
Learning Low-Rank Document Embeddings with
Weighted Nuclear Norm Regularization

Lukas Pfahler∗, Katharina Morik∗, Frederik Elwert†, Samira Tabti† and Volkhard Krech†
∗TU Dortmund University
44227 Dortmund, Germany

Email: firstname.lastname@tu-dortmund.de
†Ruhr-Universität Bochum
44801 Bochum, Germany

Email: firstname.lastname@rub.de

Abstract—Recently, neural embeddings of documents have
shown success in various language processing tasks. These low-
dimensional and dense feature vectors of text documents capture
semantic similarities better than traditional methods. However,
the underlying optimization problem is non-convex and usually
solved using stochastic gradient descent. Hence solutions are
most-likely sub-optimal and not reproducible, as they are the
result of a randomized algorithm.

We present an alternative formulation for learning low-rank
representations.Instead of explicitly learning low-dimensional
features, we compute a low-rank representation implicitly by
regularizing full-dimensional solutions. Our approach uses the
weighted nuclear norm, a regularizer that penalizes singular
values of matrices. We optimize the regularized objective using
accelerated proximal gradient descent. We apply the approach
to learn embeddings of documents.

We show that our convex approach outperforms traditional
convex approaches in a numerical study. Furthermore we demon-
strate that the embeddings are useful for detecting similarities
on a standard dataset. Then we apply our approach in an inter-
disciplinary research project to detect topics in religious online
discussions. The topic descriptions obtained from a clustering
of embeddings are coherent and insightful. In comparison to
existing approaches, they are also reproducible.

An earlier version of this work stated, that the weighted
nuclear norm is a convex regularizer. This is wrong – the
weighted nuclear norm is non-convex, even though the name
falsely suggests that it is a matrix norm.

I. INTRODUCTION

High-dimensional data is everywhere, but processing and
analyzing high-dimensional data remains challenging. Low
rank models are used to uncover structure in high dimen-
sional data. They assume that the high-dimensional matrix of
observations is the, possibly noisy, image of a latent, low-
rank matrix under a model-function. We try to recover this
latent representation given the data matrix, thus obtaining
a low-dimensional representation of the data. Possible ap-
plications are manifold, examples include text classification
[1], information retrieval [2], collaborative filtering [3], image
denoising [4] and pattern mining [5]. More broadly speaking,
low rank applications are used as a preprocessing step for
machine learning or data mining tasks in techniques like
feature extraction or dimensionality reduction [6].

Low rank modeling is particularly useful in social sciences
or digital humanities. Whether we work with records of social

interactions in social networks or human-generated contents
like tweets or direct messages, data is often not-only high-
dimensional, but also complex, unstructured and noisy. We
can use low rank models to uncover the latent structures or
underlying factors. For instance, topic models identify word
fields in text collections [7]; applications in social network
analysis include community detection [8] and link prediction
[9]. Recently, embedding learning has become a popular ap-
proach to the analysis of high-dimensional, sparse structures.
We want to obtain a low-rank representation of, for instance,
words in contexts [10], vertices in graphs [11] or documents
in document collections [1]. These low-dimensional and dense
embeddings are trained to represent their high-dimensional
counterparts with simple prediction models [12], but exploit
regularities in the data by assuming a low-rank structure. They
are especially useful for capturing similarities between data
points.

Particularly in scientific domains, reproducibility is crucial.
Many approaches for training low-rank models formulate
optimization problems with explicitly factorized models X =
UV T and optimize over both factors U, V simultaneously.
Objectives like this are non-convex and have many local
optima. Optimization routines apply randomized techniques
like stochastic gradient descent [13] and return local optima,
thus results differ between multiple runs. This heuristic nature
is often met with skepticism, especially researchers in the hu-
manities question the significance of the findings obtained with
these algorithms. This motivates the search for methods that
find globally optimal solutions and shows the importance of
understanding the structure of the space of possible solutions.

We demonstrate its usefulness with a particular model for
learning low-rank embeddings of text documents that can
be trained efficiently by using a hierarchical softmax tree to
model word probabilities [14]. We show that this model can
be used for topic modeling in a digital humanities application.
In collaboration with scientists in religious studies we identify
the topics discussed in religious online discussion boards.

The rest of this paper is structured as follows: In Sec-
tion II we introduce an optimization framework for low rank
models.We use the weighted nuclear norm and propose to
use a simple weighting scheme with intriguing properties.



In Section III we propose a new method to obtain low rank
embeddings of text documents based on document embeddings
[1]. After presenting related work in Section IV, we evaluate
our approach empirically in Section V. This evaluation is
based on quantitative analysis on a standard dataset as well as
qualitative analysis in a social science setting. We conclude
this paper in Section VI and provide an outlook to future
research questions.

