
Enabling End-User Datawarehouse Mining
Contract No. IST-1999-11993

Deliverable No. D1.1

Speci�cation of Pre-Processing Operators

Requirements

Lorenza Saitta1, J�org-Uwe Kietz2, and Giuseppe Beccari3

1 University of Piemonte Orientale
Dipartimento di Scienze e Tecnologie Avanzate
C.so Borsalino 54, 15100 - Alessandria, Italy

saitta@di.unito.it

http://www.mfn.unipmn.it

2 Rentenanstalt / Swiss Life
Corporate Center, IT Research & Development

General Guisan Qui 40
8002 Z�urich, Switzerland

Uwe.Kietz@swisslife.com

http://www.swisslife.com

3 CSELT, Via Reiss Romoli
10100-Torino, Italy
beccari@cselt.it

http://www.cselt.it

4 With contribution by:
Marco Botta, Attilio Giordana, Anna Fiammengo,

Regina Z�ucker, Katharina Morik and Harald Liedtke.

June 24, 2000

Abstract

In this workpackage a speci�cation of the pre-processing operations needed
in order to analyse the available data warehouses is described. The collec-
tion of pre-processing requirements will serve as the unifying and organizing
basis for all other workpackages, which shall provide methods for satisfying
each of them. Based on partners' previous experience, those aspects of data
selection and preparation that have proved to be most critical to the suc-
cess in previous data mining activities have been identi�ed, as well as the
application context in which they arose.

Chapter 1

Introduction

Two technologies are emerging to extract knowledge from the mass of data
nowadays available:

1. Data warehousing and On-Line Analytical Processing (OLAP) of data
for the veri�cation of hypotheses, and

2. Knowledge Discovery in Databases (KDD) for the discovering of new
hypotheses.

The two ways of mining data, OLAP and KDD, are complementary: OLAP
allows a dimensional view of the data, as opposed to the relational one
provided by KDD. OLAP pre-computes and stores column totals, to be
shown to the user in the characteristic "cube", a three-dimensional structure
reporting counts for combinations of values of the three variables on the
axes. The OLAP mode of exploration allows hypotheses formulated by the
analyst to be veri�ed; hence it is substantially a manual process. KDD,
on the contrary, does not rely on human intuition, even though, at least in
principle, previous knowledge can be of great help.

Practical experience with these techniques have proven their value. How-
ever, it is also apparent that using a datawarehouse for decision support
or applying tools for knowledge discovery are di�cult and time-consuming
tasks. Therefore, it is currently still quite di�cult to get an admissible re-
turn of investment from using them. If we inspect real-world applications
of knowledge discovery, we realize that 50 - 80% of the e�orts are spent
on �nding an appropriate transformation or sampling of the data, and on
specifying the proper target of data mining; in other words, they are spent
on pre-processing the data.

Actually, the mining results critically depend on the data. Extensive
documentation on the importance of non-algorithmic issues in real-world ap-
plications are reported, among others, by Langley and Simon [1995], Ruden-
stram [1995], and Saitta and Neri [1998]. As a result, these technologies are
mostly used by a few highly skilled users.

1

Mining Mart IST-1999-11993, Deliverable No. D1.1 2

Time Imp.

Business understanding 20% 80%

a) Exploring the problem 10% 15%
b) Exploring the solution 9% 14%
c) Implementation speci�cation 1% 51%

Data preparation & mining 80% 20%

a) Data preparation 60% 15%
b) Data surveying 15% 3%
c) Modeling (data mining) 5% 2%

Table 1.1: Steps of a KDD-project with time to complete and importance
to success.

One of the most time consuming steps for KDD consists in preparing the
source data. In real-world applications we have to deal with very hetero-
geneous data of doubtful quality. On the other hand, there is no universal
data mining tool available, which is equally suited to handle the variety of
analysis tasks promising enhanced insight about a company's position in
the market, its customers, its products, and so far. As a consequence many
di�erent types of data mining algorithms have to be employed, which typi-
cally have strict and specialized input requirements. The problem becomes
even more di�cult if we consider all the possibilities to transform the data
into the best form for mining. It is very likely that a good pre-processing
of data has an even stronger in
uence on the quality of the results than the
selection of the mining tool.

In Table 1.1 an overview of a typical timing for a KDD process is re-
ported, while the actual data mining step is well understood, and e�cient
tools for it exist, clever pre-processing of the data is still a matter of trial and
error, although it is known since long that data representation strongly in-

uences the quality and utility of the analysis results [Amarel, 1986]. Since
end-users cannot usually solve the di�cult task of data reformulation, in
order to get their desired answer, they might exploit others' experience in
similar tasks. A case-base of previously solved discovery tasks or of actions
to avoid shall serve as blueprints for further similar queries to similar data.
The case-base thus o�ers a user-friendly interface to the best practise of
knowledge discovery from very large and heterogenous data sets. In this
framework the highly skilled data mining user is still needed, but only to
create new cases, not to redo the same cases all the time. This task is dele-
gated to the end-user, who retrieves the prepared cases, making to it some
simple adaptions.

The pre-processing cases are not stored extensionally, as most common
in todays KDD Support Environments (KDDSE), but intensionally as trans-
formation speci�cations in the form of meta-data. This solution ensures that

Mining Mart IST-1999-11993, Deliverable No. D1.1 3

the cases could be edited easily, reapplied, and - most importantly - could be
compiled into a form executable by a data base system to perform the needed
data transformation. In the present deliverable we are speci�cally concerned
with the de�nition of a set of pre-processing operators, which will serve as a
basis for partially automating the data preparation process and for de�ning
part of the content of the case base. The de�nition and use of pre-processing
operators shall be embedded in the KDD support environment (Brachman
& Anand [1996]), described in Deliverable D2. The pre-processing envi-
ronment that we consider introduces support for in-database pre-processing
operations, well suited for multi-relational databases, as well.

Particularly important for the operator de�nition are the meta-data de-
scribing data formats, operators input and output, their parameters and
actions. Meta-data are described in deliverable D6.2. Meta-data help the
user in identifying his/her particular application type, and provide guid-
ance to the user throughout the knowledge discovery task, by suggesting
the actions and steps that are most likely going to be successful.

The application of pre-processing operators can be automatized to some
extent; one way is by storing in the case-base entire chains of pre-processing
and analysis steps for later re-use (for example, a case of pre-processing for
mailing-actions, or a case of pre-processing for monthly business reports);
another one is by parametrizing operators in such a way that the user has
only to take high level decisions, without bothering with implementation
details (for example, discretization of continuous attributes according to
either equal interval width or equal cardinality).

Pre-processing operators can be applied manually, exploiting also the
available background knowledge; however, machine learning techniques can
well be seen as pre-processing operators that summarise, discretise, and
enhance data. Making data transformations available includes the develop-
ment of an SQL query generator for given data transformations, and the
execution of SQL queries for querying the database. The analysis of the
available data and meta-data allowed us to gather knowledge about con-
straints on pre-processing operations. This knowledge has been used to de-
�ne a set of operators, to be supported in the project, as well as their actions,
constraints and conditions of applicability. The role of domain knowledge is
described in deliverable D5.

The variety in the nature of the considered applications, and the analysis
performed on a large body of literature addressing the issue ensure that a
broad range of applications and domains will be covered. Also the possibil-
ities of combining the operators in pre-processing, on a syntactical-level, as
been identi�ed.

Chapter 2

Pre-Processing Operators

Pre-processing operations are necessary to prepare the raw data material
properly in such a way that they have the right format for a data mining
tool.

Operators can be parameterized to cope with di�erent situations in a
(semi-)automated and uniform way. In some cases, setting of parameter
values leads to a complete speci�cation of an operator, so that it can be
directly applied to the data.

However, we also consider the case that a mining tool itself can be used
as a pre-processing operation; here, setting a parameter equals invoking a
learning procedure to �nd out how best performing the operation in the
actual context.

The KDD process, and the pre-processing phase within it, is not a linear
one: most often, it involves more passes through operator applications, in
a series of trial-and-error cycles. Even though a clear de�nition of operator
syntax, semantics and pragmatics should substantially reduce the number
of these cycles, at least in the pre-processing phase, the basically iterative
nature of the whole process is likely to persist.

In order to guide the pre-processing operations of data transformation,
three kinds of description for operators are necessary:

Syntactic descriptions related to the formal language are speci�c to the
particular operator;

Semantic descriptions related to the meaning of description components;

Pragmatic aspects related to condition of execution on the data warehouse
(database) or KEPLER.

