, b ∈ R is a bias term,
and both b and v are parameters in the convolutional neural network. This filter is applied

3.2. NEURAL NETWORKS 21

to each possible window of words in the sentence {w1:h, w2:h+1, ..., wn−h+1:n} to produce
a feature map:

c = [c1, c2, ..., cn−h+1] (3.3)

with c ∈ Rn−h+1.
After the convolution operation, the max-pooling operation is then applied over the

feature map and the maximum value ĉ = max{c} is taken as the feature corresponding to
this particular filter.[5]

The idea of the pooling layer is to capture the most important features of the corre-
sponding convolution filter. In addition, max-pooling allows samples of different lengths
to be used as input to the convolutional neural networks. Because convolutional neural
networks have multiple window-sized convolution filters, the output of the pooling layer
is a feature vector whose values correspond to the features of the convolution filter.

The last layer is the fully connected layer. The features form the max-pooling layer
are passed to a fully connected softmax layer whose output is the probability distribution
over labels [23].

Character-level Convolutional Networks

So far, the models presented above is based on words. But there is also research in
applying CNNs directly on characters. An example of character-level text classification
not requiring any tokenization is given by Zhang et al. (2015) [59]. In their work, the
authors perform text classification using character-level CNNs on very large datasets and
obtain comparable results to traditional models based on words [20].

When trained on largescale datasets, deep convolutional neural network do not re-
quire the knowledge about the words and syntactic or semantic structure of a language.
This simplification of engineering could be crucial for a single system that can work for
different languages, since characters always constitute a necessary construct regardless of
whether segmentation into words is possible. Working only on characters also has the
advantage that abnormal character combinations such as misspellings and emoticons may
be naturally learnt [59].

The first step is to build an alphabet. The alphabet used in this model consists of 74
characters, including 30 german letters, 10 digits, 33 other characters and the new line
character. Then an all-zero vector is padded to the one-hot encoding, in order to handle
the characters that are not in the character label (Fig. 3.9). The non-space characters
are:

abcdefghijklmnopqrstuvwxyzäöüβ0123456789

−, ; .!? :′ ”/\|_@#$%ˆ& ∗ ˜‘ +− =<> ()[]{}

22 CHAPTER 3. MACHINE LEARNING APPROACHES

Figure 3.9: The convolution neural network for extracting character-level representations of
words.

Then a sentence containing n words (word sequences) is represented as:

x = (x1, x2, ..., xn)

Where xi represents the id of the words in the alphabet, and then we can get one-hot
vector of each word, the dimension m is the alphabet size.

Then, the sequence of characters is transformed to a sequence of such m sized vectors
with fixed length l0. Any character exceeding length l0 is ignored, and any characters that
are not in the alphabet including blank characters are quantized as all-zero vectors. The
character quantization order is backward so that the latest reading on characters is always
placed near the begin of the output, making it easy for fully connected layers to associate
weights with the latest reading [59].

Figure 3.10: Zhang: Character-level Convolutional Networks

Zhang has desighed two CNNs – one large and one small and the difference between
them is the feature map size. They are both 9 layers deep with 6 convolutional layers and

3.2. NEURAL NETWORKS 23

3 fully-connected layers. Figure 3.11 and 3.12 gives an illustration. The kernel size of the
first two convolutional layers are set as 7, and the rest of the four layers kernel size are 3.

Figure 3.11: Convolutional layers followed by pooling layers.

Figure 3.12: Fully-connected layers of the character-level convolutional network. The number
of output units for the last layer is determined by the problem. For example, for a 10-class
classification problem it will be 10.

The input have number of features equal to 74 due to the character quantization
method, and the input feature length is 1014. The pre-trained method such as word2vec
are not used for the input word vectors in the model. It seems that 1014 characters could
already capture most of the texts of interest.There are also two dropout layers between
the three fully-connected layer to regularise the loss.

3.2.2 Recurrent Neural Networks

Unfortunately, the feed-forward neural network can not handle the constant input data.
Recurrent Neural Network (RNN) [16]can overcome this shortcoming, which is a neural
network has recurrent connections, so it can store information inside the network and also
accept sequences of different lengths as input.

In order to better understand the loop in a recurrent neural network, this section first
introduces the structure of a flow graph developed in a recurrent neural network, followed
by the description of the recurrent neural network model.

Flow graph is a way to formalize a series of computational structures that are mappings
of inputs and parameters to outputs and loss functions. For a recurrent computation
structure, it can be expanded into a flow graph composed of repeating structures. For
example, consider the classic form of a dynamic system [12]:

st = fθ(st−1) (3.4)

24 CHAPTER 3. MACHINE LEARNING APPROACHES

Where st is the state of the system at time step t. The flow graph of the dynamic
system is shown in Figure 3.13 .

Figure 3.13: Expanded flow graph structure of a traditional dynamic system

In the flow graph, the transfer function from the previous state to the latter state is
unified as fθ, that is, the transfer function is applied to all time steps t.

Another example is a dynamic system driven by an external signal x:

st = fθ(st−1, xt) (3.5)

The structure of the system is shown in Figure 3.14. It can be seen from the figure
that the state node contains the information of almost all past sequences. Formula 3.5
implicitly defines the formula 3.6:

st = gt(xt, xt−1, xt−2, ..., x2, x1) (3.6)

Where function gt maps all the past sequence to the current state. The formula 3.6
is in fact a part of the recurrent neural network definition and st can be considered as
a summary of the input sequence before the current time step t. If a recurrent neural
network is used for statistical language modeling, it is typical to give a series of previous
words to predict the next word. The recurring flow graph shown in Figure 3.14 helps to
understand and define the expanded recurrent neural network structure.

Figure 3.14: The neuronal structure containing the loop structure and its unrolled flow graph
structure

3.2. NEURAL NETWORKS 25

Recurrent Neural Network With the idea of the flow graph described above, a wide
variety of recurrent structure can be designed. The recurrent structure before and after
unfolding are shown in Figure 3.14. Assuming that the hidden layer uses hyperbolic

Figure 3.15: An unfolded recurrent neural network.

tangent nonlinear functions and the output layer (for classification problems) uses the
softmax function, the forward propagation formulas corresponding to the recurrent neural
network model in Figure 3.15 are as shown in Formulas 3.7 and 3.8:

st = tahn(b+W · st−1 + U · xt) (3.7)

ot = softmax(c+ V · st) (3.8)

Where matrix U is the parameter of the input layer to the hidden layer, matrix V is
the parameter of the hidden layer to the output layer, matrix W is the parameter of the
hidden layer to the hidden layer, b and c are the bias of the tanh function and the softmax
function respectively, xt is input at time t, st is the hidden layer state at time t, and ot is
the output at time t.

Figure 3.15 shows a recurrent neural network structure that maps an input sequence
to an output sequence of the same length. For a given input output sequence pair (x, y),
the total loss L(x, y) is the sum of the losses Lt over all time steps:

L(x, y) =
∑
t

Lt =
∑
t

−logpyt (3.9)

Where yt is the category corresponding to the time step t in the output sequence.

Long Thort-Item Memory networks

For the traditional recurrent neural network, the transfer weight matrix has a great influ-
ence on the learning process of the recurrent neural network. If the value of the weight
matrix is very small (formally, the main feature value of the weight matrix is less than

26 CHAPTER 3. MACHINE LEARNING APPROACHES

1.0), it will lead to the gradient vanishing. Gradient vanishing refers to the phenomenon
that the learning process becomes very slow or even stop due to the gradient signal too
small. On the contrary, if the weight matrix is very large (i.e., the main feature value of
the weight matrix is greater than 1.0), the gradient signal will be too large to make the
learning process divergent. This phenomenon is also called gradient explosion.

For recurrent neural network, it is difficult to learn long-distance dependence informa-
tion. In theory, recurrent neural networks can solve the loss of long-distance dependence
information through parameter selection. However, in practice, it can not successfully
learn long-distance dependence information. Long Short-Term Memory (LSTM) was pro-
posed by Hochreiter and Schmidhuber in 1997 [15, 30] and has recently been improved
and applied by Graves [13]. It is a specific recurrent neural network (RNN) architecture
that was designed to model temporal sequences and their long-range dependencies more
accurately than conventional RNN [43]. In recent years, LSTM has achieved great suc-
cess in many fields. The LSTM model can help recurrent neural network to overcome its
drawbacks and achieve good results on many tasks.

The long-short-term memory model proposes a new structure called memory cell. Its
structure is shown in Figure 3.16. Memory cell consists of three main components: input
gate, forget gate, output gate. The gate is to regulate the interaction between the memory
cell and its environment. On the one hand, the input gate can allow the input signal to
change the state of the memory cell or prevent the input signal. On the other hand, the
output gate can allow the memory cell to act on another neuron or prevent it from affecting
other neurons. Finally, forget gate can adjust the self-looping connection of memory cells,
which can allow memory cells to remember or forget their previous states as needed.

The formula below will be used to formally describe how the network layer in the
memory cell is updated at each time step t, in these formulas:

xt −− The memory cell input at time step t;
ht −− The hidden layer value of memory cell at time step t;
σ −− Sigmoid function, output a value between 0 to 1;
First, the start value it of the input gate at time step t and the candidate value of

memory cell state ct are calculated:

it = σ(Wixt + Uiht−1 + bi) (3.10)

ct = tahn(Wcxt + Ucht−1 + bc) (3.11)

Then, the start value ft of the forget gate in the memory cell at time step t is calculated:

ft = σ(Wfxt + Ufht−1 + bf) (3.12)

The next step is to calculate the new state value Ct of the memory cell at the time step t:

Ct = it × Ct + ft × Ct−1 (3.13)

3.2. NEURAL NETWORKS 27

Figure 3.16: Memory cell structure

Finally, the value of output gate and memory cell output value are calculated:

ot = σ(Woxt + Uoht−1 + V0Ct + bo) (3.14)

ht = ot × tahn(Ct) (3.15)

Bidirectional LSTM

For many sequence labeling tasks it is beneficial to have access to both past (left) and
future (right) contexts. However, the hidden state ht of LSTM takes information only
from past, knowing nothing about the future. An elegant solution is Bidirectional LSTM
(BiLSTM) [31]. A Bidirectional LSTM model can take into account any arbitrary amount
of context on both sides of a word and eliminates the problem of limited context [6].