II. TRAINING OF LOW RANK MODELS

In machine learning or data mining applications, we often
model data as a function of a low-rank matrix and fit the model
to the data by minimizing a loss function. Generally, we are
interested in solving optimization problems of the form

min f(X) s.t. rank(X) ≤ k (1)

with low rank solutions. Following the motivation above,
f(X) is the composition of a model function and a loss
function. It measures how well the model fits the low-rank
representation X to the given data. We limit our analysis
to convex and smooth functions f(X). In this section, we
first formally define low rank matrices, then we introduce
the weighted nuclear norm, a convex regularizer that favors
low rank solutions, and finally we outline the accelerated
proximal gradient descent method, which we use to optimize
our objective.

A. Low Rank Matrices and Optimization

Let Ωk := {X | X ∈ Rm×n, rank(X) ≤ k} denote the set
of matrices with rank at most k. Unfortunately Ωk is not con-
vex, as for λ ∈ [0, 1], X, Y ∈ Ωk with rank(X) =rank(Y ) = k
it holds that rank(λX + (1− λ)Y ) can be as large as 2k and
thus (λX + (1−λ)Y ) is not necessarily in Ωk. Consequently
steepest descent optimization methods will likely get stuck in
local minima.

Minimizing a function f(X) over the domain Ωk can be
written as an unconstrained optimization problem

min
X∈Rm×n

f(X) + δ(X) with δ(X) =

{
0 if X ∈ Ωk

∞ otherwise.
(2)

Obviously δ(X) is a non-convex function since Ωk is a non-
convex set.

An important operator in constrained optimization is the
proximity operator

proxg(X) = arg min
Y

1

2
||X − Y ||2F + g(Y ). (3)

For δ the proximity operator projects any matrix to the nearest
matrix with respect to the Frobenius norm that has rank at most
k. We apply this operator in numerical optimization routines
to ensure that the solution we computed still is a member of
Ωk, for instance after taking a step in the direction of the
gradient. Let X = UΣV T be a singular value decomposition

with Σ = diag(σ), σ1 ≥ σ2 ≥ ... ≥ 0. Then a closed form
solution is

proxδ(X) = arg min
Y

1

2
||X − Y ||2F + δ(Y ) = Udiag(σ̄)V T

(4)
with σ̄ = [σ1, ..., σk, 0, ...., 0]T . This operation is also called
truncated singular value decomposition for a fixed rank k.

We propose to replace δ(X) with a regularizer, the weighted
nuclear norm [15], [16]. The regularizer penalizes non-zero
singular values, favoring solutions with low rank, as the rank of
a matrix is the number of its non-zero singular values. In this
paper, we propose the following weighting scheme and define
the weighted nuclear norm as follows: For small 1 > ε > 0
and X = Udiag(σ)V T with non-increasing σ let

||X||ε =

k∑
i=1

ε · σi +

minm,n∑
i=k+1

1

ε
· σi =: 〈θ, σ〉, (5)

where we introduce the weight vector θ for notational con-
venience. Like δ(X), it has a proximal operator with closed
form solution called singular value thresholding [15]. For a
singular value decomposition X = UΣV T it returns

proxε(X) = Udiag(σ − θ)+V T (6)

where

(σ − θ)+ = [max(0, σ1 − θ1), ...,max(0, σl − θl)] (7)

with l = min(m,n) decrements the singular values by θ and
thresholds all negative values to 0.

Proof. Let X = UΣV T and X̂ = Udiag(σ − θ)+V
T . It

suffices to show that

(X − X̂) ∈ ∂||X̂||ε
Since σ is non-increasing and θ is non-decreasing, there

is i0 such that σi − θi > 0 if and only if i ≤ i0. We
rewrite X = U(1)Σ(1)V

T
(1) + U(2)Σ(2)V

T
(2) where U(1) ∈

Rm×i0 ,Σ(1) ∈ Ri0×i0 , V(1) ∈ Rn×i0 contain the first i0
columns of U,Σ, V respectively and U(2),Σ(2), V(2) contain
the remaining entries. Analogously θ(1) contains the first i0
entries of θ. Consequently, we have

(X − X̂) = U(1)diag(θ(1))V
T
(1) + U(2)Σ(2)V

T
(2)

Following Watson [17], we have to show that the diagonal
entries are a subgradient of the gauge function φ(σ) =
〈θ, σ〉, σ ≥ 0: (

θ(1)
σ(2)

)
∈ ∂φ

(
σ(1) − θ(1)

0

)
The subgradient is given by ∂φ(z) = {x | xi ≤ θi and zi >
0 ⇒ xi = θi}. Since σ(1) − θ(1) > 0 and σ(2) < θ(2) the
diagonal entries are a subgradient, which concludes the proof.

Interestingly, as ε approaches 0, proxε(X) converges point-
wise to proxδ(X):

∀X lim
ε→0

proxε(X) = proxδ(X). (8)



B. Accelerated Proximal Gradient Descent

To solve an optimization problem of the form

arg min
X∈Rm×n

f(X) + ||X||ε︸ ︷︷ ︸
:=F (X)

(9)

where f(X) is a convex and smooth function, we can apply
proximal gradient descent [18].