In order to identify the pre-processing operators, we want to provide the
KDDSE with a number of typical mining cases, supplied by the partners,
have been analysed. With the aim of broadening the spectrum of future

4

Mining Mart IST-1999-11993, Deliverable No. D1.1 5

applications, case studies have been complemented with an analysis of a
body of literature, allowing a few more operators to be added to our set.

The pre-processing operators that have been identi�ed can be grouped
into di�erent categories, according to the nature of data transformations
they produce.

2.1 Data Cleaning Operators

Often, data come from di�erent sources (either internally generated or ac-
quired from the exterior) and they need to be "consolidated". Also, they
may contain redundancies and/or errors, and may be a�ected by noise and
missing values. Finally, as data may have been collected for tasks di�erent
from the curretn one, irrilevant attributes may abund. The above operations
heavily rely on domain knowledge (see deliverable D5), and they are mostly
done manually. An informative and precise speci�cation of meta-data can
greatly help manual pre-processing. This issue will be investigated in WP8.

2.1.1 Data consolidation and Data quality survey

Consolidation consists in integrating data from multiple sources into a single
data base. Improperly integrated data are a major sources of low data
quality. There may be large di�erences in the way data are memorized:
the same variable can be called di�erently by di�erent data designers, or
di�erent variables may receive the same name. Representation format may
vary more or less (for instance, there are many ways of writing an address),
or measurement units may be inconsistent (for example, US and Canadian
dollars cannot be added).

In some cases data to mine are already consolidated by database people,
and in general, it would be better to establish procedures and checks to avoid
errors since the beginning, but the data base is not always controllable, and
quality check may be necessary.

If data are not yet consolidated, manual inspection of meta-data allows
redundancies and contradictions in single �elds and combinations of �elds
to be removed. In particular, we consider to check:

� same name given to semantically di�erent variables (operator !1)

� di�erent names given to the same variable (!2)

� contradictory values assigned within one �eld (!3) or across di�erent
�elds (!4)

� manual removal of known irrelevant attributes (!5)

The strong semantic nature of the above operators require manual super-
vision by a human expert and extensive use of background knowledge and

Mining Mart IST-1999-11993, Deliverable No. D1.1 6

meta-data. Another important aspect of preliminary data preparation is
"anonymization" (!6). For privacy or business reasons, data handling should
not disclose sensible information contained in some �eld. Mapping �eld val-
ues into a standard set of anonymous tags can be done semi-automatically.

2.1.2 Missing values and noise handling

In a database several types of noise may be present. First of all, syntac-
tically or semantically erroneous �eld content. The former can be invoked
(if not already done during database construction) automatically (!7), but
the latter has to be included in operator !4. Numerical �elds are a�ected
by measurement noise. Reduction of noise in this case (!8) can be done
by a number of statistical algorithms. Records with many missing values
can be discarded, but the data base could be substantially restricted if any
record with at least one missing value is discarded. Then, another strategy
consists in substituting the missing value with an actual one. There are
di�erent methods to do this:

� The missing value is replaced by a default value. For instance, in the
case of nominal attributes, a new value can be de�ned and considered
as a default. This strategy is useful, for example, for investigating
which records (if any) systematically lack the value (For example, rich
people tend to hide their actual income).

� The missing value is computed: the modal value for a nominal at-
tribute, the median for an ordinal one, and the average for continuous
variables.

� The missing value is determined on the basis of the statistical incidence
of values (for example, in a database in which 40% of the records
concern females and 60% males, a missing sex information can be
assigned according to the above probabilities).

� A more complex way of calculating a missing value is to use predictive
models, constructed on the basis of other variables.

Handling missing values is done by operator !9.

2.2 Statistical Overview of Data

Given a database, it is always advisable to perform (if not already done
at database population time) a preliminary exploration, by computing basic
statistical parameters, such as low order moments (mean, variance, skewness
and courtoise) over simple attributes (operator !9), univariate hystograms
(operator !10), and correlation coe�cients on attribute pairs (operator !11).

Mining Mart IST-1999-11993, Deliverable No. D1.1 7

Algorithms are also avilable to identify outliers for univariate (operator
!12) or multivariate (operator !13) distributions.

2.2.1 Visualization

The operators introduced in Section 2.2 provide the material for a set of sim-
ple visualization operators (not the sophisticated ones provided by OLAP
of presentation of �nal results for interpretation). The goal of this visual-
ization step is to gather a general feeling of the database content, useful
to prepare a KDD analysis plan. The visualization operators are of three
types, according to their output:

� 1D - visualization (operator !14).

� 2D - visualization (operator !15).

� 3D - visualization (operator !16).

Operator !16 is meant to display the results provided by !9, !10 and
!12. Operator !15, in addition to visualize the results provided by !11, shall
also consider 2D scatter plots. Finally, 3D scatter plots and output by !13
shell be handled by !16.

2.3 Data Selection Operators

The operators de�ned in Sections 2.1, 2.2, and 2.6 provide a high level
overview of the database, and several of them are actually applied even be-
fore a speci�c data mining application is being set up. They have a broad
range of applicability and are multi-task by their very nature. Moreover,
while the operators for data cleaning (see Section 2.1) may marginally alter
the database (by changing or adding or removing some entries), the opera-
tors for data overview and visualization leave it unchanged. On the contrary,
the pre-processing operators introduced from now on may deeply alteer the
database, by changing entries, adding or removing columns or rows, mod-
ifying the number and structure of tables, and a�ecting the meta-data as
well.

Speci�cally, the operators introduced in this section aim at reducing the
size of data to be fed to a DM tool.

2.3.1 Sampling and Segmentation

Sampling and segmentation are used to reduce the number of data records
within the training data. The underlying goals of these operations are the
following:

� Improve speed and reduce memory requirements of the mining tool

Mining Mart IST-1999-11993, Deliverable No. D1.1 8

� Focus on rare or special cases

� Rebalance the class distributions

� Specify a target group

� Use only clean data

These operations leave the number of attributes and the data records
unchanged, but the statistical properties of the population may change dra-
matically. Sampling can only be applied to one data table.

Examples

� Sampling (operator !17)
Extracts data records out of the set of training data by random.
Parameters: number of records to extract, sampling mode.
Sampling could be done randomly or acccording to a pre-speci�ed
probability distribution.

� Typical cases / Atypical cases (operator !18)
Extracts data records which ful�ll the (a)typical case within the train-
ing data.
Parameters: Condition of the (a)typical case.

� Segmentation (operator !19)
Extracts data records which ful�ll a special segmentation-pattern.
Parameters: Segmentation condition.
The segmentation conditions can be given implicitly (through a dis-
tance measure or attribute weights) or explicitly (through a set of
constraints provided by the expert/user). For this operator there is
the possibility of specifying as parameter a segmentation algorithm,
letting thus an ML tool to �nd the segments automatically.

� Data quality-motivated sampling (operator !20)
Extracts data records which values have a certain degree of quality.
Parameters: Qualify-condition (e.g. all records which have less than 2
unknown values).

� Rebalancing (operator !21)
Noise-tolerant mining tools cannot be used to build a classi�cation for
very unbalanced class distributions (e.g., 95% { 5%, with 5% being
an optimistic estimate for responses of a mailing.); then, a sampling
favoring the members of the minority class has to be applied �rst.
Parameters: class distribution (e.g., 55% { 45%) after rebalancing.

Mining Mart IST-1999-11993, Deliverable No. D1.1 9

2.3.2 Windowing and Partitioning

Windowing can be applied to data ordered according to a given attribute
value (as a special case, time). It consists of selecting all records whose
ordering value is within an interval of speci�ed width (the "window"). As
moving window it is intented a window, which is made to shift periodically
on the records. The amplitude of the window is the main parameter of oper-
ator !22. Some times, a database requires to be partitioned, for instance to
perform cross-validation for error estimation, or for reducing algorithm com-
plexity. The number of partitions is a parameter. Even though partitioning
could be considered as a special case of sampling, it is more convenient to
de�ne a new operator !23, for clarity reasons.

2.4 Data Transformation

The operators introduced in this section are those that most in
uence the
data mining process and results, as they may introduce deep semantically
relevant transformations in the database.

Discretization

There are at least two reasons for discretizing values of numerical continu-
ous attributes: on the one hand, several DM tools are only able to handle
categorical values; on the other hand, continuous values may become too
sparse over the whole range.

� Discretization (operator !24)
It is applied to attribute(s) of the type ordinal or scalar and creates a
new attribute of the type nominal ordered
(ordinal/scalar ! nominal ordered).
Parameters: base attribute(s), output attribute, number of created
intervals for the output attribute.