The basic idea of BiLSTM is that each forwards and backwards sequence is respectively
two LSTMs, and both are connected to the output layer. This structure capture both past
and future contextual information for each time step of the input sequence. Figure 3.17
shows an unfolded BiLSTM model.

The word embedding (x1, x2, ..., xn) of each word of a sentence is taken as the input of
BiLSTM at each time step. Then the hidden state sequence (−→h1,

−→
h2, ...,

−→
hn) of the output of

the forwards LSTM and the hidden state sequence (←−h1,
←−
h2, ...,

←−
hn) of the backwards LSTM

28 CHAPTER 3. MACHINE LEARNING APPROACHES

are concatenated at each time step ht = [−→ht ,
←−
ht] ∈ Rm ,then the complete hidden state

sequence is formed:
(h1, h2, ..., hn) ∈ Rn·m

Then the m-dimensional hidden state vector is mapped to k-dimensional, and k is
the number of labels. Thus, the extracted sentence features are denoted as matrix O =
(o1, o2, ..., on) ∈ Rn·k. Each dimension oij of oi ∈ Rk can be regarded as the scoring value
that the word xi is classified as jth tag.

Figure 3.17: Bi-directional LSTM

3.3 Baseline Models

3.3.1 Support Vector Machines

Support Vector Machines (SVM) [8] is a powerful tool for classification problems. It is a
non-statistical approach and make no assumptions about the distribution of the data [38].

It is used to maximize the separation in feature space. When the dataset is linearly
separable, a linear classifier, i.e., a linear separable support vector machine is learned by
maximizing the hard interval. When the dataset is approximately linearly separable, a
linear classifier is obtained by maximizing the soft interval, i.e., Linear Support Vector
Machine. When data sets are inseparable, nonlinear support vector machines is learned
by using kernel techniques and maximizing soft intervals. The kernel technique refers to
the inner product of the input feature vectors mapped into the feature space by the kernel
function. The principle is equivalent to learning the linear support vector machine implic-

3.3. BASELINE MODELS 29

itly in the high dimensional feature space. We begin with the basic principles involved in
the simplest linear separable support vector machine.

The basic idea of SVM learning is to find a seperate hyperplane that can correctly
divide the data set and maximize the geometric interval. For a linearly separable dataset,
there are lots of linearly separable hyperplanes, but the hyperplane with maximized ge-
ometric intervals is unique. Maximizing separation is to classify the dataset with a suf-
ficiently large confidence in finding a hyperplane with maximized margin. Not only the
positive and negative instances, but also the points that are most difficult to classify can
be separated. The hyperplane thus has good classification predictability for unknown
samples, maximizing the model generalization.

The maximum interval method for learning a linear support vector machine is described
as follows:
Input: The linearly separable dataset T = {(x1, y1), (x2, y2), ..., (xN , yN)} , where the
corresponding input to xi is an n-dimensional feature vector, only the binary classification
is considered, therefore yi ∈ {1,−1}, i = 1, 2, ..., N .
Output: Maximum margin of separated hyperplane and decision function:

minw,b
1
2 ||w||

2 (3.16)

s.t. yi(w · xi + b) ≥ 0, i = 1, 2, ..., N (3.17)

Find the optimal solution w∗, b∗ ,and the optimal margin seperating hyperplane: w∗ ·
x+ b∗ = 0.

The classification decision function is: f(x) = sign(w∗ · x+ b∗).

Figure 3.18: Linear separable support vector machines

30 CHAPTER 3. MACHINE LEARNING APPROACHES

Under the condition of linear separability, the support vector contains the nearest
sample points to the separation hyperplane, and the support vector sample points are the
points that make the constraint inequality equal. As shown in Fig. 3.18, the points on the
dotted line represent the hyperplane support vector. That is, the support vector is used
to determine the separation hyperplane. If we move the support vectors, we will change
the solution, but if we move the other instance points outside the bounds, the solution will
not change even without these sample points. Since the support vector plays a decisive
role in determining the separation hyperplane, this classification model is called support
vector machine.

When there is a sample that does not satisfy the constraint that the function interval
is greater than or equal to 1, the sample points need to be introduced with slack variables,
which are called the soft interval maximization compared with the original hard interval
maximization. Due to the existence of singular points in most real-world data, the linear
SVM with soft interval maximization is more universal. The mathematical expression
after changing the constraint is:

minw,b,ε
1
2 ||w||

2 + C
N∑
i=1

εi (3.18)

s.t. yi(w · xi + b) ≥ 1− ε, i = 1, 2, ..., N (3.19)

εi ≥ 0, i = 1, 2, ..., N (3.20)

where εi is the classification loss for the sample i, it will be 0 if the classification is
correct, or a linear value if the classification is biased,∑N

i=1 εi is the total error. The goal of
our optimization is to minimize this value. A smaller value indicates a higher classification
accuracy. Another optimization is to minimize C, the penalty term. In principle, C can
select any numbers greater than 0 as needed. The bigger C is, the higher the attention
to the total error in the whole optimization process is, the higher the requirement for
reducing the error is.

This problem will be a hard-margin SVM problem when C tends to infinity, i.e., a
sample of classification errors is not allowed. When C tends to 0, we no longer care about
the classification is correct, the larger interval the better, then we will not be able to find a
meaningful solution and the algorithm will not converge. Here is a set of Guassian kernel
/ soft-margin SVM experimental results under different C :

Nonlinear support vector machine (SVM) uses kernel function to map the indivisi-
ble nonlinear data set in low-dimensional space into the high-dimensional feature space.
Through such nonlinear transformation, the original nonlinear problem is transformed into
a linear problem. Under the new feature space, the nonlinear classification problem can
be solved by linear support vector machine, the following gives the definition of kernel
function:

3.3. BASELINE MODELS 31

Figure 3.19: Experimental results of Guassian kernel / soft-margin SVM when C is 1,10,100.

Let X be the input space, H be the feature space, if there exists a mapping φ from X

to H, so that for any two input vectors x, z in X, the function K satisfies the condition
K(x, z) = φ(x) · φ(z), then K is the kernel function, φ is the corresponding mapping
function, and φ(x)·φ(z) is the inner product of the corresponding high dimensional feature
space.

Commonly used kernel functions include:
Polynomial kernel function:

K(x, z) = (x · z + 1)p (3.21)

Radial basis function:
K(x, z) = exp(−γ||x− y||2) (3.22)

Gaussian kernel function:

K(x, z) = exp{−||x− z||
2

2µ2 } (3.23)

In practice, the kernel function is often relied on domain knowledge, and the validity
of kernel function needs to be tested by cross-validation set. The optimization algorithm
includes sequence minimum optimization(SMO) algorithm.

3.3.2 Conditional Random Fields

Kernel-based approaches, such as SVM, which maximize the margin of confidence of the
classifier, are adopted for many typical classification tasks, which assign a label to a sin-
gle object. Their popularity stems both from the ability to use high-dimensional feature
spaces, and from their strong theoretical guarantees. However, many real-world tasks
involve sequential, spatial, or structured data, where multiple labels must be assigned.
Existing kernel-based methods ignore structure in the problem, assigning labels indepen-
dently to each object, losing much useful information [51]. Conversely, probabilistic graph-
ical models, such as Markov networks, Conditional Random Fileds (CRF), can represent
correlations between labels.

32 CHAPTER 3. MACHINE LEARNING APPROACHES

Conditional Random Fields is a statistical-based model. In 2001, it was first proposed
by John Lafferty et al. [25]. The conditional probability of the global optimal output label
could be calculated under the given global conditions.

The CRF model is a kind of undirected graph model. G = (V,E) is defined as an
undirected graph, a point v ∈ V corresponds to a random variable y ∈ Y . If X is a
global condition, then (X,Y) is a conditional random field when the entire output label
Y satisfies the Markov property.

Among them, the chained structure is a common situation, which is to obtain the
conditional probability of the entire output labeled sequence in the global sense under the
condition of the given input sequence.

Figure 3.20: The undirected graph of conditional random fileds

As shown in Figure 3.20 , let x =< x1, x2, ..., xi, ..., xn > be the input sequence and
y =< y1, y2, ..., yi, ..., yn > be the output labeled sequence. Under the condition of the
input sequence x, the probability of outputting the labeled sequence y is defined as:

Pθ(y|x) = 1
Z(x)exp(

∑
i

∑
k

µksk(yi, x) +
∑
i

∑
k

λktk(yi−1, yi, x)) (3.24)

In Equation 3.24, the parameters µk and λk are respectively the weights of two func-
tions. Z(x) is the normalization factor, which gives a probabilistic results. sk(yi, x)
represents the state feature function of the input sequence at position i, and tk(yi−1, yi, x)
represents the transition feature function between i− 1 and i position of input sequence.
For the conciseness of the following expressions, the two feature functions are expressed in
a unified form: fk(yi−1, yi, x). This is just a form. In practice, the state function sk(yi, x)
only considers a single output yi at position i.

From Formula 3.24, we can see that the key to construct a CRF model is to solve
four problems: input and output sequence representation, feature function definition and
parameter estimation. Among them, the definition of the feature functions is particularly
critical, because it will directly affect the effectiveness of the whole CRF model.

Each feature function corresponds to an event whose value is ’0’ or ’1’, and when its
value is ’1’, the event corresponding to this eigenfunction increases by one time.

3.3. BASELINE MODELS 33

Figure 3.21: Part of input sequence and output sequence

As shown in Figure 3.21, let the feature function f(yi−1, yi, x) correspond to the fol-
lowing events: xi = I2, xi−1 = I1, xi+1 = I3, the output at position i is labeled as: yi = O2.
It can be expressed as a function of form:

f(yi−1, yi, x) =
(
b(x, i) if yi = O2

0 otherwise

)
(3.25)

b(x, i) is the observed value of the input sequence, when an input situation occurs, it takes
a value of ’1’, otherwise ’0’.

b(x, i) =
(

1 if xi = I2, xi−1 = I1, xi+1 = I3
0 otherwise

)
(3.26)

In summary, the feature function f(yi−1, yi, x) value of ’1’ means:
In the conditional sequence x, when xi−1 = I1, xi+1 = I3, xi = I2, the output at the i

position is labeled as yi = O2, this event is increased by 1 count.
The training of the conditional random field is to estimate the parameter λ of each

feature function, usually using the maximum likelihood estimation.
Maximum Likelihood Estimation [54] is a commonly used estimation method in fre-

quency theory. It is assumed that training data consists of a set of data points D =
< x(k), y(k) >, k = 1, ..., N , each of them is independent and is generated according to a
joint experimental distribution. Accordingly, the likelihood function of the training data
D of the conditional random field model is:

L(λ) =
∏
x,y

logp(y(k)|x(k), λ) (3.27)

The parameter λ that maximizes the likelihood function is defined as:

λML = argmaxL(λ)

It can also make the distribution of the model closer to the empirical distribution,
but directly applied maximum likelihood estimation may lead to over-learning problems.
Gaussian smoothing factor is introduced into the conditional random field to solve the
problem [55], then Formula 3.27 is reformed as:

34 CHAPTER 3. MACHINE LEARNING APPROACHES

L(λ) =
∏
x,y

logp(y(k)|x(k), λ)−
∑
j

(λj)2

2σ2

This function is a concave function, which ensures that the function can converge to the
global maximum.