With a stepsize α > 0 and starting at an initial solution
X(0), we iterate the following steps for t = 1, ...

X(t+ 1
2 ) = X(t) − α∇f(X(t)) (10)

X(t+1) = proxα,ε(X
(t+ 1

2 )) (11)

The proximal operator for stepsize α is defined as

proxα,ε(Y ) = arg min
X

1

2α
||X − Y ||2F + ||X||ε (12)

= arg min
X

1

2
||X − Y ||2F + 〈αθ, σ(X)〉 (13)

thus we can still apply singular thresholding as in (6) with
modified weights αθ.

It has been shown empirically that the convergence rate can
be improved by applying Nesterov acceleration [19]. Starting
with an initial solution X(0) and s(0) = 1 we iterate the
following steps for t = 1, ...

s(t) =
1 +

√
1 + (2s(t−1))2

2
(14)

Y (t) = X(t) +

(
s(t−1) − 1

s(t)

)
(X(t) −X(t−1)) (15)

X(t+ 1
2 ) = Y (t) − α∇f(Y (t)) (16)

X(t+1) = proxα,ε(X
(t+ 1

2 )) (17)

This modified algorithm is called accelerated proximal gradi-
ent descent [18].

Note that the solution of proxε(X) can have rank larger
than k. Thus regularization with the weighted nuclear norm
allows the optimization routine to choose a higher rank if the
data requires it.

III. CONVEX TRAINING OF DOCUMENT EMBEDDINGS

Low rank representations have a long tradition in natural
language processing. We need to represent texts, sequences
of discrete symbols, in fixed-dimensional vector spaces for
classification, clustering or similarity detection. When we use
the bag-of-words representation that expresses each word with
a component in a vector space [20], text documents are high-
dimensional. A collection of n documents with a vocabulary
of size m is expressed as a term-document matrix F ∈ Rm×n
where fw,d indicates how often the word w appeared in
document d. Using this sparse representation makes is difficult
to detect similarities between two documents, as two texts
on the same topic might not share a single word. Principal
component analysis (PCA) or singular value decomposition
(SVD), also called latent semantic indexing (LSI) [2] in the
context of information retrieval, identify latent factors of the

term-document matrix fw,d. We use only the first k of these
factors, thus obtaining a low-rank representation of documents.
The general idea is to exploit the fact, that certain words
often occur together, hypothesizing that they have a similar
semantic.

Le and Mikolov recently presented document embeddings
[1], an extension of the popular word embedding algorithm
word2vec [10]. We use their approach as a starting point to
develop a document embedding algorithm based on optimiza-
tion and regularization.

A. Document Embeddings

The key idea of document embeddings is to encode the
high-dimensional and sparse distribution of words in a given
document in a low-dimensional, dense vector. To this end,
we introduce real-valued embeddings for words, denoted by
uw ∈ Rk, and documents, denoted by vd ∈ Rk with k � m.
We model the probabilities of a word given a document by

P (w|d) = exp [〈uw, vd〉 − Z(d)] (18)

where the partition function Z is defined as

Z(d) = log

m∑
w′=1

exp〈uw′ , vd〉 (19)

We train document embeddings given n documents by maxi-
mizing the likelihood of the model. To this end we minimize
negative log-likelihood

arg min
U,V

n∑
d=1

m∑
w=1

−fw,d logP (w|d) (20)

This objective is non-convex and thus prone to local minima.
Le and Mikolov propose to train embeddings by minimizing
the objective using stochastic gradient descent (SGD). Since
SGD is a randomized algorithm, the results vary between
different runs of the training algorithm.

B. Hierarchical Softmax

Computing the partition function Z for large vocabulary
sizes m is computationally expensive. A common practice in
language modeling and word embedding learning is to use the
so-called hierarchical softmax model [14], [10] to obtain word
probabilities given an embedding. The probabilities P (w|d)
are factored according to a binary tree with m leaf nodes
corresponding to the words. Each of the (m− 1) inner nodes
corresponds to a binary random variable that indicates whether
a path from root to leaf chooses the left or right child.
Thus each word corresponds to a path from the root of the
tree to the corresponding leaf node. The probability of a
words is defined as the product of all probabilities along the
path. Formally we define the probabilities at inner nodes v,
Pv(left|d) = 1 − Pv(right|d), a function that gives all inner
nodes from root to leaf for a word path(w) and an indicator
function ψ(v, w) ∈ {left, right} that indicates if the path from



the root to w turns left or right at the inner node v. Now the
word probability can be written as

P (w|d) =
∏

v∈path(w)

Pv(ψ(v, w)|d). (21)

Le and Mikolov model the probabilities at the inner nodes us-
ing sigmoid functions and inner products of node embeddings
uv and document embeddings vd such that

Pv(left|d) = σ(〈uv, vd〉) =
1

1 + e−〈uv,vd〉
. (22)

We propose to substitute the scalar product, the source of non-
convexity in the original formulation, for an entry in a low rank
matrix X ∈ R(m−1)×n. Because X is low-rank, every entry
Xvd = 〈uv, vd〉 for a decomposition X = UV T . We define

Pv(left|d) = σ(〈uv, vd〉) =
1

1 + e−Xvd
. (23)

To train the embeddings, we minimize negative log-
likelihood. For a single pair of document and word we obtain

− logP (w|d) =
∑

v∈path(w)

log(1 + e−ξ(v,w)·Xvd) (24)

where we define ξ for notational convenience:

ξ(u, v) =

{
1 if ψ(u, v) = left
−1 otherwise.