� Grouping (operator !25)
It is a kind of order discretization. It applies to attribute(s) of the
type nominal that has/have no hierarchy, and creates a new nominal
unordered attribute.
(nominal unordered ! nominal unordered).
Parameters: base attribute(s), output attribute, number of created
groups, number of data records in one group.

Discretization can be done at constant interval width, at constant counts
in the interval, or by letting an algorithm select automatically according to
a speci�c strategy [41, 43, 42].

Mining Mart IST-1999-11993, Deliverable No. D1.1 10

Feature selection

Attribute selection drops attributes which should not be in the mining input
and/or result, e.g., as they are clearly uninteresting, not usable or di�cult
or expensive to measure for new data. The number of di�erent data records
and also the number of the total data records stays the same.

Goals

� Drop attributes which don't �t the input requirements of a DM-tool

� Drop attributes which are strongly dependent on or are the basis for
attribute construction for new attributes.

� Improve processing speed.

� Guide the built-in attribute selection process of the DM-tool.

Only the important attributes are chosen as input for a DM-tool. Se-
lecting the attributes can be done manually, through input restrictions as-
sociated with the mining tool, or by feature selection methods [24].

Feature selection can be done either manually, with operator !26 (when
the expert knows precisely what is important to keep), or automatically (op-
erator !27), by providing an automated algorithm A with selection criteria.

There are two dimensions along with classify algorithms that perform
automatic feature selection (parameters of !27): one is the feature set or-
dering, as attributes can be either added or removed. In the former case one
starts with just one attribute, and the other ones are added one at a time,
until an halt condition is met. In the letter, one starts with the whole set of
attributes, abd they are removed one at a time.

The other dimension refers to the relation between feature selection and
target system: in the "wrapper" approach, each step of feature selection
is embedded in the DM process, whose results provide evaluation feedback
for the next step. This approach is highly informative, but computationally
expensive.

In the classical approach, instead, feature selection and target task run
in sequence, and the evaluation of feature selection is always done indepen-
dently.

2.4.1 Attribute Construction within a relation

Simple attribute construction creates a new attribute within one data table
or view. The new attribute is based on one or more base attributes, and
groups their values into a more general form. The number of data records
in total is the same as before the operation, but when considering the base
attributes replaced by the newly created one, the number of distinguishable
data records is possibly reduced (except for relativation and re-scaling).

Goals

Mining Mart IST-1999-11993, Deliverable No. D1.1 11

� Improve data-coding relative to the capabilities of the mining tool

� Create a new attribute which can be better used for the mining task

Examples

� Relativation (operator !28)
It puts one attribute in relation to another attribute. It can only be
applied on numeric or date attributes and doesn't change the number
of di�erent data records.
(numeric, date ! numeric ordered).
Parameters: base attributes, output attribute, operation between the
base attributes (e.g., calculating the age from Sysdate and birthdate,
calculating the quotient of income and premium sum).

� Cleaning (operator !29)
Eliminates rare values of data records by creating a new attribute.
(any type ! any type).
Parameters: base attributes, output attribute, which value of the base
attribute shall be replaced by which new value (e.g., replacing the
entry age of a person younger than one by 1).

� Scaling (operator !30)
For all distance-based mining tools (e.g., clustering and instance based
learning) the scale of the numeric attributes is very important, i.e.
attributes with larger values are more in
uential on the result. To
avoid this usually unintended weighting of attributes, all attributes
have to be rescaled, e.g., to a �xed standard deviation or interval.
(scalar! scalar).
Parameters: standard deviation or interval.

� Abstraction (operator !31)
It is applied to attribute(s) of the type nominal or scalar and creates
a new attribute of the type nominal ordered.
(nominal, scalar ! nominal ordered).
Parameters: base attribute(s), output attribute, hierarchy, output of
hierarchy level (e.g. looking at the household level instead of person
level).

2.4.2 Multi-Relational Attribute Construction

Joins and aggregations are used to put information from several related ta-
bles into one base table. To avoid unwanted changes of the target population
distribution, the object identity within the base table has to stay unchanged
(the number of di�erent data records is still the same after the operations).
To avoid the loss of base-table record-joins, outer-joins should generally be

Mining Mart IST-1999-11993, Deliverable No. D1.1 12

used, and to avoid the duplication of base-table records, simple joins must
not be used for 1:N or N:M related tables (as this would duplicate records
in the base table).

Goals

� Fit the single table requirement of most DM-tools

� Reduce the complexity for ILP-DM-tools

� Avoid unwanted changes of the population distribution.

Examples

� Algebraic combination (operator !32)
It creates a scalar attribute, which is the result of an algebraic opera-
tion (sum, di�erence, ratio, : : :) on a set of base attributes. income of
a household.

� Min, Max (operator !33)
It creates a scalar ordered attribute (e.g., smallest, highest premium
sum of a product, smallest age of a member of the household).

� Count di�erent (operator !34)
It creates a numeric attribute (e.g., how many persons a household
has, how many insurance contracts a household has).

� Count X = V (operator !35)
It creates a numeric attribute (e.g., how many children a household
has, how many di�erent values an attribute has).

� Exist X = Y (operator !36)
It creates a binary attribute (e.g., there exists an insurance contract
of type 3a for one household).

� All X = Y (operator !37)
It creates a binary attribute (e.g., are all insurance contracts of a
household of type 3a are all of a household's adults).

2.5 Time related Preprocessing Operators

The time related preprocessing operators introduced in this section are
table-to-table converter. They will be implemented in Oracle 8i SQL and
SQL/Plus. Each of the operators needs one or more speci�c input tables
and produces one or several output tables. An example operator producing
several output tables is given in Section 2.5.5. A manual operator expect-
ing more than one input table is the multi-relational attribute construction
operator of deliverable D1.

Mining Mart IST-1999-11993, Deliverable No. D1.1 13

Therefore it is quite important that the meta data take into account how
to de�ne the input tables and output tables. In some cases the number of
output tables does not depend on the operator itself but on the content of
the input tables. That is why the meta data should support the dynami-
cally assignment of an unknown number of output tables as input for the
succedding preprocessing step. Alternatively all members of the set of out-
put tables are applied to the succeeding step one by one, e.g., this is the
case for the multiple learning operator.

2.5.1 Single Process Extraction

If information from multiple individuals (each individual representing a pro-
cess) are given, the vectors corresponding to one of the processes can be
extracted to derive the information for this single process.

LEsP : Let Tmp := ftmp1 ; : : : ; tmpjg be the set of time speci�cation for the
input from which tuples for one single process sp should be extracted. Time
speci�cations for selected vectors of sp are denoted as Tsp := ft1; : : : ; tig �
Tmp. At least one attribute is the same (or holds some other speci�c con-
dition) for all tuples from one single process. This attribute value can be
denoted as the process identi�er;
(9fattrID1; : : : ; attrIDig : (8j 2 f1; : : : ; ig : attrIDj 2 f1; : : : ; kjg))
^ 8tm; tn 2 Tsp : atmattrIDm

= atnattrIDn
=: process identifier

Since the meta data for the input includes all individual identi�ers we
just need to know the individual identifier 2 individual identifiers and
its value (= process identi�er) to extract the data for. The time speci�cation
is always expected to be the �rst (two) attribute(s).

The output table's �rst column (resp. the �rst two columns in case of
time intervals) is the time speci�cation followed by the process identi�er.
E.g., if the input is an instantiated database table, we will get an output of
the following form:

LHsP

il < t1; at1attrID1
; at11 ; : : : ; at1attrID1�1

; at1attrID1+1
; : : : ; at1k >;

< t2; at1attrID2
; at21 ; : : : ; at2attrID2�1

; at2attrID2+1
; : : : ; at2k >;

: : :

< ti; at1attrIDi
; ati1 ; : : : ; atiattrIDi�1

; atiattrIDi+1
; : : : ; atik >;

(2.1)

With the notation used in deliverable D1 the implementation of this
operator could be done as:

Single Process Extraction

Select time specification, individual identifier,

remaining attributes

Mining Mart IST-1999-11993, Deliverable No. D1.1 14

From source

where individual identifier = given process/individual

view -> view (row reduction)

2.5.2 Multivariate to Univariate Transformation

LEm2u
: For the simplest form of multivariate to univariate transformation (I)

all we need to know is the attribute which names the value of the univariate
time series to produce. The output will then consist of the original time
speci�cation and a second attribute containing the unvariate time series'
values.

If all possible univariate time series should be created, we will iterate
with all attribute of the multivariate time series.

The output LHm2uI
is described with:

Multivariate to Univariate Transformation I

Select time specification, attribute

From Source

view -> view (column reduction)

A second feasible transformation (II) reads the values from a multivariate
time series from the left to the right and from the top to the bottom and
creates one univariate time series.