3.4 Train a Classifier on top of Neural Network Features

3.4.1 Combine Convolutional Neural Networks and Support Vector Ma-
chines

In recent years, classifiers based on word embeddings and CNN have achieved good perfor-
mance in sentiment analysis tasks. CNN is good at learning invariant features, however,
CNN only uses fully connected softmax layers as the classification layer [23]. The fully
connected layer can not classify the non-linearly distributed data effectively [4], while Sup-
port Vector Machines are good at producing decision surfaces from well-behaved feature
vectors, but cannot learn complicated invariances [14].

In this thesis, the model (Fig. 3.22) that combining convolutional neural network and
support vector machines is applied for text classification. In this model, skip-gram model
is employed to construct the word embeddings. Each word xi in a sentence is mapped
from one-hot vector to a low-dimensional dense word embedding xi ∈ Rd by using a pre-
trained or randomly initialized embedding matrix, d is the embedding dimension. The
CNN model is then applied to learn feature vector representations of the input samples.
The output of CNN, distributed feature representations of the input samples are fed into
SVM. Such a combined model is expected to combine the advantages of a convolutional
neural network with a support vector machines [4, 14].

The concrete implementation algorithm of this model is shown in Algorithm 3.1.

3.4.2 Combine Bidirectional-LSTM and Conditional Random Fields

As mentioned in the introduction of Bidirectional-LSTM, if softmax is further used for
the output O, it is equivalent to a k-class classification at each time step independently.
Therefore, the previously labeled information is not considered.

While Conditional Random Fields (CRF) is a traditional sequence labeling model
that consider the correlations between labels in neighborhoods and jointly decode the best
chain of labels for a given input sentence, instead of decoding each label independently [31].
Therefore, it considers more linear weighted combinations of local features of the whole
sentence. In particular, CRF calculates the joint probability and optimizes the whole
sequence, instead of stitching the optimal value for each time step. However, CRF can
not consider long-term contextual information like LSTM.

3.4. TRAIN A CLASSIFIER ON TOP OF NEURAL NETWORK FEATURES 35

Input: Train data Dtrain, Test Data Dtest

Output: Class label of test data
1: Import word vector set W that is trained by CBOW or Skip-gram model
2: Initialize the parameters of CNN model
3: for each sentence s ∈ Dtrain do
4: Get the word vectors s = [w1, w2, ..., wn−1, wn] of all words in s from W

5: Compute the feature value ci = f(v ·wi:i+h−1 + b) through convolutional operation;
6: All feature values are formed to a feature vector c = [c1, c2, ..., cn−h+1];
7: Get the important feature voctors through pooling operation. ĉ = max(c);
8: end for
9: Export the well-trained parameters Pcnn of CNN and the feature vector Strain of

train data
10: Initialize hyperplane parameters Psvm of SVM
11: for each vector strain ∈ Strain do
12: Minimize classification error;
13: Adjust hyperplane parameters iteratively;
14: end for
15: Export well-trained hyperplane parameters
16: for each sentence s ∈ Dtest do
17: Get the feature vectors Stest of sentences through trained CNN;
18: end for
19: for each vector stest ∈ Stest do
20: Use well-trained SVM to classify test sample;
21: Output class label;
22: end for

Algorithmus 3.1: Text classification algorithm based on convolutional neural network and sup-
port vector machines.

36 CHAPTER 3. MACHINE LEARNING APPROACHES

Figure 3.22: A CNN-SVM model

Therefore, BiLSTM combined with CRF has become a pretty good model for sequence
labeling, the structure is shown in Figure 3.23.

The first layer of the model is the word embedding layer. The distributed representa-
tion of each word is fed into Bidirectional LSTM (BiLSTM) that automatically extracts
context information of each word. The output dimension of BiLSTM layer is label size,
which is equivalent to the transition probability from each word to a tag. Then the out-
put of BiLSTM network at each time stamp is fed into the CRF layer that implements
sentence-level sequence tagging. A CRF layer is represented by lines which connect con-
secutive output layers. A CRF layer has a state transition matrix A as parameters, then
Ai,j represents the transition score to model the transition from tagi to tagj for a pair of
consecutive time steps [60]. With such a layer, we can efficiently use past and future tags
to predict the current tag.

Thus, this BiLSTM-CRF model can use both past and future input features thanks to
a bidirectional LSTM component and sentence level tag information instead of individual
positions thanks to a CRF layer [18].

3.4. TRAIN A CLASSIFIER ON TOP OF NEURAL NETWORK FEATURES 37

Input: Train data Dtrain, Test Data Dtest

Output: Class label of test data
1: Import word vector set W that is trained by CBOW or Skip-gram model
2: Initialize the parameters of Bi-LSTM model
3: for each sentence s ∈ Dtrain do
4: Get the word vectors s = [w1, w2, ..., wn−1, wn] of all words in s from W

5: for Forward pass of Bidirectional LSTM model do
6: forward pass for forward state LSTM;
7: forward pass for backward state LSTM;
8: end for
9: for Backward pass of Bidirectional LSTM model do

10: backward pass for forward state LSTM;
11: backward pass for backward state LSTM;
12: end for
13: The representation sequence [h1, h2, ..., hn−1, hn] is generated by the memory cell ;
14: The representation vector h is generated by a pooling operation ;
15: The class labels of the input samples are obtained by the output layer;
16: Adjust the parameters Oi of the model and the word vector of the input sample by

backpropagation iteration;
17: end for
18: Export the well-trained parameters Otrain = (o1, o2, ..., on) ∈ Rn·k of Bi-LSTM model

parameter
19: for each vector strain ∈ Strain do
20: Maximize the conditional likelihood;
21: Adjust parameter A iteratively;
22: end for
23: Export well-trained parameters
24: for each sentence s ∈ Dtest do
25: Find the word vectors s = [w1, w2, ..., wn−1, wn] of all words in s from W ;
26: Get the feature vectors Otestof sentences;
27: end for
28: for each vector stest ∈ Stest do
29: Tagging the input words by using well-trained CRF;
30: Output label of input words;
31: end for

Algorithmus 3.2: Sequential labeling algorithm based on bidirectional LSTM and conditional
random filed.

38 CHAPTER 3. MACHINE LEARNING APPROACHES

Figure 3.23: A Bi-LSTM-CRF model

Chapter 4

System Structure

The machine learning approaches introduced in Chapter 3 will be applied to four subtasks
of Germeval Shared Task 2017. In this chapter, a system is constructed to integrate these
four subtasks together. The Fig. 4.2 shows the overall architecture of the system. The
system is decomposed into three parts: a relevance model, a document-level sentiment
model and an aspect-level sentiment model (Fig. 4.3) that is consist of aspect model and
aspect-level polarity model.

The relevance model takes in a review and outputs the "Deutsche Bahn" relevant
reviews. The document-level sentiment model also takes in all reviews as input, the
"Deutsche Bahn" irrelevant reviews are then classified as neutral. However, the aspect-
level sentiment model only takes in the relevant reviews from relevant model, since a
irrelevant review is neutral at document level and a neutral review contains no opinions.
An example of our dataset (Fig. 4.1) shows that the irrelevant review does not have an
opinion tag.

The aspect model of aspect-level sentiment model takes in a sentence vector (or a set of
word vectors) and outputs a probabilistic distribution over the aspects (E#A pairs). The
sentiment model takes in a sentence vector and outputs the corresponding sentiment of
the sentence. For the aspect-level sentiment analysis, the sentiment is connected to target
aspects by augmenting the word vectors with aspect-specific rescaling. These models and
the method to link aspects and corresponding sentiments are described in the following
sections [56].

Figure 4.1: An example of an irrelevant review.

39

40 CHAPTER 4. SYSTEM STRUCTURE

Figure 4.2: System Architecture

Figure 4.3: Aspect-level Sentiment Model

4.1. RELEVANCE MODEL 41

The system and the results of models are illustrated through the example of Fig. 2.2.
Reviews : Nach 25 Minuten ist mein Nebenschwitzer in der Bahn ausgestiegen. Das
Abteil atmet auf.
“Deutsche Bahn” Relevant Reviews : Nach 25 Minuten ist mein Nebenschwitzer in
der Bahn ausgestiegen. Das Abteil atmet auf.
Aspect Model :
Opinion target extraction :Nebenschwitzer
Aspect cateforization : Atmosphäre#Geruch
Aspect : “Atmosphäre#Geruch”
Document-level Sentiments : Negative
Aspect-level Sentiments : Negative

4.1 Relevance Model

The WE-CNN-SVM model described in Chapter 3.4.1 is adopted for the relevance clas-
sification. Since the word embeddings have shown previously to be beneficial to text
classification tasks, requiring only minimal feature engineering effort [29]. The first layers
embeds words into low-dimensional vectors1. If the words do not appear in the pre-trained
word embedding, they are initialized randomly. The next layer performs convolutions over
the embedded word vectors using multiple filter sizes. For example, sliding over 3, 4 or 5
words at a time. Next, the results of the convolutional layer are max-pooled into a long
feature vector. The vectors in the fully connected layer of CNN are regarded as the dis-
tributed feature representations, and then these distributed representations are regarded
as feature vectors in a SVM classifier [4].

4.2 Document-level Sentiment Model

Since document-level sentiment polarity is a multi-class classification problem, the sen-
timent is predicted via 3 binary classifiers. The one-vs-one strategy is used to train a
binary classifier. Each classifier is trained using a Support Vector Machine. The classifier
is enhanced by adding pre-trained word embeddings and neural network features learned
from convolutional neural network proposed by Yoon Kim [52].