(25)

We see that minimizing negative log-likelihood is a convex
and smooth function of X . The full unregularized training
objective is

f(X) =

n∑
d=1

m∑
w=1

fw,d
∑

v∈path(w)

log(1 + e−ξ(v,w)·Xvd) (26)

which is also convex. We propose to minimize the regularized
objective F (X) = f(X) + ||X||ε using accelerated proximal
gradient descent as presented above to obtain a low-rank
solution. The gradient of f(X) is given by

∂f(X)

∂Xvd
= fv,d,left · σ(Xvd) + fv,d,right · (σ(Xvd)− 1) (27)

where fv,d,left indicates how many words in d use a path
through v and choose the left child of v, fv,d,right is defined
analogously. Also we introduce fv,d for the sum of both.

Finally we show that f(X) has a Lipschitz-continuous
gradient; we will use the Lipschitz constant to choose the
step size. The sigmoid function is Lipschitz-continuous with
|σ(x)− σ(y)| ≤ 1

4 |x− y|. Thus we can show that ∇f(X) is
Lipschitz-continuous

||∇f(X)−∇f(Y )||F (28)

=

[
n∑
d=1

m−1∑
v=1

f2v,d(σ(Xvd)− σ(Yvd)
2

] 1
2

(29)

≤ 1

4
max
d
|d|

[
n∑
d=1

m−1∑
v=1

(Xvd − Yvd)2
] 1

2

(30)

=
1

4
max
d
|d| · ||X − Y ||F (31)

with Lipschitz-constant L := 1
4 maxd |d|. Hence we choose

the stepsize α = 4
maxd |d| .

We obtain the document embeddings by taking the final
iterate X , decomposing it as X = UΣV T and returning√

ΣV T .

C. Implementation Details

We factor the word probabilities according to a Huffman
tree that is built using the word frequencies in the training
data. This way the average length of paths from root to leaf is
minimal. Also the number of non-zero elements in the gradient
is minimal. We can exploit this sparsity to reduce the com-
putation time required for the singular value decomposition
that is necessary to compute the proximal operator. We can
compute SVD(X(t+ 1

2 )) using the Lanczos bidiagonalization
with partial reorthogonalization method for computing the
truncated singular value decomposition [21]. This method
can compute the truncated singular decomposition of A ef-
ficiently when the matrix-vector products Ax and AT y can
be computed efficiently [3]. In our case, X(t+ 1

2 ) is the sum
of a low-rank matrix Y (t) and a sparse matrix ∇f(Y (t)).
The matrix-vector-products with Y (t) can be computed in
O(k(n+m)) if k is the rank of Y (t). For ∇f(Y (t)) we can
compute the product in O(s) where s is the number of non-
zero elements of the gradient. If we assume an average length
of paths in the softmax tree of logm, we can compute the
matrix-vector-product in O(τ logm), where τ is the number
of tokens in the dataset. So in total the product has runtime
in O((n + m)k + τ logm) which is substantially cheaper
than the computational cost of the naive matrix-vector product
O(m · n), as long as τ � m · n, a reasonable assumption for
natural language documents.

It suffices to compute a truncated SVD, because the rank of
the iterates X(t) does not vary drastically between iterates, an
intuition that is confirmed by pertubation bounds for singular
values. Hence we can compute a truncated SVD with rank
(1 + c)k(t−1) where c > 0 is a small constant and k(t−1) is
the rank of the last iterate. If the last singular value of the
resulting truncated SVD would be non-zero after applying the
proximal operator, we increase c and recompute the truncated
SVD until the specified rank is sufficiently large. This way we
can compute the exact proximal operator without computing
a full SVD.

We initialize X(0) = 0. In combination with the Huffman
tree, this yields initial word probabilities approximately equal
to the prior word probabilities estimated using the document
collection.

We provide an open source C++ implementation of our
algorithm at https://bitbucket.org/Whadup/doc2vex. It uses
PROPACK1, a Fortran implementation of Larsen’s SVD al-
gorithm [21].