An example data set contained energy consumption data which was mea-
sured every 15 minutes for several days. The �rst attribute of the table is the
day of the measurement, the remaining columns denote the time of the day
when the value was measured. They are named "0:00 a.m.", "0:15 a.m.",
. . . , "11:45 p.m.".

The time speci�cations for the univariate time series will start with value
1 and increase one by one for each value of the series. The original time
attributes were given by the values of the column named day and by the
names of the remaining columns. They are to be integrated in the output
table, too.

If the time speci�cation is not needed feature selection (see deliverable
D1) can be used to delete it.

LHm2uII
:

Multivariate to Univariate Transformation II

For all combinations of time specifications and attributes do

Select time specification, attribute name, attribute value

From source

view -> view

Mining Mart IST-1999-11993, Deliverable No. D1.1 15

The output table will have equal or more rows than the input table.
A third multivariate to univariate transformation (III) is needed to com-

pute frequent sequences. The input rows of a multivariate time series are
considered events. Each event is de�ned by the values from a row with k

attributes (the time attribute are not considered for de�ning event types).
Thus each new combination of attribute values denotes a new event type.
The output is a nominal valued univariate time series of format LE2 based
on L0

E1
. The single attribute A1 of this output denotes the event type that

occured at that point in time. Therefore the event types are mapped to
integers starting with the value 1.

LHm2uIII
:

Multivariate to Univariate Transformation III

Select time specification,

map attribute values (attribute 1, ..., attribute k)

From Source

view -> view (feature construction)

A second table is created. It tells about the mapping of event types to
integers. The meta data schema should include such mappings.

Multivariate to Univariate Transformation III

Select attribute 1, ..., attribute k,

map attribute values (attribute 1, attribute k)

From Source

view -> view (feature construction)

Alternatively the event types could be added as constructed feature to
the original view. Then feature selection has to be applied to derive the
appropriate table for the frequent sequences approach.

2.5.3 Sliding Windows

The input table to the sliding windows operator consists of a time speci�-
cation and one more attribute. In case of multiple attributes multivariate
to univariate transformation should be applied �rst to provide the correct
input table.

LEslW := LE0

1

In particular the multivariate to univariate transformation II produces
appropriate input for the computation of sliding windows of a multivariate

Mining Mart IST-1999-11993, Deliverable No. D1.1 16

time series and thus windows which include values of two rows from the
original multivariate time series.

For a window size w the observations within this window are combined
to one new vector1:

LHslWI

il : t11 ; a11; : : : ; t1k ; a1k ; : : : ; ti1 ; ai1 ; : : : ; tik ; aik
(2.2)

The window is moved by window movement v steps and the new vector
is computed. This will be repeated until the end of the input is reached.

Another sliding windows variation (II) compresses the time information
to a new time interval:

LHslWII

il : t = (start(t11); end(tik)); a11; : : : ; a1k ; : : : ; ai1 ; : : : ; aik
(2.3)

Each vector contains only one time speci�cation.
If the windows movement is less than the windows size then the sliding

is called overlapping, and non-overlapping otherwise.
The third sliding window operator (III) is needed for computing frequent

episodes. This sliding window operator ensures attribute values at the be-
ginning and at the ending of the univariate time series to be put in as much
windows as the values in the middle of the series. Therefore the �rst and
the last window, and in some cases some more windows, extend outside the
sequence.

LHslWIII
: The output format is the same as the one of sliding window

I, but it will consist of more output vectors.
All of the sliding window variations belong to:

Sliding Window

View -> View

with the outout table having less or equal rows than the input table.

2.5.4 Summarizing

LEsum : Attribute values aj ; : : : ; aj+w�1 within a window of past observations
w are summarized by a function f(a1; : : : ; aw) (e.g., average, variance). The
original time series is replaced by the discretized one.

1Since this operation will consist of direct cursor implementation on database tables

rather than of SQL-Statements the output is not speci�ed with SQL-like statements as in

the preceeding section.

Mining Mart IST-1999-11993, Deliverable No. D1.1 17

LHsum : E.g., a univariate time series of representation is replaced by:

LHsum

il : t = (start(t1); end(tw+1)); f(a1; : : : ; aw);

: : :

t = (start(ti�w+1 ; end(ti)); f(ai�w+1; : : : ; ai)

(2.4)

Each row of the input table contains one window of past observations.
If this format is not given already it has to be created with sliding windows.

E.g., for a univariate time series sliding windows with window size w

and movement v (v 2 f1; : : : ; w � 1g for overlapping summarizing, v � w

for non-overlapping summarizing) can be used to generate output rows with
each row containing the elements of the past observations w.

Beneath the input table we need a second meta data: the function f .
MiningMart will at least provide the moving average function simple moving
average (SMA), weighted moving average (WMA), and exponential moving
average (MVA) [32]. Basically, all of this moving functions behave the same:
they do some computation on observations which are given with the slid-
ing window operator. The window size w used for computing the sliding
windows has great in
uence on the moving function. I.e., a windows size
w = 6 is used for a lag-six SMA (abbreviated SMA6). This parameter is
implicitly given by the number of attributes of the input table passed to the
summarizing operator.

With using weights WMA decreases the drawback of each value having
the same contribution as the other values to the average of the observation
window. EMA uses a tail weight and a head weight for weighting the pre-
vious average value and the current value. For both WMA and EMA the
weights sum up to 1.

The weights have to be passed as meta date to the summarizing operator.
In case of EMA the number of weights is exactly 2, in case of WMA the
number of weights depends on the window size of each observation.

2.5.5 Multiple Learning

Instead of handling diverse individuals in one learning run a learning can be
started for each individual. In the drug store example for each branch o�ce
and each item a separate signal to symbol processing was started.

LEmultL
: The splitting of the input table is controlled by one of the

individual identi�ers of the table which is denoted disjunctive attribute in
this context. This operator is almost equal to the single process extraction
operator: here we will produce a set of tables (not only one table), one for
each value of the individual identi�er.

LHmultL
:

Mining Mart IST-1999-11993, Deliverable No. D1.1 18

Multiple Learning

for all individuals

select individual, time specification, remaining attributes

where individual = name of the current individual

from source;

(view -> views)

The output tables are speci�ed by a separate table containing the names
of all of the output tables.

2.5.6 Aggregation

LEaggr : Aggregation sums up several inputs vector by vector. For the given
inputs lE condition should hold and the set of time speci�cations should be
the same for all inputs. If a time speci�cation does not occur in all of the
input tables then only the available data for that time speci�cation will be
summed up.

LHaggrI
: An input vector is read from each of the inputs, all vectors hav-

ing the same time speci�cation. One output vector is created by summing
up all values for each of the attributes.

Aggregation I

views -> view

LHaggrII
: A second aggregation operator (II) takes into account that not

only the time speci�cations should be the same for creating a new vector
but also any other combination of attributes for a given input table.

There are some more combinations which might be of interest. The
key question is: which attributes stay the same for one new output vector
(join attributes)? For the examples given above these join attributes are the
article number and the point in time respectively the article number and
the shop number.

If the time speci�cation does not belong to the join attributes then the
output will include the start of the earliest time speci�cation and the end
of the latest time speci�cation at the beginning of the table.

Aggregaton II

view(s) -> view

2.6 Operator Description

At a logical level, each operator description consists of three parts:

Mining Mart IST-1999-11993, Deliverable No. D1.1 19

� Sintactic description, which speci�es operator's input, output and pa-
rameters. A Boolean tag shall establish whether the method to apply
the operator is speci�ed or whether learning has to occur. For in-
stance, in the case of discretization, a parameter could be "constant
width interval", or, in the case learning has to occur, "Learn with
Algorithm 1".

� Sematic description, which speci�es the type of transformation and
the e�ect on the database. For instance, for multi-relational attribute
construction:

(select <v1.aggregate>

from view, v1

where v1.id = view.id

group by view.id)

-> view.cnew

� Pragmatic description, which speci�es constraints and applicability
conditions. For instance, for discretization, the attribute considered
must have continuous values.

The actual description of all the operators will be the content of WP 8
and WP 9.

Chapter 3

Meta-Data for

Pre-Processing

The complete description of the available data and meta-data is contained in
WP 6. Here we only mention those aspects that are relevant to the de�nition
of the pre-processing operators. Syntactically correct pre- processing is pos-
sible with minimal meta-data, i.e., meta-data just specifying the syntactic
restrictions of the data, the data-mining tools and the pre- processing oper-
ators, but the guidance will improve with any further knowledge gathered
about semantic and pragmatic aspects of the pre- processing task.