4.3 Aspect-level Sentiment Model

This model is to determine whether an opinion on an aspect is positive, negative or neutral.
As introduced in Chapter 2.1, an aspect is an entity and aspect pair. Thus aspect-based
sentiment analysis covers both entities and aspects. As defined by Bing [29], the objective

1http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/

42 CHAPTER 4. SYSTEM STRUCTURE

at aspect-level is to discover every quintuple (ei, aij , sijkl, hk, tl) in a given document d,
where sijkl indicates the sentiment of the opinion holder hk about the aspect aij of entity
ei at tl time of opinion. To achieve this goal, three core tasks have to be performed :
opinion target extraction; aspect categorization; aspect-level polarity. The aspect model
combines the opinion target extraction (subtask D) with aspect categorization [29].

Since the document-level sentiment model described in Section 4.2 is aspect-agnostic.
It works fairly well with sentences of uni-sentiment. However, when judging sentences with
multiple conflicting sentiments, the output is hard to predict [56]. To solve this problem,
the aspect vectors will be concatenated with the input word vectors.

Besides, when applying CNN to word vectors, the convolutional layers can be viewed
as weighted sum of the word vectors with respect to the shared weight matrix. Then, the
largest value is selected by max-pooling layer. Thus, the magnitude of word vectors has
a strong influence on the behavior of the CNN. If a word vector is scale up (or down)
uniformly on all dimensions, its impact at the max-pooling layer will be enhanced (or
reduced). The two observations above result to rescale word vectors by connecting with
the corresponding aspect vectors before feeding them into the CNN [56].

4.3.1 Aspect Model

This model is to extract all opinion target expressions of the entities, and then categorize
these opinion target expressions into clusters. Each opinion target expression cluster of
entity represents a unique aspect [29].

Slot 1: Opinion Target Extraction

The Opinion Target Expression (OTE) is defined by its starting and ending offsets. While
the dataset is available in both TSV and XML formats, the OTE task can only be done
using the XML format. The opinion target extraction task is tackled as a sequence labeling
problem. Doing so allows us to extract an arbitrary number of multi-word expressions in
a given text [20].

The conventional BIO tagging scheme is used to represent sentence as a sequence of
tokens labeled :

Words: Nach 25 Minuten ist mein Nebenschwitzer in der Bahn ausgestiegen.
Labels: O O O O B I O O O O

Table 4.1: An example sentence with labels in BIO format. The target is mein Nebenschwitzer,the
label B indicates the beginning of a target, I indicates that the word is inside a target, and O
indicates a word belongs to no target.

4.3. ASPECT-LEVEL SENTIMENT MODEL 43

The sequence labeling classifier is trained using Conditional Random Fields (CRF).
The word embeddings and output of a BiLSTM model are used as additional features.
Thus, the BiLSTM-CRF model mentioned in Chapter 3.4.2 is adopted for this task, which
can process sequence-typed input data.

Slot 2: Aspect Categorization

An opinion target expression is an actual word or phrase that appears in the text indicating
an aspect category, while an aspect category represents a unique aspect. Aspect categories
are typically coarser than the aspect terms of Slot 1 (opinion target extraction) [36]. So
after opinion target extraction, we also need to categorize the extracted opinion targets,
because people often write the same entity or targets in different ways [29]. The Germeval
Task has given 19 predefined aspect categories (Table A.1). We need to recognize that
each extracted opinion targets refers to at least one of the 19 categories. The process
of grouping opinion target expressions into aspect categories (aspects) is called aspect
categorization.

Aspect category classification is based on a set of one-vs-all binary classifiers, one
classifier for each category found in the training dataset [52]. Each classifier is trained
using a Support Vector Machine. The classifier is then enhanced by adding neural network
features learned from a Convolutional Neural Network model.

4.3.2 Aspect-level Polarity

The aspect-level polarity of a comment faces more challenges because it is not only deter-
mined by the content but is also highly related to the concerned aspect [57]. As well as
a comment may contain more than one aspects of the different categories or even a same
category. This task is to determine the orientation of sentiment expressed on each aspect
in a sentence.

The aspect obtained from aspect model 4.3.1 is splitted into its constituent tokens,
e.g. Zugfahrt#Strechennetz –>Zug fahrt, Strechennetz [41]. Then the aspect tokens
are concatenated with the words of input sentence and each character of these words
are quantized by using one-hot encoding, and then each character is transformed to its
corresponding character embedding using a character embedding matrix. The one-hot
vectors are fed into Character-level Convolutional Neural Networks to extract features.
The sentiment is then predicted via Support Vector Machine classifier.

44 CHAPTER 4. SYSTEM STRUCTURE

Chapter 5

Implementation

The implementation of proposed models are constructed based on using Python program-
ming language working on Eclipse platform. Python has a large number of scientific li-
braries for data processing and machine learning approaches. These libraries are presented
in the following sections and their relevance to this thesis are described.

5.1 Library

5.1.1 Scientific Python

This section presents the libraries that have been developed specifically for scientific work
and are used by this thesis. First, Scikit-Learn is introduced. Scikit-learn is a free "open
source" library for Python and includes a variety of classification, regression and clustering
algorithms.

One of the advantages of implementing with Python is that the simplicity of Python is
matched with the speed of compiled programming languages. Therefore, highly complex
algorithms can be applied in a very short period of time. Another feature that contributes
to the popularity of Scikit-learn is that a uniform interface is available for all algorithm
classes. All classification algorithms have the functions: fit and predict. The fit function
trains the algorithm and predict executes the predictions after training.

The fact that these methods are implemented by all algorithms, it is sufficient only to
change the class instance and then use another method to solve the present problem. For
the requirements of this thesis are the properties mentioned above exactly helpful. Fur-
thermore, Scikit-learn integrates the popular libraries Numpy and SciPy, which allowing
good interoperability with other libraries. The following introduce NumPy and scikit.

NumPy (short of Numerical Python) is a basic Python Scientific Computing package
that provides fast complicated functions for mathematical and numerical routines. In
addition, NumPy enriches the programming language Python with powerful data struc-
tures for efficient arithmetic with large arrays and matrices. Furthermore, the module

45

46 CHAPTER 5. IMPLEMENTATION

offers a huge number of high-quality mathematical functions to work with these matrices
and arrays. The core functionality of NumPy is based on the data structure "ndarray"
(ndimensional array), a contiguous storage area of fixed size. Different with the list data
structure of python, "ndarrays" are homogeneous typed: all elements of an array must be
of the same data type.

The SciPy (Scientific Python) package extends the functionality of NumPy. It pro-
vides many user-friendly and efficient numerical routines such as routines for numerical
integration and optimization. SciPy also works with NumPy data formats, making it an
ideal match.

5.1.2 BeautifulSoup

The Opinion Target Extraction task can only be done using the XML format. Therefore,
the python library Beautiful Soup1 in version 4, shortly called BS4, is used to extract
information from XML documents. It is a tree-based parsing, in which the entire document
is loaded into memory. It works on the DOM (Document Object Model), i.e. on the syntax
tree of the document. Beautiful Soup basically offers very simple and intuitive methods
to search and edit the DOM. For the application of the Opinion Target Extraction, only
the search and filter function is used, because the information is only extracted and the
documents do not need to be modified. Once a document has been read in with Beautiful
Soup, it will be converted to a corresponding BS4 object. All data in this object is
converted to Unicode and saved as UTF-8.

5.1.3 Tensorflow

TensorFlow2 is an open source software library for numerical calculations using data flow
graphs. Nodes represent math operations in the figure, and edges in the figure represent
multidimensional data arrays, i.e., tensors, that relate to each other. Its flexible archi-
tecture allows you to expand computing on a variety of platforms, such as one or more
CPUs (or GPUs), servers, mobile devices, and more in desktop computers. TensorFlow
was originally developed by researchers and engineers from the Google Brain Group (part
of the Google Institute for Machine Intelligence) for machine learning and deep neural
networks, but its versatility makes it widely used in other computations field.

Tensors As the name indicates, tensorflow is a framework to define and run computa-
tions involving tensors. A tensor is a generalization of vectors and matrices to potentially
higher dimensions.For example, 1D-tensor is a vector, 2D-tensor is a matrix and 2D-

1https://www.crummy.com/software/BeautifulSoup/bs4/doc/
2https://www.tensorflow.org/

5.1. LIBRARY 47

tensor is a cube. Internally, TensorFlow represents tensors as n-dimensional arrays of base
datatypes.

Graph Scopes Any layer or model that are defined inside a TensorFlow graph scope
will have all of its variables and operations created as part of the specified graph.

Tensorboard The operations involved in TensorBoard are usually complicated and in-
comprehensible computations that occur in training large, deep neural networks. To make
it easier to understand, debug and optimize TensorFlow programs, a visualization tool
called TensorBoard is provided.

First, Tensorflow has a concept of a summaries, which allow us to keep track of and
visualize various quantities during training and evaluation. For example, we can keep
track of how loss and accuracy evolve over time, and even more complex quantities, such
as histograms of layer activations. Summaries are serialized objects, and they are written
to disk using a SummaryWriter.

Then we can use TensorBoard to show the TensorFlow image, draw a quantitative
index of the image generated and additional data. TensorBoard runs by reading event file
of TensorFlow. The TensorFlow event file includes the main data that will be involved in
running TensorFlow. The Fig. 5.1 shows an example for a convolutional neural network
with filter size 3, 4 and 5.

The general life cycle of the summary data in the TensorBoard is as follows: first,
create a TensorFlow graph of the data we want to summarize, and then choose which
node we want to summarize.

5.1.4 Keras

Keras3 is a high-level neural network API, Keras is written in pure Python and based
on Tensorflow, Theano and CNTK backend. Keras was born to support rapid experi-
mentation and quickly convert your ideas to results. keras is highly modular, minimalist,
and scalable, so it support simple and fast prototyping and model CNN and RNN, or a
combination of the two models, switch CPU and GPU seamless.

Keras’s design principle is user-friendly. Keras is an API designed for humans. The
user experience is always the primary and central part of the consideration. Keras provides
a consistent and concise API that drastically reduces the workload for users in general use,
while Keras provides clear and practical bug feedback. A model can be understood as a
sequence of layers or as a graph of data. Fully configurable modules can be freely combined
at the least cost. Specifically, the network layer, loss functions, optimizers, initialization
strategies, activation functions, and regularization methods are all separate modules that

3https://keras.io/

48 CHAPTER 5. IMPLEMENTATION

Figure 5.1: Visualizing the operations of CNN in TensorBoard

we can use to build our own model. Keras is scalability. Adding new modules is super
easy, just follow the existing module and write new classes or functions. The convenience
of creating new modules makes Keras more suitable for advanced research. Furthermore,
Keras does not have a separate model profile type, the model is described by python code,
making it more compact and easier to debug, and offers expanded convenience.