IV. RELATED WORK

Optimization methods for learning low rank models have
recently gained a lot of attention. We distinguish convex

1sun.stanford.edu/∼rmunk/PROPACK/

https://bitbucket.org/Whadup/doc2vex
sun.stanford.edu/~rmunk/PROPACK/


approaches, non-convex approaches and manifold approaches.
Convex approaches compute low rank solutions by applying
regularization to full-rank matrices. Traditionally we use the
squared Frobenius norm, the sum of squared singular values,
because it is differentiable. It favors solutions with small
singular values and we can write the Frobenius norm as the
L2-norm of the vector of singular values. Analogously the
nuclear norm ||X||∗ =

∑
i σi is defined as the sum of the

singular values, thus we can write it as ||X||∗ = ||σ||1. As
the L1-norm induces sparsity, the nuclear norm induces low
rank [22]. Furthermore, we can show that ||X|| · ||X||−12 is the
convex envelope of the rank, i.e. the largest convex function
that lower bounds rank(X). The nuclear norm can serve as an
approximation to the non-convex rank-function because it is
easier to minimize [22].

The weighted nuclear norm [15] used in this work applies a
non-decreasing weight vector to penalize each singular value
individually. Thus it is related to the sorted-L1 norm for
vectors [23]. It gives us fine-grained control over the trade-off
between low-dimensional features and a good loss value f(X).
When we want to extract low-dimensional, dense features from
high dimensional data, we expect that a certain number of
features is needed in order to capture the characteristics of the
input data. Hence we can tolerate a certain amount of non-zero
singular values and only wish to penalize further ranks. Thus
applying different weights for different weights with weighted
nuclear norm is useful.

Haeffele et al. propose the so-called projective tensor norm,
which constructs complex, problem-specific regularizers for
matrices by combining vector norms that are evaluated on the
columns of a factored matrix X = AZT . The authors show
that, while the problem is no longer convex because of the
explicit factorization, under certain conditions local optima are
global [4].

There are many non-convex methods based on explicit fac-
torizations. Recent research investigates the conditions under
which the local minimizers obtained using this methods are
global minimizers [24], [25], [26]. For instance Ge et al. show
that for matrix completion problems with symmetric target
matrices and X = ZZT , the non-convex optimization over
Z has no bad local optimums and that the global optimum
can be found with gradient descent [25]. Sun and Luo proof
a similar result for general matrices, although they require an
expensive initialization procedure to generate a start solution
near the global optimum [24]. These methods all use a loss
function that sums the squared errors of observed matrix
entries and their respective low-rank approximation. We are
curios if similar results can be achieved for the negative log-
likelihood function used in this work.

Another non-convex method, that does not use explicit
factorizations is projection gradient descent. We use gradient
descent and X(t+1) = proxδ(X

(t) − ∇f(X(t))) with proxδ
as defined in (4). Thus after each gradient step, we map the
solution back to the set of matrices with rank at most k by
truncated SVD. We have already seen that using the weighted
nuclear norm with the weighting scheme proposed in this work

are closely related via (8). Future work should follow in this
direction and investigate the characteristics of local minimizers
obtained by projected gradient descent as well as factored
models like the original formulation of document embeddings
[1]. It remains unclear if all local minimizers are good local
minimizers or even global minimizers.

An interesting alternative to optimization approaches that
operate in real-valued spaces are optimization methods for
manifolds. The set of low-rank matrices is an embedded
manifold in the set of real-valued matrices [27], [28]. Instead
of using the natural gradient, we use the Riemannian gradient,
which is the gradient mapped to the tangent space of the
manifold. After taking a step in the direction of the Riemma-
nian gradient, we map the solution back to the manifold using
so-called retractions [27]. The most-popular retraction is the
proximal operator proxδ(X) that requires computing the SVD
of the solution. Shalit et al. propose to use a different retraction
that is cheaper to compute when the rank of the gradient is
small [29]. This is the case when we use stochastic gradients
that are defined for single documents.

Finally this work is related to other embedding learning
algorithms for text documents. Following the success of word
embeddings [10], various approaches to represent text as a
combination of word vectors have been proposed, ranging
from simple addition to more sophisticated neural network
structures [30]. These methods heavily rely on pre-computed
word embeddings, which may introduce bias that exists in the
underlying text collection used for training word embeddings
[31]. This is potentially troubling for scientific applications,
but particularly for social science studies. The document
embedding method [1] as well as the method presented in this
work uses the same text collection to derive word embeddings
and document embeddings. However, the non-convex formu-
lation of Le and Mikolov allows the user to initialize the word
embeddings with pre-computed vectors and then finds a locally
optimal solution starting from these pre-trained vectors.

V. EXPERIMENTAL EVALUATION

We first evaluate the trade-off of weighted nuclear norm
regularization between low-rank solutions and good approx-
imation of the training data in a numerical study. Then we
investigate our hypothesis that document embeddings capture
similarities in documents using a task where ground-truth
labels are available. We compare the usefulness of different
text representations for clustering the 20newsgroup dataset
with k-means. Then we apply our approach in a digital
humanities application and detect topics in online discussion
boards using hierarchical clustering, a deterministic clustering
algorithm.

A. Optimization

We start evaluating the proposed algorithms on a small
synthetic dataset. The following evaluation is guided by the
hypothesis that the weighted nuclear norm yields better trade-
offs between low rank and loss than other convex regularizers.
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Fig. 1. Loss vs. Rank for different regularizers. We compare the nuclear
norm and the weighted nuclear norm proposed in this paper. We see that the
weighted nuclear norm yields a better trade-off between loss and rank.