As often the data in a datawarehouse have di�erent origins (in-house
data or data provided by external sources), meta-data provide fundamental
information about those sources, especially during data base consolidation,
i.e., the integration of di�erent data bases into a single one. Meta-data
describe tables as a whole or speci�c �elds. For instance, a table may be de-
scribed in terms of number of �elds/columns, number/percentage of records
with missing values, names of the �elds, and so on. For a �eld we have to
specify, for example, data type, meaning, description, source of �eld, unit of
measure, number of values, list of values/range of values, number of missing
values, and so on.

To describe input formats and meta data the following notation is used:

� Input data are described by formats LE and identi�ed by a name
lE. LE comprises either one or several individuals il. In case of one
individual this individual il is used in the de�nition of LE , in case of
a set I of individuals il the set I is used.

� Input formats LE for a method (operator) producing LH .

� Attributes Aj and attribute values aj .

� Abstract time speci�cations Tj and instantiations tj , index i always
denotes the actual or the last time speci�cation. Since the time speci-

20

Mining Mart IST-1999-11993, Deliverable No. D1.1 21

�cation may consist of one or two time attributes (explanation below)
the term time speci�cation is used here rather than displacement vari-
able or index variable [32].

Deliverable D1 introduces a �rst meta data schema. Some of the meta
data listed below is already part of the schema. Other meta data will have
to be integrated to the schema. This will be part of the WP 8 and 9 which
focus on describing the meta data (model).

3.1 Time related Meta-Data

An input lE which includes time speci�cations t has to provide additional
information. These meta data are mandatory for all time related data.

� the identi�cation of an individual. Possibly there is none in the raw
data, because all observations belong to one single individual. In some
cases the individual's name is given implicitly, e.g., by the database
tablename. In these cases the identi�cation has to be added.

A time series always belongs to one individual but other representa-
tions - like sequence vectors - may describe several individuals.

� the attribute(s) containing the time speci�cation (time attributes)

� the time scale indicated by the scale unit and the point of reference:

{ the scale unit

{ the point of reference

{ the order of time stamps

� the representation of time: points in time or time intervals de�ned by
a tuple t = (ts; te) with starting point ts less or equal than ending
point te.

Data that does not include explicit time information by having time
attributes might include implicit time information: Is the time information
given implicitly by the order of an individual's vectors? If not, we will not
apply any operator considering time phenomena for the given data.

For any given input these meta data will help to decide whether the input
belongs to one of the input languages or not. Furthermore the same meta
data could support the mapping of any input to one of the input languages,
and from an input language to another.

Mining Mart IST-1999-11993, Deliverable No. D1.1 22

3.2 Meta-Data required in order to apply Opera-

tors

Subject to the pre-processing or learning operator which should be applied
some speci�c meta-data is required.

Time series with time speci�cations (time-stamped time series) are clas-
si�ed as uniform or generic time series depending on the time-stamps' char-
acteristics. The time speci�cations tj of uniform time series are of unique
length (this is always true if time speci�cations are instantiated by time
points) and the distances between two time speci�cations are the same for
all pairs of sequent time speci�cations:

individual il is generic

(monotonic increasing) :() (t1; : : : ; ti) is monotonic increasing

() 8j 2 f1; : : : ; i� 1g : tj � tj+1
(3.1)

individual il is strictly

monotonic increasing :() (t1; : : : ; ti) is strictly

monotonic increasing

() 8j 2 f1; : : : ; i� 1g : tj < tj+1

(3.2)

individual il is

uniform increasing :() il is strictly monotonic increasing

9d : 8j 2 f1; : : : ; i� 1g :

^tj+1 � tj = d ^ jtj j = jtj+1j

(3.3)

(Strictly) monotonic decreasing and uniform decreasing is de�ned like-
wise.

If the time points were not ordered chronologically the time series is
called unsorted and sorted otherwise.

individual il

is unsorted :() 9j; l 2 f1; : : : ; i� 1g; j 6= l :

tj > tj+1 ^ tl < tl+1

(3.4)

For each of the attributes some attribute properties are needed: is the
attribute value numerical or nominal (type). An important point is that in
real-world applications missing values are not only coded by the attribute

Mining Mart IST-1999-11993, Deliverable No. D1.1 23

value 'NULL' (using database terms). Often mappings are used to code spe-
ci�c attribute values like 'unknown' or 'contractor did not �ll in this blank'
which can possibly be of the same meaning as 'NULL'. To take this aspect
into account the meta data provide an optional list of NULL values which
identify missing values. A simple example for missing time information is
using '9.9.9999' as a date that has not been speci�ed. In many cases learning
on '9.9.9999' will not be of great importance.

Additional statistics could be of interest for certain operators: total
amount of values, number of di�erent values, mean value, standard devi-
ation, variance, and range. The meta data has to provide corresponding
slots for these information.

These meta data are provided for given data as well as a requirement
of attributes to apply a speci�c operator. It is quite important that a step
of a data mining case is not only associated with a view and its attributes
(or with attributes only) which provide meta data. The meta data has also
to provide explicit information about the need for speci�c meta data as a
prerequisite for the data mining step. E.g., if an attribute is associated with
a step you will have to know if the type of the attribute is numerical by
coincidence or if it is numerical because the step requires the attribute to
be of that speci�c type.

Chapter 4

Composition of

Pre-Processing Operators

The development process contains several tasks. A chain of several pre-
processors and ML tools, which have a de�ned order and speci�c parame-
ters, has to be developed. In this chain ML tools can also be used as pre-
processors. The chain is locally optimized to supply the best mining result
on training data. The whole chain of all pre-processing operations should
be generated into one optimized SQL-statement, which can be executed on
the application data.

During the process of developing an optimal pre-processing chain the
mining mart power-user has to execute several iterations to �nd the best
�tting (global optimized) chain of pre-processor operations and ML tools.
But even the power-user can gain from integrated ML-tools as they help him
to �nd a local optimized solution automatically. In a �rst attempt a pre-
processor chain is de�ned and executed on the training data. Then the chain
is changed and executed on the training data again. After all iterations are
completed several pre-processor chains with mining results exist. The chain
with the best result has to be chosen to be the best �tting one1.

An operator chain contains di�erent manual pre-processing operations
(PP) and ML tool supported pre-processing operations (MM) in a speci�c
order. Usually the last element of an operation chain is the mining tool. The
other elements of the chain can be either manual or ML tool supported pre-
processing operations. The ML-tools are used to discover the parameters of
the associated manual pre-processor operations. How many elements exists
and which order they have depends on the task itself and on the needed
input parameter of the next element. Manual pre-processing operations are
based on SQL-code. ML tools are stand-alone executables. For performance
reasons several pre-processor operations can be translated into just one SQL-

1For future versions the other ones could be stored as variants in the case base which

help the adaption of a case to a new target segment.

24

Mining Mart IST-1999-11993, Deliverable No. D1.1 25

statement in case they are one after another.
The result of a SQL-statement is a view in the database which acts as

an intermediate result, i.e. the view is needed as the input for a following
ML tool. The result of a ML tool is used as the parameters of the associated
SQL-code. As an example consider the discovery of a discretization as the
result of a ML tool. The output of the ML tool is a mapping of intervals of
the base-attribute (B) to nominal values of the new attribute (A), e.g. fif
B < 18 then A = child, if 18 � B then A = adult g. This (and the old
column) is used as a parameter of the SQL-function de�ning a new column
in the next intermediate or the �nal view.

After the whole chain is executed, the �nal view and several SQL-
statements exist. If it is possible, the SQL-statements can be merged and
optimized to one statement. This statement or the single generated SQL-
statements can also be executed on the testdata or the application data.

In addition to storing chains of pre-processing operator applications, an
algebra for composing them can be de�ned. In particular, thre operations
are envisaged up to now:

� Concatenation (!:�) D
Operator � is applied to the database D and then operator ! is applied
to the result. In this case the output from � must be a superset of
the input to w. Constraints on � must be compatible with constraints
and applicability conditions of !. An example is a concatenation of
discretization and visualization. Concatenation can be iterated.

� Parallelization !(D) || � (D)
Operators ! and � are to be applied both, but their application pro-
cesses are not interacting, so that they may be parallelized. For in-
stance, for discretization, we may apply two di�erent algorithms on
two machines and then compare the outputs.

� Embedding (! (�)) D
During an iterative application of operator w, the application of oper-
ator � is invoked. That means the execution of ! is interleaved with
execution of �. Embedding is typically exploited when manual and
automatic pre-processing steps are to be performed.