Chapter 6

Experiments

In this chapter, the evaluation metrics and methods for network training and regularization
are intruduced. Then the experiments for evaluating the proposed models for four subtasks
of Germeval 2017 are discussed. First,the mode of input word vectors are evaluated.
Second, the proposed neural networks and whether a combination of neural network as
feature extractor and support vector machine or conditional random fields as classifier is
useful for the improvement of performance, are evaluated. Third, the experimental results
of baseline system of Germeval 2017 and the performance of different methods on a specific
subtask, are compared.

6.1 Evaluation Metrics

In order to simplify and speed up the process of model optimization, the metric Accuracy
is used as the evaluation metric during the training phase. The accuracy equation declares
in the next equation:

Accuracy = true positive + true negative
true positive + false positive + true negative + false negative (6.1)

The official measure of the Germeval 2017 task is themicro average F1-measure. Micro-
averaging, which counts the occurrence of a global confusion matrix for each instance of
a data set regardless of category, and calculates the corresponding metric. Besides, the
F1_measure is designed to give a more truthful result even when working with imbalanced
classes dataset, because each instance is weighted the same as the others. Therefore, micro
average F1-measure is used as evaluation metric during the test phase. The Precision,
Recall and F1-measure equations are:

Precision = true positive
true positive + false positive . (6.2)

Recall = true positive
true positive + false negative . (6.3)

49

50 CHAPTER 6. EXPERIMENTS

F1−measure = 2× Precision× Recall
Precision + Recall . (6.4)

where true positive is defined when a text is correctly classified as positive, false positive
is a negative text which is classified as positive, the true negative is a text correctly
classified as negative, and false negative is a positive text but is classified as negative.

6.2 Network Training and Regularization

The neural networks contain multiple non-linear hidden layers and this makes them very
expressive models that can learn very complicated relationships between their inputs and
outputs. With limited training data, however, many of these complicated relationships
will be the result of sampling noises, so they will exist in the training dataset but not in
real test dataset even if it is drawn from the same distribution [49].

Thus the neural networks always tend to easily overfit especially on small and medium
sized datasets. To mitigate the overfitting issue, we can augment the cost function with
L2-norm regularization terms for the parameters of the networks. In addition, dropout is
applied to improve regularization of the deep neural networks [23].

Dropout is a technique for addressing this problem, because the key idea is to randomly
drop units (along with their connections) from the neural network during training. This
prevents units from co-adapting too much. During training, dropout samples from an
exponential number of different "thinned networks". At test time, it is easy to approximate
the effect of averaging the predictions of all these thinned networks by simply using a single
unthinned network that has smaller weights [49].

6.2.1 Data Processing

Data Augmentation Text classification typically performs better with large training
datasets [39]. Especially the character-level CNN, which extract information from raw
signals, usually require large-scale datasets to work.

In order to reduce the generalization error of the deep learning models, the dataset will
often be augmented to mitgate the overfitting problem. In the image processing, scaling,
panning and rotating the image will not change its structure. For the speech recognition,
adjusting the tone, speed of speech and noise will not change the result. However, in the
text processing, the order of characters can not be changed because the order represents
the semantics. Therefore, the best way to do data augmentation would have been using
human rephrases of sentences, but this is unrealistic and expensive due the large volume
of samples in our datasets. As a result, the most natural choice in data augmentation
for us is to replace words or phrases with their synonyms [59]. The thesaurus can be

6.2. NETWORK TRAINING AND REGULARIZATION 51

obtained from SentiWS [37], a publicly available german language resource for sentiment
analysis [50].

Imbalancement of datasets The second challenge is the imbalance of the dataset,
about 83% reviews are topic (Deutsche Bahn) relevance and 68% are neutral, 6% are
positive, 26% are negative. There are two methods to address the imbalance problem of
datasets, we can either choose an appropriate performance metric or resample the datasets.
The metrics such as Confusion Matrix, Precision, Recall and F1 Score are designed to give
a more truthful result when working with imbalanced classes. There are two main methods
of resampling that can use to even-up the classes: add copies of instances from the under-
represented class called over-sampling; delete instances from the over-represented class,
called under-sampling. The random sampling approach is very easy to implement and
fast to run. But the random under-sampling always leads to loss of information. And
random over-sampling adopts a simple replicated sample strategy to increase the minority
samples, it can easily lead to overfitting problem, that is, the features learned by the model
are too specific and not generalized.

SMOTE Synthetic Minority Oversampling Technique is an improvement based on
random over-sampling algorithm. The minority class is over-sampled by taking each mi-
nority class sample and introducing synthetic examples along the line segments joining
any/all of the k minority class nearest neighbors. Depending upon the amount of over-
sampling required, neighbors from the k nearest neighbors are randomly chosen [5].

Figure 6.1: Synthetic Minority Oversampling Technique

Synthetic samples are generated in the following way: Take the difference between
the feature vector (sample) under consideration and its nearest neighbor. Multiply this
difference by a random number between 0 and 1, and add it to the feature vector under
consideration. This causes the selection of a random point along the line segment between
two specific features. This approach effectively forces the decision region of the minority

52 CHAPTER 6. EXPERIMENTS

class to become more general [5]. The new samples which are artificial synthesized based
on the minority samples are then added to the datasets.

6.2.2 Optimization Algorithm

It is found that model performance is very sensitive to optimization algorithm. The adam
optimization algorithm [24] is used to train the neural networks.

As shown in Figure 6.2, when we train the convolutional neural network proposed by
Yoon Kim(Chapter 3.2.1) with the default parameters, gradient descent optimizer does
not guarantee good convergence as adam optimizer.,

Figure 6.2: Training accuracy of CNN model that are respectively trained by Adam Optimizer
(above) and Gradien Descent Optimizer (below).

Adam (Adaptive Moment Estimation) optimization algorithm is an extension of tradi-
tional stochastic gradient descent algorithm. It iteratively updates neural network weights
based on training data. Stochastic gradient descent keeps a single learning rate (i.e., al-
pha) updates all weights and the learning rate does not change during training. However,
choosing a proper learning rate can be difficult. A learning rate that is too small leads
to painfully slow convergence, while a learning rate that is too large can hinder conver-
gence and cause the loss function to fluctuate around the minimum or even to diverge [40].

6.3. TASK EVALUATION 53

Adam calculates independent adaptive learning rates for different parameters by calculat-
ing first-order and second-order moments of the gradient.

6.3 Task Evaluation

Baseline System: The Germeval 2017 provided a baseline system that contains two
classifiers. A linear SVM classifier is used for relevance classification, document-level po-
larity and aspect-level polarity subtasks. The term frequency and a german sentiment
lexicon are used as features for SVM classifier. The opinion target extraction subtask uses
a CRF classifier with the token (without standardization/lemmatization/lowercasing) and
the Part-of-Speech (POS) tag as features. Both features are unigram features on the
current token, no preceding or following tokens are taken into account1.

6.3.1 Relevance Classification

The CNN-SVM model presented in Chapter 4.1 is experimentally evaluated on the dataset
that are provided by Germeval 2017. The Table 6.1 shows the statistical information for
this dataset.

True False Total
Train 17041 3895 20936
Test 2050 535 2585
Total 19091 4430 23521

Table 6.1: Class statistic of dataset for relevance classification task.

Training phase In order to verify the effectiveness of the CNN-SVM model proposed in
Chapter 4.1, which is based on convolutional neural networks and support vector machines,
the CNN-based sentence classification algorithm proposed by Kim [23] and SVM baseline
system are used as comparison models.

We use a learning rate of 0.001, batch_size of 64, dimensionality of embedding of 128,
dropout keep probability of 0.5 to train models. The parameters (filter size and number
of filters per filter size) of CNN and parameters (C and gamma) of SVM are tuned during
training phase.

Then optimization process of CNN-SVM model is divided into three steps. First of
all, convolution neural network is modeled. Then, the parameters of convolutional neural
network are adjusted. Finally, the parameters of support vector machines are adjusted.
(1)The convolution neural network model is adjusted:

1https://sites.google.com/view/germeval2017-absa/baseline-system

54 CHAPTER 6. EXPERIMENTS

The CNN-rand, CNN-static and CNN-non-static models introduced in Chapter 3.2.1
are compared. We experiment all convolutional neural network and support vector ma-
chine parameters with the default parameters, and choose the appropriate CNN mode.
Table 6.2 shows the experimental results of adjusting the three modes.

Mode F1-score
CNN-rand 0.810
CNN-static 0.821
CNN-non-static 0.857

Table 6.2: Experimental results of three modes of convolution neural network on the test dataset.

The experimental results in Table 6.2 show that the classification accuracy of CNN-
non-static mode is the highest. From the definitions of these three modes, we can see that
the CNN-non-static mode uses pre-trained word vectors compared to CNN-rand mode,
so that has more prior knowledge. Compared with CNN-static mode, CNN-non-static
mode fine-tunes the word vector during training, so that the word vector can learn more
meaningful task-related vector expression. In the following experiments, the CNN-non-
static mode will be used for experiments.
(2) The parameters Filter and Hidden_unit of CNN are adjusted, the specific meaning of
these two parameters:

(a) Filter : the size of the three sliding windows in the convolutional layer of CNN.

(b) Hidden_unit: the number of each window size filter [4].

The product of Filter and Hidden_unit number is the dimension of the sentence fea-
ture vector output by the pooling layer. The parameter Filter determines the number of
contiguous words that the convolution operation is applied. For the text, long-distance
words are less relevant, so their size should not be too large. The convolutional neural
network takes filter [3,4,5] and hidden_unit 100 as default. The candidate value of param-
eter Filter is selected as [1,2,3], [2,3,4], [3,4,5], [4,5,6], [5,6,7]. The parameter Hidden_unit
determines the number of nodes of convolutional layer and the dimension of the output
feature vectors. If its value is too small, the model will be lack of representation ability.
If its value is too large, the model will be too complicated and leads to a longer training
time. The candidate value of parameter Hidden_unit is selected as 50, 100, 150, 200. For
the above two parameters, a grid search method (searching for all possible combinations
of these two parameters) is used to search for the optimal parameters.