We generate 500 documents with a vocabulary size of 1000
distinct tokens by randomly creating 25 categorical distribu-
tions, sampling one distribution per document, sampling a
document length uniformly between 10 and 100 and repeatedly
sampling tokens from the selected categorical distribution.

Then we compare the weighted nuclear norm regularization
with the nuclear norm for different target ranks k and reg-
ularization constants. For the weighted nuclear norm, we set
ε = 1

50 which is sufficiently large to obtain solutions with rank
close to the target rank k ∈ {25, 50, 75, 100, 125}. We run the
optimization until convergence and report the rank and loss of
the solution.

As we can see in Figure 1, the constant weights of the
nuclear norm yield the worst solutions. In comparison, using
the weighted nuclear norm yields significantly better loss
values. This fits our intuition that we should only penalize
the singular values corresponding to high ranks. Penalizing
the first singular values interferes with fitting the model.

The training is also faster when the rank is lower, be-
cause the runtime of the truncated SVD computation depends
quadratically on the rank. Thus, in addition to the better fitting-
capabilities of the weighted nuclear norm, training time is also
faster.

B. Text Clustering

In this first experiment, we evaluate how useful the repre-
sentations are for detecting similarities between documents. To
this end we use the clustering algorithm k-means that requires
good similarity measures to find good clusterings. We can
evaluate the quality of the clustering using ground-truth labels.

We use the popular 20-newsgroup dataset2, which consists
of approximately 20k emails from 20 newsgroup categories.
We remove all e-mail headers and quotes and prune very short
and very long documents, finally obtaining 18,470 documents.
Furthermore, we prune the vocabulary to contain only words
that occur 10 times or more, resulting in a vocabulary of
20, 819 distinct words.

We train a representation with rank k = 300 using our
approach. We set ε = 1

500 and run 1,000 iterations of the

2http://qwone.com/∼jason/20Newsgroups/

TABLE I
CLUSTER PERFORMANCE

Approach Accuracy Purity k = 20 Purity k = 50
BOW 20.00%± 1.20% 21.49%± 1.08% 26.42%± 0.92%

TF-iDF 42.10%± 3.20% 43.40%± 3.11% 50.67%± 2.32%
LSI 13.40%± 1.09% 14.64%± 0.91% 19.69%± 1.09%

doc2vec 54.60%± 1.90% 55.64%± 1.73% 58.67%± 0.84%
this work 52.50%± 1.70% 53.42%± 1.48% 54.13%± 0.95%

accelerated proximal gradient descent algorithm. This way
we obtain embeddings that achieve a perplexity per word of
174.49. We compare against the original doc2vex [1] and LSI,
which we use to train representations with 300 dimensions.
For this comparison, we rely on the implementations available
in the gensim package3. For doc2vec, we run 200 training
epochs with a fixed stepsize of 0.01. It uses the exact same
preprocessing and the same Huffman tree as our approach. The
embeddings trained this way achieve a perplexity of 184.43.
Furthermore we compare against the bag-of-words represen-
tation and the TF-iDF representation, which re-weights the
bag-of-words [32].

We use the k-means algorithm to cluster the document
representations into 20 clusters. We use cosine similarity as
a distance measure. To improve stability of the results, we run
k-means 10 times and use the clustering with the highest intra-
cluster similarity. We compare the clustering with the ground-
truth categories and report accuracy and purity. For accuracy,
we compute the best bijection between clusters and labels and
report classification accuracy. For purity we assign each cluster
its most frequent class label and report classification accuracy.
No unsupervised clustering metrics, for instance average intra-
cluster distances, were reported, because they are meaningless
when we switch representations.

In Table I, we see that the document embeddings signifi-
cantly outperform traditional methods for text representation.
This suggest that embeddings indeed capture similarities. The
doc2vec approach outperforms this work by a small margin.
We hypothesize that the stochastic gradient descent optimiza-
tion works as an implicit regularizer [33]. Future research
should look into adding more explicit regularization to our
convex model, for instance Frobenius Norm regularization
||X||F .

We omit a detailed comparison of running times, since our
approach is orders of magnitude slower. This is mainly due to
the singular value decompositions that have to be computed
each iteration.