Further combination of operators could be added, such as macro-operator
formation, according to the needs emerging from analysis of further cases.

Chapter 5

Case Studies

In this section some case studies, used to derive the pre-processing operator
speci�cations, are brie
y described.

5.1 A Business Case of Mailing Action at Swiss

Life

Ideally, a KDD-project starts with a business case, which could be solved
or optimized by analyzing available data. It should be noted that the most
important prectical step is the management-agreed speci�cation of how to
use the expected mining results, because even the best mining results are
worth nothing, if they are not used [Saitta & Neri, 1998]. The most time-
consuming step is the preparation of the data for mining. Both problems
could be solved in a related manner. The management support for the use
of the mining results as well as the justi�cation of the high data preparation
costs are most easily reached, if the KDD-project is integrated into an im-
portant and repeated business case. However, the second part is only true,
if the pre-processing e�ort can be reused. For Swiss Life there are several
application areas where central business- cases could be supported by data
mining, especially:

� Marketing

� Product development and control

� Business reporting

The case we analyze here is the optimization of responses to mailing actions
in direct marketing as an illustrating and well known example of such a
problem.

If we describe this business-case on a more technical level we come to
the following steps:

26

Mining Mart IST-1999-11993, Deliverable No. D1.1 27

� 0. Use an existing data warehouse (DWH) as base. A partial schema
of the Swiss Life's datawarehouse in reported in Deliverable D6.2

� 1. Construct a household view on this DWH, which provides all rel-
evant information in a form, that allows the next step to be done by
an end- user.

� 2. Select the target segment, e.g. households, (a) which have a child
with an age below 2 and which are not mailed since the birthday of this
child, or (b) which have already bought a single-premium insurance,
but this is more than two years ago.

� 3. Select a random-sample, with size proportional to 20% of the bud-
get, i.e., generate a sample to gather labels for the training and test
set.

� 4. Export the addresses of this sample, do the �rst mailing, and store
the responses, i.e., label the sample.

� 5. Split the sample into training and test-set.

� 6.Select/Construct the relevant attributes for the current response pre-
diction task.

� 7. Train the selected mining-tool, which output could be used to order
(not just classify) the data.

� 8. Apply the data-transformations (pre-processing) done in step 6 to
the test-data as the mined pattern relies on it.

� 9. Test the mined pattern on the test-set, i.e get an estimated response-
rate for the mined pattern on the target-group.

� 10. Apply the data-transformations (pre-processing) done in step 6 to
the target-segment as the mined pattern relies on it.

� 11. Select the best (ordered by the mined reponse-pattern) records
(proportional to 80

� 12. Export the addresses of this selection and do the real mailing.

� 13. Compute a �nal evaluation, and store all the mailing-information
(date, (non-) responses, segment, product, mined pattern, data-transformations,
evaluation, . . .) in the DWH/DWH-meta-data-Repository, such
that it could be used as background knowledge for further actions.
Compared to the standard KDD-process, step 0 corresponds to data
selection, collection integration and cleaning. We will not investigate
that in detail, as this is well investigated in the data warehouse com-
munity, but instead rely on an already build data warehouse (DWH),

Mining Mart IST-1999-11993, Deliverable No. D1.1 28

which is in fact an ideal �rst steps in setting up a KDD process [Inmon,
1996].

When we start the pre-processing phase on top of such a DWH, we are
faced with

� a normalized, multi-relational database as data source (whereas most
existing data mining algorithms are single-table based),

� many features and tables which are only partially relevant for the
current business-case.

� a feature value coding optimized for maintenance (e.g., weekly update)
of the data source, and not for optimal use within a speci�c data
mining tool for a speci�c task.

For our mailing-case this means, that the mapping between DWH data rep-
resentation and the end-users needed to specify a customer segment (step
2) is far from being trivial. So the �rst step (1) is to generate a more
application oriented view on top of the DWH schema. As this is an appli-
cation oriented view, it depends strongly on the business case to solve (e.g.,
for product-development the base-level is not households, but insurance-
contracts). Therefore, it already builds the �rst group of pre-processing
steps to be handled (stored, retrieved and adapted) by our case-base. The
other group is the one described in step 6. Whereas, step 1 does not need
very much adaption for reuse, if we understand by reuse just the applica-
tion of this schema to another target segment, this is not true for step 6,
as the di�erent target segments have very di�erent properties. Therefore
quite di�erent attributes are relevant for predicting the behaviour, e.g., as a
general rule it could be stated that most households addressed by 2.a are not
ensured so far, whereas the previous insurance behaviour is very likely to
be important for predicting the response for segment 2.b. The base opera-
tions of pre-processing cases considered in this application are sampling and
segmentation, feature construction within a table and over related tables,
and feature selection. In this approach feature construction and dropping
of base-features is separated, as features may be needed for more than one
feature construction operation (e.g., the date of birth of a person is needed
to construct the age of the person, the entry-age into a contract and the
end-age of a contract for every contract).

Mining Mart IST-1999-11993, Deliverable No. D1.1 29

5.2 Internet Intrusion Detection dataset

The problem of protecting intranets is a very hot one. Every day hackers
become more dangerous and new attack methods are invented that defeat
the existing protections. Hence it is a di�used feeling that no protection
scheme can be considered as unbreakable. Therefore, a continuous monitor-
ing activity is required by system administrators in order to discover and
neutralize the new attack methods that are invented.

The monitoring activity usually consists in analyzing megabytes of �re-
wall logs, and is very expensive in terms of man power. Data mining and
KDD potentially can o�er a valuable help to system administrators in or-
der to reduce the cost and increase the e�ectivness of the anti intrusion
monitoring activity.

The university intranets are site particularly di�cult to protect because
it is not possible to enforce restrictve protection policies which would neg-
atively a�ect the research activity. For instance the students are strongly
encouraged to use the WEB for bibliographic researches and for other kind of
academic acivities. However the free access to the WEB is potentially very
dangerous because many succesful intrustions occur through WEB pages
supporting CGI which allow a telnet process to be started.

A furter di�culty is due to the presence inside the intranet itself of users
intrinsically untrustable, which can attack the defenses also from the internal
side and may collaborate with attackers from the external side.

5.2.1 Experimental Setup

In order to investigate the possibility of detecting the di�erent forms of at-
tack from inside and from outside the intranet the following experimental
setting has been arranged. A student laboratory provided with 32 worksta-
tions has been connected to Internet and to the research intranet throug a
�rewall SunScreen 3.0 which provided a full set of tool for enforcing protec-
tion both at network level and at application level. The �rewall is provided
with log facilities which allow any relevant event to be recoded. In the
extreme case the full tra�c through the �rewall can be recorded.

As the laboratory is �nalized exclusively to training activity privacy
doesn't need to be guaranteed and so the recorded data can be of freely
used for research purposes. The experimental setup is described in Figure
5.1.

Using such an environment, it is easy to simulate di�erent kinds of attack
using tools available on the network and/or exploiting the cooperation of
some experts. The data are collected both in normal conditions and during
an attack phase. In this case, the data are labeled with the known attack
type.

Mining Mart IST-1999-11993, Deliverable No. D1.1 30

.

.

.

w1

w2

w3

w4

w5

w32

F
i
r
e
w
a
l
l

R
o
u
t
e
r

R
e
s
e
a
r
c
h

I
n
t
r
a
n
e
t

Internet

S
t
u
d
e
n
t

l
a
b
o
r
a
t
o
r
y

Log
Storage

W
o
r
k
s
t
a
t
i
o
n
s

Figure 5.1: Organization of the laboratory used for collecting the datasets
for anti-intrusion monitoring.

5.2.2 Data Structure

Data from the �rewall LOG can be obtained with di�erent degree of detail
depending on the setting. The current choice is to adopt a medium level of
detail as reported in Table 5.1

The attack type is recorded in the �eld "Attk" when a speci�c attack
has been simulated or noticed. The "no" label means "no attack noticed".
In this way, it is possible to group together all packets belonging to a same
attack action in order to characterize the temporal evolution of the attack
itself. The data are recorder in this format in a relational database (ORA-
CLE 8.1i), in order to have an easy interface toward KDD tools used in the
project.

The time �eld report the time in second from the beginning of the record-
ing session. All the records belonging to a same session have the same session
identi�cation number.

Mining Mart IST-1999-11993, Deliverable No. D1.1 31

Table 5.1: Format of the data extracted from the �rewall LOG. Every record
is a summary of the header of the packet arrived on one of the two network
interfaces of the �rewall.