The Table 6.3 shows the experimental results of different parameter combinations of
CNN on the training dataset.

6.3. TASK EVALUATION 55

Hidden_unit
Filter 50 100 150 200
[1,2,3] 0.781 0.786 0.836 0.857
[2,3,4] 0.789 0.810 0.797 0.809
[3,4,5] 0.853 0.857 0.863 0.845
[4,5,6] 0.833 0.871 0.873 0.843
[5,6,7] 0.795 0.810 0.786 0.825

Table 6.3: Experimental results: Micro F1_score of different parameter combinations of convo-
lutional neural networks on the training set.

The experimental results in Table 6.3 show that when Filter = [4, 5, 6], Hidden_unit
= 150, the highest accuracy of 0.873 is achieved on the training set. Therefore, in the
subsequent model test phase. the parameters of CNN are set to Filter = [4,5,6] and
Hidden_unit = 150.
(3) Then the parameters of Support Vector Machines (SVM) are adjusted. The SVM
model has two important parameters: C and gamma.

(a) C : Penalty factor of support vector machine, which is the tolerance of error. It is
mainly used to balance the complexity of the support vector and the misclassification rate
in the optimization function. When C is larger, the loss function will be larger. Then we
will have more support vectors, which means that support vectors and hyperplane models
are more complex and easy to overfitting, i.e., the classification accuracy on the training
dataset is high but very low on the test dataset. The generalization ability of the classifier
is reduced. In contrast, small C always leads to underfitting.

(b) gamma: Kernel coefficient for RBF kernel function. This parameter implicitly
determines the distribution of the data after it is mapped to the new feature space. The
larger the gamma, the fewer the support vectors. Thus, the number of support vectors
affects the speed of training and prediction.

For the optimization of SVM parameters, the method used in this thesis is to let C and
gamma take values within a certain range. All the combinations of these two parameters
are tested on training dataset by grid search. Finally, the C and gamma with the highest
accuracy are selected as the best parameters of SVM. When more than one set of C and
gamma in the experimental result achieve the highest classification accuracy, a set with
the smallest C value is selected as the best parameters. When there are multiple gamma
corresponding to the minimum C, the first searched C and gamma pair are the best
parameters. The reason for this strategy is that high C always leads to SVM overfitting.
Therefore, the smaller penalty C among all the parameter pairs C and gamma that can
achieve the highest accuracy on the test dataset is considered as the optimal parameter.

56 CHAPTER 6. EXPERIMENTS

The candidate parameters C are [0.01, 0.1, 1, 10, 100] and gamma are [0.01, 0.1, 1,
10]. The Table 6.4 shows the experimental results on the training dataset of different
parameters of support vector machines.

C
gamma 0.01 0.1 1 10 100
0.01 0.879 0.886 0.765 0.778 0.810
0.1 0.862 0.883 0.774 0.768 0.757
1 0.863 0.863 0.858 0.827 0.757
10 0.852 0.846 0.858 0.827 0.634

Table 6.4: Experimental results on the test dataset of different parameters of support vector
machine

The experimental results in Table 6.4 show that when C = 0.1 and gamma = 0.01, the
highest accuracy of 0.886 is achieved.

Compared with the CNN model proposed by Kim, the classification performance of
the CNN-SVM model in relevance classification tasks is improved by 1.3%. This shows
that it is effective to replace the fully connected softmax layer of CNN by support vector
machine classifier and the performance has improved.

Test phase In the test phase, the CNN-SVM model and CNN model are evaluated on
the test dataset and the experimental results are compared with baseline system.

First, for the mode of convolutional neural networks in the CNN-SVM model, CNN-
non-static is chosen as the model for the test phase. The CNN and SVM of the CNN-SVM
model use the optimal parameter results in the training phase. Among them, the optimal
parameters of CNN are: Filter = [4,5,6], Hidden_unit = 150. The optimal parameters of
SVM are: C = 0.1, gamma = 0.01. The parameters of CNN proposed by Kim are the
same as the CNN of CNN-SVM model. During the test phase, the F1_score is used as
evaluation metric. The Table 6.5 shows the experimental results.

The experimental results on the test data show that compared with the CNN-based
model, the F1-score of CNN-SVM model has improved by 2.1%. Therefore, the replace-
ment of the last fully connected softmax layer of CNN with SVM contributes to the
classification performance.

Model Micro_F1
CNN 0.866
CNN-SVM 0.887
Baseline 0.852

Table 6.5: Experimental results of CNN-SVM model and CNN model on test dataset

6.3. TASK EVALUATION 57

6.3.2 Document-level Polarity

The document-level polarity task is also a text classification problem, but with three
classes. The task uses the same CNN-SVM model as relevance classification task. Word
embeddings and convolutional neural networks are utilized to learn feature vector repre-
sentation, then the sentiment is predicted via SVM classifiers. The evaluation metrics and
training process are the same as that of relevance classification 6.3.1.

The datasets are shown in Table 6.6.

Positive Negative Neutral Total
Train 1216 5228 14492 20936
Test 155 617 1811 2583
Total 1371 5845 16303 23519

Table 6.6: Class statistic of dataset for document-level polarity task.

Training phase In order to verify the effectiveness of the CNN-SVM model applied to
document-level sentiment classification, the CNN and SVM baseline system are used as
comparison models.

We use a learning rate of 0.001, batch_size of 64, dimensionality of embedding of 128,
dropout keep probability of 0.5 to train models. The parameters (Filter and Hidden_unit)
of CNN and parameters (C and gamma) of SVM are tuned during training phase.
(1)The convolution neural network mode is adjusted. The experimental results in Table
6.7 show that the classification accuracy of CNN-non-static mode is also the highest.

Mode F1-score
CNN-rand 0.701
CNN-static 0.732
CNN-non-static 0.734

Table 6.7: Experimental results of three modes of convolution neural network on the training
dataset.

(2)The two parameters Filter and Hidden_unit of convolutional neural network are ad-
justed. The Table 6.8 shows the experimental results of different parameter combinations
of convolutional neural networks on the test dataset.

58 CHAPTER 6. EXPERIMENTS

Hidden_unit
Filter 50 100 150 200
[1,2,3] 0.654 0.661 0.657 0.735
[2,3,4] 0.653 0.723 0.687 0.665
[3,4,5] 0.664 0.734 0.716 0.672
[4,5,6] 0.717 0.736 0.725 0.703
[5,6,7] 0.715 0.698 0.658 0.667

Table 6.8: Experimental results of different parameter combinations of convolutional neural
networks on the training set

The experimental results in Table 6.8 show that when Filter = [4, 5, 6], Hidden_unit
= 100, the highest accuracy of 0.736 is achieved on the test set. Therefore, in the subse-
quent model test phase, the parameters of convolutional neural network are set to Filter
= [4,5,6] and Hidden_unit = 100.

(3)The parameters C and gamma of support vector machine are adjusted.
The Table 6.9 shows the experimental results on the training dataset of different pa-

rameters of support vector machines.

C
gamma 0.01 0.1 1 10 100
0.01 0.659 0.710 0.687 0.682 0.710
0.1 0.648 0.723 0.757 0.684 0.687
1 0.673 0.734 0.738 0.717 0.689
10 0.654 0.686 0.719 0.725 0.694

Table 6.9: Experimental results on the test dataset of different parameters of support vector
machines.

The experimental results show that when C = 1 and gamma = 0.1, the highest accuracy
of 0.757 is achieved.

Compared with the CNN-based model, the classification performance of the CNN-SVM
model in classification tasks is improved by 2.1%.

Test phase The CNN-SVM model and CNN model are tested on the test dataset and
the experimental results are compared with baseline system.

First, CNN with CNN-non-static mode is chosen as the model for the test phase. The
optimal parameters of convolutional neural network are: Filter = [4,5,6], Hidden_unit =
100. The optimal parameters of SVM are: C = 1, gamma = 0.1.

The experimental results on the test data show that compared with the CNN-based
model, the micro F1-score of CNN-SVM model has improved by 1.8%. Therefore, the

6.3. TASK EVALUATION 59

replacement of the last full connective layer of convolutional neural networks with SVM
also contributes to the multi-class classification performance.

Model Micro_F1
CNN 0.725
CNN-SVM 0.743
Baseline 0.667

Table 6.10: Experimental results of CNN-SVM model and CNN model on test dataset

6.3.3 Aspect-level Polarity

The aspect-level polarity task is also a text classification problem with three classes. After
concatenating aspect vector and word vectors, the character-level convolutional neural
network (CharCNN) is applied to learn features from the new concatenated vectors, and
then classified by support vector machines. A part of aspect categories are listed in Table
6.11 according to their frequency. The most frequent aspect Allgemein is almost 10 times
as the second frequent aspect Zugfahrt. The reviews that cannot be assigned to any other
18 categories are categorized as Allgemein, including the reviews without opinion target
as the example in Figure 6.3.

Aspect Categories #
Allgemein 12564
Zugfahrt 1380
Sonstige Unregelmäßigkeiten 1110
Atmosphäre 930
Ticketkauf 470
Service und Kundenbetreuung 325
Sicherheit 315
Connectivity 254
... ...

Table 6.11: Class statistic of dataset for aspect-level polarity task.

Training phase In order to verify the effectiveness of the CharCNN-SVM model, the
CharCNN-based model and SVM baseline system are used as the comparision models.

We use a learning rate of 0.01, batch_size of 128, dropout keep probability of 0.5 as
default to train this model. The feature size and kernel size are the same as described in
Chapter 3.2.1.
(1) The two character-level CNN modes with small (256) and large (1024) feature map
size are evaluated.

60 CHAPTER 6. EXPERIMENTS

Figure 6.3: A review without opinion target.

The Table 6.12 shows the experimental results of two sized character-level CNN on the
test dataset.

Feature size Micro_F1
256 0.487
1024 0.427

Table 6.12: Experimental results of character-level convolutional neural networks with small and
large feature map size on the training set.

The experimental results in Table 6.12 show that the CharCNN with small feature size
has achieved the highest accuracy of 0.487 on the training set.
(2)The parameters C and gamma of support vector machines are adjusted.

The Table 6.13 shows the experimental results on the training dataset of different
parameters of support vector machines.