C. Topic Identification in Religious Online Discussion Boards

In an interdisciplinary research project in collaboration
with scholars in the study of religion, we investigate, how
religious authorities arise in online communities and how they
compare to traditional religious authority figures. To this end
we have crawled online discussion boards and compiled a text
collection of online discussion threads. In the first phase of
the project we want to identify the topics discussed in the

3https://radimrehurek.com/gensim/

http://qwone.com/~jason/20Newsgroups/
https://radimrehurek.com/gensim/


TABLE II
EXAMPLES OF NEAREST NEIGHBOR PAIRS: WE SHOW THREAD-TITLES

FOR EXAMPLE QUERIES AND THEIR RESPECTIVE NEAREST NEIGHBORS.
(TRANSLATED FROM GERMAN)

Query Result
Sex in marriage Looking for Christians, who did

NOT have sex before marriage
If we confess our sins, ... What was the christening of Jo-

hannes?
Is abortion after rape really OK? catholic media award: price money

funding pro-abortion rally
Cooking in February Cooking in May

text collection. The discussion board analyzed in this paper
is German, all results presented here will be translated to
English. Recently topic modeling [34] has gained a lot of
usage in digital humanities research. Given a text collection it
uses a probabilistic model to identify latent word distributions
called topics and represent documents as mixtures of these
topics. The topics are presented to social scientists for further
analysis, most often in the form of lists containing the most
probable words per topic. LDA applies randomized inference
techniques like Gibbs sampling or variational inference, hence
results differ between multiple runs of the algorithm.

We propose an alternative: First we compute low-rank
embeddings with our approach. Then we use a deterministic
clustering algorithm to cluster the embeddings. Finally we
obtain topic descriptions from the clusters.

Before computing the embeddings, we apply standard pre-
processing to the documents. We extract the discussion posts
from the raw html crawls and remove all html markup,
obtaining one text document for each thread. Then we split
the text into tokens with a simple tokenizer based on a regular
expression. We remove stop words and tokens longer than 15
characters or shorter than 3 characters. Then we prune the
vocabulary to contain only words that occur more than 10
times, thus obtaining a vocabulary of size 57,621. The total
number of documents is 20,178.

We compute embeddings with rank k = 300 and ε = 1
500 by

running 1,000 iterations of the accelerated proximal gradient
descent algorithm. The embeddings have rank 308 and achieve
a per word perplexity of 1, 295 and the improvement of the
loss function in the last iteration has been less than 0.005%,
thus the solution is sufficiently close to convergence. The
embeddings obtained this way are useful to detect semantic
similarities. We can find the similar documents by finding
the nearest neighbor under cosine-similarity. This is especially
useful for selecting the relevant documents for manual analy-
sis. In Table II we show some examples of nearest neighbor
queries. We only report the title of the discussions, but the
semantic similarities of the discussions are apparent.

To automate the exploratory analysis of the text collection
exploiting embedding similarities, we use a clustering algo-
rithm that is deterministic: agglomerative hierarchical cluster-
ing. Unlike partitioning algorithms like k-means or db-scan
it is does not utilize randomization. The k-Means algorithm
greedily optimizes a non-convex objective starting with a

random solution resulting in a local minimum that is not stable
over multiple runs. Hierarchical clustering works by merging
the most-similar clusters in a bottom-up fashion, starting
with one cluster per document. We use the cosine similarity
measure and use the complete-link strategy that merges the
two clusters with largest minimum cosine-similarity between
a pair of documents from each cluster.

In our application domain, hierarchical clustering has many
advantages. We can adjust the number of clusters we wish
to analyze by pruning the cluster hierarchy, as indicated in
Figure 2. This can be done without recomputing embeddings
and the cluster hierarchy. In contrast, computing a different
number of clusters with LDA requires recomputing the whole
model, which is often time-consuming. Also, the hierarchy
allows us to interactively split and join clusters according to
the uncovered tree structure. This interactive nature allows the
user to find the right granularity of the clustering for their
respective application. Other clustering algorithms require the
user to guess hyperparameters like the number of clusters or
the diameter of clusters to control granularity.

To obtain descriptions of the computed clusters, we rely on
the more interpretable bag-of-words representation of the data.
We compute the word frequency vectors for each node of the
cluster in a bottom-up fashion. Each node is associated with a
vector that contains aggregated word counts for all documents
below the node. These cluster description can be viewed as
topics. To highlight the differences between the clusters, it
is useful to not report term-frequencies fw,c for each cluster
c, but tf-idf scores. For each token we count the number of
clusters on the selected level of the hierarchy that contain the
token. By dividing the counts by the number of clusters we
obtain the document frequency of a token dt. Finally we report
the tf-idf score fw,c log 1

dt
for each cluster and token.

For our analysis, we prune the cluster hierarchy to 100 leaf
clusters. We provide a sample of 10 cluster descriptions in
Table III, the first seven of which are coherent and insightful
and the last three are less so. Using our approach we identified
that discussions span from heavily religious topics, like differ-
ences between Christian denominations, to topics of everyday
life like cooking. In between these extremes there are topics
like family planning, relationships, death or issues more con-
troversial in religious communities, like euthanasia, abortion
and homosexuality. All these topics are debated using religious
arguments as well as humanist, political, atheist or scientific
arguments. To the social scientist, the documents in these
clusters provide insight into the degree of pluralism within the
online community and the general attitude towards issues. The
threads identified can also help to analyze usergroups in the
community. We hope to identify groups like conservatives or
moderates by analyzing the threads on the level of individual
posts.