Field Example Description

Session 3 Uniquely identfy the experimental session
Number 236 The record number
Int hme0 Firewall' ethernet interface the packet arrived on
Exitus pass If the packet got a cross the �rwall or not
time 3.14955 The arrival time in seconds
DIP 192.168.69.11 Destination IP number
SIP 212.239.13.31 Source IP number
LEN 1237 The total length of the packet
ID 11770 Packet' ID
TPRT TCP Transport level protocol (TCP/UDP)
D Port 2322 Destination port at TCP/UDP level
S Port 80 Sorce port at TCP/UDP level
Fin no If the packet is the last of a connection or not
Ack 1557829 Packet aknowledgment in Piggy/back
Seq 687346909 Sequence number in a TCP stream (empty for UDP)
Len 1197 Lenght of the TCP/UDP packet
Win 7584 Available bu�er size in the receiver (TCP only)
ALP WWW Application Level Protocol (WWW, FTP, ...)
VER HTTP/1.0 Version of the protocol
Dir R Receiving or calling
Attk no Attack type (no means no attack)

Mining Mart IST-1999-11993, Deliverable No. D1.1 32

5.3 Fraud detection in mobile phones

The reduction of frauds is a potential challenge to telecommunications providers.
Nowadays technology supplies several Fraud Management Systems (FMS)
that allow fraudulent behaviors to be identi�ed. A FMS performs a �ltering
of a high number of TICKET (Call Data Record, E-Transaction, Logs from
servers and �rewall over Internet, etc.) in the way that alarms are pro-
duced when strange behaviors (i.e. possible frauds/attacks) are detected.
A perfect FMS should produce an alarm when a real fraud/attack occurs.
Unfortunately, this is practically unfeasible because of the intrinsic nature
of the problem to be faced, namely understanding, thus isolating, frauder
behaviors. Today, alarms could also signal usual customers, as frauder be-
haviors are not accurately identi�ed, thus resulting in a reduction of the
overall performance of a fraud department at a telecommunication provider.
The complexity of frauds require the design of highly adaptable detection
systems of whom data �ltering policy should be adjusted according to new
customer behaviors. The identi�cation of proper policy takes advantage of
the analysis performed using previous known cases. The analysis takes ad-
vantage of OLAP and Data Mining tools with the goal of learning predictive
fraud models, thus building antifraud strategies. The experience has demon-
strated how intelligent TICKET �ltering is a di�cult task. As a matter of
the fact, not useful alarms often
ood the entire detection systems with the
unpleasant consequence of possible overloads and shutdowns; hence algo-
rithms that allow orienting the de�nition of narrow as selective as criteria
is welcomed.

5.3.1 A fraud detection system architecture

Figure 5.2 shows detection system multi-layer architecture. A TICKET
stream is furnished to a straightforward �lter battery that rejects a certain
amount of TICKET (presumably the most), and supplies to a second more
sophisticated rule-based rule battery its result. The latter perform a deeper
TICKET analysis, thus provides to the system administration a collection of
signals about possible frauds. The multi-layer structure is mainly motivated
by the troughtput the stream analysis requires: huge amounts of TICKETS
daily have to be manipulated and usually a small amount of them could
give problems. Hence, a �rst reject mechanisms that discard the most of the
data, allows alleviating the computational load of the most sophisticated
part of the detection system.

5.3.2 Decision Support System and Fraud Detection

The number of TICKET a Telecommunication Operator has to tackle is in-
credible large. Usually, million of customer exploit the services it o�ers, thus

Mining Mart IST-1999-11993, Deliverable No. D1.1 33

Figure 5.2: Fraud detection system architecture

also the dimension of the database (DataWarehouse/DataMart) containing
customer information are considerable. If each customer makes 3 call/day
and there are 3 million of customers for a certain phone service, 9 million of
TICKET/day (Firewall Log analysis presents analogous problems) will be
generated, and analyzed.

With the goal of ameliorating the performance of the fraud detection sys-
tem, its selection capabilities, and adapt its behavior to the dynamic of the
TICKET generation, it is often necessary to perform o�-line mining analy-
sis over historical TICKET properly memorized. Actually, monitoring and
detection systems are di�cult to control. If the supervisor does not select
narrow �ltering policy, the entire antifraud infrastructure will be
ooded by
alarms that could not be properly handled. Overload occurs and possible
shutdowns could also be required.

OLAP and Data Mining are exploited as decision support mechanisms
both to understand how the detection system performs and eventually which
kinds of changes are required to ameliorate its behaviors. This analysis ex-
ploit TICKET tables, information about customers, and the signals pro-
duced by the monitoring and detection systems in a given time window (e.g.
a few months). A DDS is exploited to analyses these data. This framework
contains Federated Data Mart as shown in Figure 5.3. Three modules are
included the decision support system:

� Loading module that acquires the data from OLTP environments and
load the proper Federated DM and tables for the analysis; the load
procedure is mainly characterized by data normalization, cleaning and
trans-formation operations;

� OLAP tools that allow generating special indexes, increasing the query

Mining Mart IST-1999-11993, Deliverable No. D1.1 34

Figure 5.3: Data analysis framework.

e�ciency, augmenting the parallelism.

� OLAP and Data Mining tools that permit multi-dimensional analysis,
query and reporting capability, and mining.

In the DSS described in Figure 5.3, the result produced by the detec-
tion system is stored into a simple table. In fact, it could also by inserted
into a DM, for instance when new detection needs are required as typical
in the contest of telecommunication services. The Federated Data Mart ap-
proach is particularly adapted for this purpose. A DM is characterized by a
collection of homogeneous information and small dimensions. This feature
alleviates and speeds up the analysis, and allows partitioning a huge DW o�
into a set of smaller DM. In general, these small DM can be also replaced,
created or destroyed during the life cycle of the entire framework. The clas-
sical "star schema", shown in Figure 5.4, has been used to implement the
DM included in the DDS: a fact table and a collection of dimension tables
are implemented as storage support. The fact table contains detailed nu-
merical information whereas the dimension tables contain data about time,
geographical area, costs, rate, etc.

Mining Mart IST-1999-11993, Deliverable No. D1.1 35

Figure 5.4: Data Mart snow
ake structure.

5.4 TICKET DM: a case study

5.4.1 Internal structure

The fact table of the TICKET DM (see Figure 5.5) holds the TICKET
sequence generated by the customers of a telecommunication service. Let
consider a CDR
ow, the TICKET will contain the following attributes:

� Caller

� Call data/time

� Call length

� Call cost

� Callee

� Direction.

The dimension tables are:

� Subscription contains customer information;

� Call type: identi�es the call type, i.e. national call, call origin/destination
roaming call, follow me, (there are 5 possible classes);

� Time: maintains the date/time of the call, it is structured with the
hierarchy shown in Figure 5.6

Mining Mart IST-1999-11993, Deliverable No. D1.1 36

Figure 5.5: Internal structure

� Direction: contain information about the network used by the callee
(telephone, cellular, international, special number, etc.); there are
about 260 classes, namely one for any country code plus other dedi-
cated classes; the direction posses a hierarchy the usually depend upon
the network of the callee:

{ for the national network, the hierarchy is region, province, dis-
trict;

{ for international network, the hierarchy is group of nation, nation;

{ for mobile network, the hierarchy is operator, network type, sub-
scription type.

� Area: indicates the caller position in the case of mobile network (there
are 15000 di�erent classes) The hierarchy depends upon the caller po-
sition: * if the caller is within the country border, the complete hier-
archy of all network plants that support the connection, is available;
* if the caller is abroad, the hierarchy is group of nation, nation.

� Length: associated to each call there is its e�ective call length and a
length class (20 level)

� Cost: associate with each call there is its e�ective cost and a cost class
(20 level)

Mining Mart IST-1999-11993, Deliverable No. D1.1 37

Figure 5.6: Time and date hierarchy.

5.4.2 Loading procedure

Because of the reduced number of OLTP environments employed the prob-
lems related to the data format are in general irrelevant. The practical
experience demonstrates how �led with the same label but di�erent value,
or �eld with di�erent label but same value are not present. The loading
performs the following actions:

� Normalization of the phone numbers in order to distinguish interna-
tional, national, and number identi�ers;

� Data input �ltering;

� Cost computation for each call;

� Computation of derivative information;

� Computation of synthetic dada;

� Discretization of cost and length of each call

� Creation/valorization of the surrogate keys both to increase the e�-
ciency and to allow the versioning.

The loading procedure can take advantage of metadata describing each ac-
tion in term of operation to be performed and logs structures (the action
execution is usually monitored for debugging and postmortem analysis).