C
gamma 0.01 0.1 1 10 100
0.01 0.357 0.441 0.378 0.372 0.272
0.1 0.509 0.493 0.364 0.348 0.287
1 0.319 0.354 0.482 0.315 0.286
10 0.334 0.340 0.315 0.323 0.297

Table 6.13: Experimental results on the training dataset of different parameters of support vector
machine

The experimental results in Table 6.13 show that when C = 0.01 and gamma = 0.1,
the highest accuracy of 0.509 is achieved.

Compared with the CharCNN-based model, the classification performance of the CharCNN-
SVM model in classification tasks is improved by 2.2%.

Test phase In the test phase, the CharCNN model and CharCNN-SVM model are
tested on the test dataset and the experimental results are compared.

6.3. TASK EVALUATION 61

The small CharCNN is tested on the test dataset. Then the optimal parameters of
SVM C = 0.01, gamma = 0.1 are used. The Table 6.14 shows the experimental results.

The experimental results on the test data show that compared with the CharCNN-
based model, the F1-score of CharCNN-SVM model has improved by 2.1%.

Model Micro F1
CharCNN 0.326
CharCNN-SVM 0.347
Baseline 0.322

Table 6.14: Experimental results of CharCNN-SVM model and CharConvNets model on test
dataset.

6.3.4 Opinion Target Extraction

Word embeddings and Bidirectional LSTM (BiLSTM) are utilized to learn feature vector
representations, the tag of each word is predicted via Conditional Random Fields (CRF).
Then the model is evaluated using the micro F1-score on the BIO tags.

Training phase During this training phase, we use batch size of 64, learning rate of
0.002, dropout rate of 0.5 as default. The BiLSTM model with 50 hidden units, 1 forward-
LSTM layer and 1 backward-LSTM layer is used.

(1) First, the parameter Hidden_unit of Bidirectional LSTM is adjusted. The Table
6.15 shows the experimental results of different number of hidden unit of BiLSTM model
on the training dataset.

Hidden_unit 50 100 150 200
Micro F1 0.346 0.379 0.286 0.270

Table 6.15: Experimental results of different hidden units of BiLSTM model.

The results indicate that when Hidden_unit = 100, the highest micro F1-score is
achieved on the training set.

(2) Then the CRF layer is trained on top of BiLSTM. Same as above, the combined
BiLSTM-CRF models with different hidden_units are evaluated. The Table 6.16 shows
the experimental results of different number of hidden unit of BiLSTM-CRF model on the
training dataset.

Hidden_unit 50 100 150 200
Micro F1 0.347 0.423 0.365 0.215

Table 6.16: Experimental results of different hidden units of BiLSTM-CRF model.

62 CHAPTER 6. EXPERIMENTS

Test phase In the test phase, the BiLSTM model and BiLSTM-CRF model are tested
on the test dataset and the experimental results are compared with CRF baseline.

Model Micro F1
BiLSTM 0.282
BiLSTM-CRF 0.334
Baseline 0.278

Table 6.17: Experimental results of BiLSTM and BiLSTM-CRF model on test dataset.

The experimental results on the test data show that compared with the BiLSTM, the
micro F1-score of combining BiLSTM and CRF has improved by 5.2%.

6.4 Summary

In this chapter, four subtasks of Germeval 2017 are evaluated seperately. The CNN-SVM
model is adopted for subtask A and B, the subtask C adopts the Character-level CNN-SVM
model. These models use the convolutional neural networks as a feature extractor that can
automatically learn the distributed feature representation of the input samples. They also
take advantages of the support vector machines that classify non-linear data effectively.
As a result of this approach, we achieved micro F1-score of 88.7% for subtask A, 74.3%
for subtask B and 34.7% for subtask C, which are better than CNN-based classification
model. The subtask D is addressed by Bidirectional LSTM that can efficiently use both
past and future input features. The output layer of BiLSTM is then replaced by a CRF
layer. Experiment result shows that this combined model (33.4%) achieves better labeling
performance than BiLSTM model (28.2%).

Chapter 7

Conclusion and Outlook

In this thesis, we aim to address topic and sentiment classification as well as sequence
labeling problems by using machine learning approaches. The Support Vector Machines
are adopted as classifier for topic and sentiment classification. We enhance the classifier by
adding neural network features learned from Convolutional Neural Networks that take in
pre-trained word embeddings or one-hot encoded character vectors as input vectors. Then,
the most recent state-of-the-art sequence labeling model, BiLSTM-CRF is used for opinion
target extraction subtask. This model treats Bidirectional LSTM as feature extractor
which automatically learn both preceding and following contexts. A CRF layer is trained
on top of BiLSTM that jointly decode labels for the whole sentence. These models are truly
end-to-end, we do not need handcraft feature engineering or data preprocessing. We show
that the proposed models can achieve a reasonable accuracy without handcrafted feature
engineering. Experiments show that our CNN-SVM, CharCNN-SVM and BiLSTM-CRF
models outperform the CNN, CharCNN and BiLSTM models, respectively.

It is found in the experiment, for the combined models, if the extracted features are
not good enough, it is difficult to achieve an ideal result no matter how the parameters of
classifier are adjusted. If the features are well extracted, then the influence of parameters
of classifier on the model is not significant. It may only change the prediction results of a
few samples after adjusting the parameters.

A major improvement for the future would be to create a german sentiment lexicon [57]
in order to capture specific words. Both relevance classification and document-level polarity
subtasks use the CNN-SVM model. Their experimental results show that the CNN-SVM
model for relevance classification (88.7%) outperforms the CNN-SVM for document-level
polarity (74.3%). As mentioned in Chapter 2.2.1, topic classification focuses on keywords,
while sentiment analysis should deal with sentiment words and implicit expressions. Be-
sides, the target words are always in the near of the sentiment words or expressions. Thus,
a german sentiment lexicon would be beneficial to detect the target words.

63

64 CHAPTER 7. CONCLUSION AND OUTLOOK

Also, the aspect-level polarity and opinion target extraction subtasks can be benefited
from taking into account attention mechanism. For aspect-level polarity, the attention
mechanism can concentrate on different parts of a sentence when different aspects are
taken as input [57]. The aspect embeddings are used to decide attention weights along
with word embeddings of input samples. For opinion target extraction, the attention
mechanism can be incorporated with the BiLSTM model [1]. It is helpful for sequence
labeling task because it is capable of highlighting important part among the entire sequence
for the labeling task.

Appendix A

Appendix

Category Description

Allgemein General statement about the DB, which
can not be assigned to any other category.

Atmosphäre The "Atmosphere" category provides feed-
back on subjects such as a pleasant and
relaxed journey to the destination, noise
levels, noise from the train or other passen-
gers’ harassment, the possibility of concen-
tration or interaction with other travelers.

Connectivity The "Connectivity" category provides feed-
back on issues such as the presence, speed,
and stability of the wireless and mobile In-
ternet connection, information and enter-
tainment (ICE Portal), and the availability
and quality of mobile phone reception.

Design The "Design" category groups feedback on
topics such as the visual design, interior
design, carpet and general appearance of
the train. For formulations such as "new
train" the category should only be selected
if the formulation is solitary, not if further
specified as in "new train, nevertheless un-
punctual ..."

Table A.1: Aspect Categories

65

66 APPENDIX A. APPENDIX

Category Description

Gastronomisches Angebot The "gastronomic offer" category provides
feedback on topics such as the gastron-
omy service and its availability, the choice
and quality of food and drink on the menu
and its prices, cleanliness and service in
the Bordbistro, waiting time or experience
during the stay in the Bordbistro as well
as to the service at the place.

Informationen The category "information" groups feed-
back on subjects, such as the content, tim-
ing and comprehensibility of the passen-
ger information, by the staff or on display
boards, both in the event of a fault, in the
train or at the station. It is about infor-
mation on delays, the reason of the delay,
changes in the track, onboard bistros or in-
formation about connection possibilities.

DB App und Website The "DB App and Website" category
groups feedback on how to use the DB App
and the DB homepage.

Service/Kundenbetreuung The "Service / Customer Support" cat-
egory groups feedback on issues such
as friendliness, competence (accessibility)
and availability of the train crew or the
availability of the newspapers offered.

Komfort/Ausstattung Includes general feedback on the topics of
comfort such as comfort on the train, com-
fortable travel, stairs, general spacious-
ness and equipment especially at the seat,
such as reserved and non-reserved seats,
comfort seats, reservation indicator, leg
roomor luggage rack

Gepäck The category "luggage" groups feedback on
the availability of sufficient space for lug-
gage near the seat.

Table A.1: Aspect Categories

67

Category Description

Auslastung und Platzangebot The category "occupancy / vacancy"
groups feedback on the availability of seats
as well as sufficient / insufficient number of
cars, incl. train / car availability, as well
as feedback on availability and retrieval of
the selected train / car according to the
reservation.

Ticketkauf The category "Ticket purchase" groups
feedback on topics such as the cost of
buying a ticket, the sales channels (on-
line, travel agent, vending machine, train),
the price information offered, the price-
performance ratio of the journey or the
process of ticket control ,

Toiletten The category "toilets" groups feedback on
subjects such as functionality, cleanliness,
smell or hygiene of the toilets and the
functional design of the toilet, as well as
the availability of the consumables such as
soap, paper towels or toilet paper.

Zugfahrt The category "Punctuality and Connec-
tion" groups feedback on topics such as de-
lays of all kinds or punctuality when reach-
ing the destination, as well as the connec-
tion and whether connections are question-
able or missed.

Reisen mit Kindern The "Traveling with Children" category
groups feedback on the area of childhood,
such as design, placement, space and gen-
eral topics when traveling with children.

Image The category "Image" groups feedback on
the public image of the DB.

QR-Code The category "QR code" groups the QR
code, which gives the customer the oppor-
tunity to complain and to express opinions.

Table A.1: Aspect Categories

68 APPENDIX A. APPENDIX

Category Description

Barrierefreiheit The "Accessibility" category groups feed-
back on the barrier-free movement in
trains and at the station.

Sicherheit The "Security" category groups feedback
on safety at the train and at the station.