We also identify topics that are incoherent or pointless.
For instance, Topic 8 in Table III mostly consists of words
like ’scroll’, ’mark’ or ’post’ generated by the discussion
board software. Indeed manual analysis of the documents
shows that the cluster contains mostly threads that have



TABLE III
SAMPLE CLUSTER DESCRIPTIONS DISCOVERED USING DOCUMENT EMBEDDINGS, HIERARCHICAL CLUSTERING AND TF-IDF. SECOND LINE PROVIDES

THE NUMBER OF DOCUMENTS IN EACH CLUSTER. (TRANSLATED FROM GERMAN)

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
# 343 # 143 # 89 # 115 # 218 # 325 # 206 # 480 # 100 # 124
tasty pregnant punishment euthanasia partner birth Eucharist scroll mercy account
salad pregnancy sin critic sex congratulations ecumenism mark teacher alcohol
recipe doctor hate AFD relationship baby Protestant tree israel data
cook pill lust death marriage warm-hearted Catholic 2015 creation facebook

vegetables pain act die boyfriend excited Luther healing landlord google
salt body concept grandma partnership midwife pope posts debts profile

sugar doctors sexuality dead together eager Catholics 2014 plant sensible
tastes baby insight party[pol.] friendship wish minister reason psalm shop

recipes months evil body married finally RCC Koran account price
tomato birth Moses quote feelings glad church 2013 peace ebay

TABLE IV
EXAMPLE: HIERARCHICAL ORDER OF CLUSTER DESCRIPTIONS. THE

CLUSTER IN THE TOP ROW IS SPLIT INTO THE CLUSTERS IN THE LAST 2
ROWS. (WORD FREQUENCIES IN PARENTHESIS, TRANSLATED FROM

GERMAN)

god(335), woman(253), man(251), live(223), jesus(195), love(190),
sex(190), question(184), human(183), marriage(156), ...
↪→ man(185), sex(185), woman(141), god(109), live(109), women(97),

mother(95), topic(94), human(94), problem(89), ...
↪→ god(226), live(114), woman(112), love(107), jesus(107), ques-

tion(96), human(89), god’s(89), do(82), marriage(75), ...

been closed or moved by a moderator. Topics 9 and 10 are
mostly incoherent. Topic 10 seems like a mixture of unrelated
topics, the terms ’facebook’, ’google’, ’profile’ and ’ebay’
could belong together. Maybe pruning the hierarchy to 100
topics is too harsh and we need more clusters to separate
these clusters into coherent subsets. Indeed after splitting
the cluster twice, we obtain a cluster with top-keywords
’data’,’facebook’,’profile’,’google’,’Acta’, ’ipaddress’, which
is more coherent.

This illustrates an interesting property of our approach: We
can interactively make topics more specific or more general.
We show another instance in Table IV where we see a cluster
containing discussions about relationships, love, and marriage.
When we split the cluster into its two subclusters, we obtain
one cluster that addresses questions of sexuality, while the
other does not. Also the second subcluster seems to put more
focus on religious aspects of relationships.

In conclusion, we have seen that document embeddings
are useful for structuring a text collection and deriving in-
sightful topic descriptions in a deterministic and reproducible
fashion. Particularly the possibility to interactively explore the
collection and change the granularity of the clusters without
expensive computations is appealing.

VI. CONCLUSION AND OUTLOOK

We have presented an algorithm for learning low-rank rep-
resentations based on regularization, more specifically accel-
erated proximal gradient descent. The regularizer proposed in
this paper, the weighted nuclear norm with the new weighting
scheme, ||X||ε, allows us to compute representations that
approximate the original high-dimensional data with good
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Fig. 2. Hierarchical Clustering of the Online Discussion Dataset. We can
derive different flat clusterings by pruning the tree at a specified height, for
instance we obtain 10 clusters if we cut at y = 1.25 or 100 clusters if we
cut at 1.18, as indicated by the horizontal lines.

quality while also being low-dimensional. We demonstrated
this in a numerical study where we compared different regu-
larizers.

Then we used our approach to train document embeddings
that capture similarities, which we demonstrated using a
labeled dataset. We were able to benefit from the distance
measure based on embeddings in a digital humanities study,
where we extracted coherent and interpretable topics from a
collection of online discussions in religious online commu-
nities. Our method can be used to interactively explore a
document collection and the user can vary the granularity of
the topics presented. In the next phase of the digital humanities
project, we want to apply similar analysis to the graph of
interactions between users, for instance in order to detect
communities similar to Yang and Leskovec [8].

Future research should also further investigate the relation
between the local minimums of non-convex objectives and
the global minimums of convex objectives like Nuclear norm
regularization. Empirical studies, including this work, suggest
that the local minimums obtain good loss values. It remains to
see if there are provable guarantees for the factored models.
The weighted nuclear norm allows us to gradually increase
the amount of non-convexity in the regularizer. This may
allow us to design iterative algorithms with good convergence
properties.



Furthermore the investigation of methods for optimization
on manifolds seems like a research path worthwhile taking,
particularly if we can avoid computing singular value decom-
position every iteration.
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