Table A.1: Aspect Categories

List of Figures

2.1 Data in TSV format. 8
2.2 Data in XML format. 8

3.1 CBOW and Skip-gram model . 13
3.2 Architecture of Skim-gram model . 14
3.3 Weight matrix of hidden layer. 15
3.4 An example for the computation of input and hidden layer. 15
3.5 Neural network model with two hidden layers. 16
3.6 The input node and output node connection strategy of convolutional neural

network (left) and traditional neural network (right). 18
3.7 Left: An example of the maximum pooling operation, the window size of

the pooling operation is 3; Right: A new example that right-shift the output
of the convolutional layer of left example. 19

3.8 Convolutional neural networks for sentence classification 19
3.9 The convolution neural network for extracting character-level representa-

tions of words. 22
3.10 Zhang: Character-level Convolutional Networks 22
3.11 Convolutional layers followed by pooling layers. 23
3.12 Fully-connected layers of the character-level convolutional network. The

number of output units for the last layer is determined by the problem. For
example, for a 10-class classification problem it will be 10. 23

3.13 Expanded flow graph structure of a traditional dynamic system 24
3.14 The neuronal structure containing the loop structure and its unrolled flow

graph structure . 24
3.15 An unfolded recurrent neural network. 25
3.16 Memory cell structure . 27
3.17 Bi-directional LSTM . 28
3.18 Linear separable support vector machines 29
3.19 Experimental results of Guassian kernel / soft-margin SVM when C is

1,10,100. 31

69

70 LIST OF FIGURES

3.20 The undirected graph of conditional random fileds 32
3.21 Part of input sequence and output sequence 33
3.22 A CNN-SVM model . 36
3.23 A Bi-LSTM-CRF model . 38

4.1 An example of an irrelevant review. 39
4.2 System Architecture . 40
4.3 Aspect-level Sentiment Model . 40

5.1 Visualizing the operations of CNN in TensorBoard 48

6.1 Synthetic Minority Oversampling Technique 51
6.2 Training accuracy of CNN model that are respectively trained by Adam

Optimizer (above) and Gradien Descent Optimizer (below). 52
6.3 A review without opinion target. 59

Algorithms

3.1 Text classification algorithm based on convolutional neural network and
support vector machines. 35

3.2 Sequential labeling algorithm based on bidirectional LSTM and conditional
random filed. 37

71

72 ALGORITHMS

Bibliography

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[2] Adam L Berger, Vincent J Della Pietra, and Stephen A Della Pietra. A maximum
entropy approach to natural language processing. Computational linguistics, 22(1):39–
71, 1996.

[3] Phil Blunsom. Hidden markov models. Lecture notes, August, 15:18–19, 2004.

[4] Yuhui Cao, Ruifeng Xu, and Tao Chen. Combining convolutional neural network and
support vector machine for sentiment classification. In Chinese national conference
on social media processing, pages 144–155. Springer, 2015.

[5] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial intelligence
research, 16:321–357, 2002.

[6] Jason Chiu and Eric Nichols. Sequential labeling with bidirectional lstm-cnns. In
Proc. International Conf. of Japanese Association for NLP, pages 937–940, 2016.

[7] Gobinda G Chowdhury. Natural language processing. Annual review of information
science and technology, 37(1):51–89, 2003.

[8] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[9] Thomas G Dietterich. Machine learning for sequential data: A review. In Joint IAPR
International Workshops on Statistical Techniques in Pattern Recognition (SPR) and
Structural and Syntactic Pattern Recognition (SSPR), pages 15–30. Springer, 2002.

[10] Cicero dos Santos and Maira Gatti. Deep convolutional neural networks for senti-
ment analysis of short texts. In Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Papers, pages 69–78, 2014.

[11] David Golub and Xiaodong He. Character-level question answering with attention.
arXiv preprint arXiv:1604.00727, 2016.

73

74 BIBLIOGRAPHY

[12] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016.

[13] Alex Graves. Supervised sequence labelling with recurrent neural networks. 2012.
ISBN 9783642212703. URL http://books. google. com/books.

[14] Geoffrey E Hinton. Learning distributed representations of concepts. In Proceedings
of the eighth annual conference of the cognitive science society, volume 1, page 12.
Amherst, MA, 1986.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[16] John J Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the national academy of sciences, 79(8):2554–
2558, 1982.

[17] Fu Jie Huang and Yann LeCun. Large-scale learning with svm and convolutional
for generic object categorization. In Computer Vision and Pattern Recognition, 2006
IEEE Computer Society Conference on, volume 1, pages 284–291. IEEE, 2006.

[18] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence
tagging. arXiv preprint arXiv:1508.01991, 2015.

[19] Ozan Irsoy and Claire Cardie. Opinion mining with deep recurrent neural networks.
In Proceedings of the 2014 conference on empirical methods in natural language pro-
cessing (EMNLP), pages 720–728, 2014.

[20] Soufian Jebbara and Philipp Cimiano. Improving opinion-target extraction with
character-level word embeddings. arXiv preprint arXiv:1709.06317, 2017.

[21] Thorsten Joachims. Text categorization with support vector machines: Learning with
many relevant features. In European conference on machine learning, pages 137–142.
Springer, 1998.

[22] Dan Jurafsky and James HMartin. Speech and language processing, volume 3. Pearson
London:, 2014.

[23] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[25] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. 2001.

BIBLIOGRAPHY 75

[26] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. Neural architectures for named entity recognition. arXiv preprint
arXiv:1603.01360, 2016.

[27] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[28] Omer Levy and Yoav Goldberg. Dependency-based word embeddings. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), volume 2, pages 302–308, 2014.

[29] Bing Liu. Sentiment analysis and opinion mining. Synthesis lectures on human lan-
guage technologies, 5(1):1–167, 2012.

[30] Pengfei Liu, Shafiq Joty, and Helen Meng. Fine-grained opinion mining with recurrent
neural networks and word embeddings. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 1433–1443, 2015.

[31] Xuezhe Ma and Eduard Hovy. End-to-end sequence labeling via bi-directional lstm-
cnns-crf. arXiv preprint arXiv:1603.01354, 2016.

[32] Andrew McCallum, Kamal Nigam, et al. A comparison of event models for naive
bayes text classification. In AAAI-98 workshop on learning for text categorization,
volume 752, pages 41–48. Citeseer, 1998.

[33] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

[34] Ivars Namatēvs. Deep convolutional neural networks: Structure, feature extraction
and training. Information Technology and Management Science, 20(1):40–47, 2017.

[35] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?: sentiment clas-
sification using machine learning techniques. In Proceedings of the ACL-02 conference
on Empirical methods in natural language processing-Volume 10, pages 79–86. Asso-
ciation for Computational Linguistics, 2002.

[36] Maria Pontiki, Dimitris Galanis, Haris Papageorgiou, Ion Androutsopoulos, Suresh
Manandhar, AL-Smadi Mohammad, Mahmoud Al-Ayyoub, Yanyan Zhao, Bing Qin,
Orphée De Clercq, et al. Semeval-2016 task 5: Aspect based sentiment analysis.
In Proceedings of the 10th international workshop on semantic evaluation (SemEval-
2016), pages 19–30, 2016.

76 BIBLIOGRAPHY

[37] Robert Remus, Uwe Quasthoff, and Gerhard Heyer. Sentiws-a publicly available
german-language resource for sentiment analysis. In LREC, 2010.

[38] Spencer David Rogers. Support vector machines for classification and imputation.
2012.

[39] Ryan Robert Rosario. A Data Augmentation Approach to Short Text Classification.
PhD thesis, University of California, Los Angeles, 2017.

[40] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[41] Sebastian Ruder, Parsa Ghaffari, and John G Breslin. Insight-1 at semeval-2016 task
5: Deep learning for multilingual aspect-based sentiment analysis. arXiv preprint
arXiv:1609.02748, 2016.

[42] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for
abstractive sentence summarization. arXiv preprint arXiv:1509.00685, 2015.

[43] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory re-
current neural network architectures for large scale acoustic modeling. In Fifteenth
annual conference of the international speech communication association, 2014.

[44] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural net-
works, 61:85–117, 2015.

[45] Sarah Schrauwen. Machine learning approaches to sentiment analysis using the dutch
netlog corpus. Computational Linguistics and Psycholinguistics Research Center,
2010.

[46] Toby Segaran. Programming collective intelligence: building smart web 2.0 applica-
tions. " O’Reilly Media, Inc.", 2007.

[47] Aliaksei Severyn and Alessandro Moschitti. Unitn: Training deep convolutional neural
network for twitter sentiment classification. In Proceedings of the 9th international
workshop on semantic evaluation (SemEval 2015), pages 464–469, 2015.

[48] Phillip Smith, Mark Lee, John Barnden, and Peter Hancox. Sentiment analysis:
beyond polarity. PhD thesis, Thesis Proposal, School of Computer Science, University
of Birmingham, UK, 2011.

[49] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

BIBLIOGRAPHY 77

[50] Aleš Tamchyna and Kateřina Veselovská. Ufal at semeval-2016 task 5: recurrent
neural networks for sentence classification. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016), pages 367–371, 2016.

[51] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks. In
Advances in neural information processing systems, pages 25–32, 2004.

[52] Zhiqiang Toh and Jian Su. Nlangp at semeval-2016 task 5: Improving aspect based
sentiment analysis using neural network features. In Proceedings of the 10th interna-
tional workshop on semantic evaluation (SemEval-2016), pages 282–288, 2016.

[53] Marcel van Gerven and Sander Bohte. Artificial neural networks as models of neural
information processing. Frontiers Media SA, 2018.

[54] Hanna Wallach. Efficient training of conditional random fields. PhD thesis, Master’s
thesis, University of Edinburgh, 2002.

[55] Hanna M Wallach. Conditional random fields: An introduction. Technical Reports
(CIS), page 22, 2004.

[56] Bo Wang and Min Liu. Deep learning for aspect-based sentiment analysis, 2015.

[57] Yequan Wang, Minlie Huang, Li Zhao, et al. Attention-based lstm for aspect-level
sentiment classification. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 606–615, 2016.

[58] Yanping Yin and Zhong Jin. Document sentiment classification based on the word
embedding. In 4th International Conference on Mechatronics, Materials, Chemistry
and Computer Engineering, 2015.

[59] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks
for text classification. In Advances in neural information processing systems, pages
649–657, 2015.

[60] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet,
Zhizhong Su, Dalong Du, Chang Huang, and Philip HS Torr. Conditional random
fields as recurrent neural networks. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 1529–1537, 2015.

78 BIBLIOGRAPHY

DECLARATION 79

I declare that I have authored this thesis independently, that I have not used other
than the declared sources / resources, and that I have explicitly marked all material which
has been quoted either literally or by content from the used sources.

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst habe und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet sowie Zitate ken-
ntlich gemacht habe.

Dortmund, den March 5, 2018

Weihan Pang