Mining Mart IST-1999-11993, Deliverable No. D1.1 38

5.5 Predictive modelling

This section describes the mining process exploited to de�ne a predictive
model of the customer behaviors of a telecommunication service. The mod-
eling process receives as input:

1. a TICKET table (Call Data Records, E-Transactions, Server/Firewall
Logs, etc.);

2. enciphered administrative information about customers;

3. a table that contains information about the signals produced by the
fraud detection system enriched with the attribute "fraud" (yes/no)
that con�rms/negates the trustworthiness of each alarm; the �eld
"fraud" is �lled by the supervisors that veri�ed the each signal.

The following steps de�ne the mining process.

1. Data extraction

� TICKET extraction - the TICKET with the proper time window
correlated to the signals are extracted from the TICKET table,
the result is:

< callI(= customerk) > : : : < attrI;j > : : : (5.1)

< attrI;M > withj 2 [1::M]

� enciphered administrative information extraction - the enciphered
administrative information related to the signals are extracted
from the customers' DM, the result is:

< customerk >;< attrk;l > : : : < attrk;j > : : : (5.2)

< attrk;N > withj 2 [1::N]

2. data manipulation

� signal manipulation - as the detection system might produce for
each customer (possible frauder) more signals, a merging operator
is applied to obtain one signal for each customer, the result is

< customerk >;< fraudk;l 2 [yes; no] > : : : (5.3)

< attributek;j > : : : < attributek;N > withj 2 [1::N]

Mining Mart IST-1999-11993, Deliverable No. D1.1 39

where < customer >< fraud > relation is biunivoca; the �led
< fraud > might also be �lled with a fuzzy value in the interval
[0::1], i.e. the ratio between true vs. false signal associated to
that customer in that time window;

� data manipulation about TICKET and/or customer information
(contract initial time, data and time, etc.);

� variable construction (usually obtained by store-procedures) -
consider this general example, let the k-th attribute in (5.1) o
in (5.2) is an ordinal or categorical value, for each value it can
assume and for each customer we make the table:

< customerI >;< valueKI;l >; : : : < valuekI;j >; : : : < valuekI;A >

(5.4)

where A is the arity of the k-th attribute, < valuekI;j > is a
function of the other attributes computed with the value they
assume for < customerI >. In general, it is interesting evaluate
di�erent attribute over di�erent function for each customer.

3. Visualization and interactive analysis

� the use of synoptically views about statistical distributions and
data correlation allow the analyst explore his/her data in order
to understand the phenomena is characterizing;

4. Variable selection

� classical algorithm are exploited here;

5. Strati�ed sampling

� with binary target (fraud yes/no);

� with typical/atypical case.

6. Pro�t/loss matrix

� as the number of frauder is small a pro�t/loss matrix is exploited
to properly drive the modeling algorithm in the way that it might
emphasize the frauder behavior;

7. Predictive model construction by decision tree mechanisms (C4.5)

� a decision tree has been chosen because self explicate, and easy
to translate into detection rules; a certain number of models are
built with di�erent input data and/or di�erent parameter set-
tings.

Mining Mart IST-1999-11993, Deliverable No. D1.1 40

8. Model evaluation

� the obtained models are compared with standard techniques (Lift,
ROC);

� the best model obtained within a certain deadline is adopted

� bagging & boosting techniques are also exploited.

5.6 Minor tips

The hierarchies and the discretization implemented have been carried out
because of speci�c OLAP requirements, whereas data mining needs have not
been taken into account. This choice is mainly motivated by the concrete
di�culty of isolate, in this project phase, useful but not restrictive data min-
ing requirements. The data extraction and transformation are carried out
with both data mining tools (SAS/EM) or PL/SQL store procedure (Ora-
cle). In the latter case, the tickets associated to a single user are properly
manipulated (see variable construction in the previous section). Preprocess-
ing often exploit discretization operators as a mean of reduce the number of
possible value and create synthetic classes.

5.7 Intensive care

Records of patients in an intensive care unit have been collected. They
o�er raw data. The length of the time series is not determined once for all
patients, but denotes the length of the patent's stay in the intensive care
unit. Hence, the database table is organised as consecutive parts of the time
series.

LEDB2 tuples for time points: The database does not stores all measure-
ments of one individual in one row, but only the measurements at one
point in time: I : TA1 : : :Ak. There are several rows for one indi-
vidual. The number of measurements needs not be equal for di�erent
individuals.

i1 : t1a11 : : :a1k : : : i1 : tiai1 : : : aik

. . .

iz : tlal1 : : : alk

We explored a variety of learning tasks within this application. The learning
when and how to change the dosage of drugs is { with respect to prepocessing
and learning { similar to the shop example, but we had to combine di�erent
rows of the table �rst.

Mining Mart IST-1999-11993, Deliverable No. D1.1 41

Chaining database rows: Select all rows concerning the same individual
and group its attributes by the time points. Output a vector of the
length of the time series of this individual. The result is a multivariate
time series.

We used the SVM, now in the classi�cation mode [17]. We experimented
with many di�erent features that were formed by sliding windows and dif-
ferent summarization methods. However, the past did not contribute to
learning the decision rule. Hence, we learned from patients' state at ti
whether and how to intervene at ti+1[29]. Therefore, in the end we could
use the original data. The real di�erence to the shop application is that the
decision rule is learned from a large training set of di�erent patients and
then applied to previously unseen patients and their states.

For a di�erent learning task in the intensive care application, a method
for time series analysis was applied. The learning task was to �nd outliers
and detect level changes. A new statistical method was used [6]. It trans-
forms measurements of one vital sign of the patient such that the length
of the window is interpreted as dimensions of Euclidian space. Choosing
w = 2, the measurements of two consecutive time points are depicted as one
point in a two-dimensional coordinate system. It turns out, that outliers
leave the ellipse of homogeneous measurements, and a level change can be
seen as a new ellipse in another region of the space. The method is a special
case of sliding windows.

In the intensive care application, current work now uses the detected level
changes as input to a relational learning algorithm. This allows to combine
various time series and detect dependencies among parameters, deviations
from a stable (healthy) state, and therapeutical interventions. The learning
task is to �nd time relations that express therapy protocols, in other words
e�ective sequences of interventions.

Bibliography

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules be-
tween sets of items in large databases. In Proceedings of the ACM SIG-
MOD Conference on Management of Data, Washington, D. C., may
1993.

[2] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivo-
nen, and A. Inkeri Verkamo. Fast discovery of association rules. In
Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and
Ramasamy Uthurusamy, editors, Advances in Knowledge Discovery and
Data Mining, chapter 12, pages 307{328. AAAI Press/The MIT Press,
Cambridge Massachusetts, London England, 1996.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns.
In International Conference on Data Engineering, Taipei, Taiwan, mar
1995.

[4] J. F. Allen. Towards a general theory of action and time. Arti�cial
Intelligence, 23:123{154, 1984.

[5] James F. Allen. Maintaining knowledge about temporal intervals. In
R. J. Brachman and H. J. Levesque, editors, Readings in Knowledge
Representation, chapter VII, pages 509{523. Morgan Kaufman, Los Al-
tos, CA, 1985.

[6] M. Bauer, U. Gather, and M. Imho�. Analysis of high dimensional
data from intensive care medicine. Technical Report 13/1998, Sonder-
forschungsbereich 475, Universit"at Dortmund, 1998.

[7] Francesco Bergadano and Daniele Gunetti. Inductive logic program-
ming:from machine learning to software engineering. The MIT Press,
Cambridge, Mass., 1996.

[8] Pvael Brazdil. Data transformation and model selection by experimen-
tation and meta-learning. In C.Giraud-Carrier and M. Hilario, editors,
Workshop Notes { Upgrading Learning to the Meta-Level: Model Selec-
tion and Data Transformation, number CSR-98-02 in Technical Report,
pages 11{17. Technical University Chemnitz, April 1998.

42

Mining Mart IST-1999-11993, Deliverable No. D1.1 43

[9] Gautam Das, King-Ip Lin, Heikki Mannila, Gopal Renganathan, and
Padhraic Smyth. Rule Discovery from Time Series. In Rakesh Agrawal,
Paul E. Stolorz, and Gregory Piatetsky-Shapiro, editors, Proceedings of
the Fourth International Conference on Knowledge Discovery and Data
Mining (KDD-98), pages 16 { 22, Ney York City, 1998. AAAI Press.

[10] Luc Dehaspe and Hannu Toivonen. Discovery of Frequent DATALOG
Patterns. Data Mining and Knowledge Discovery, 3(1):7 { 36, 1999.

[11] Luc DeRaedt. Interactive Theory Revision: an Inductive Logic Pro-
gramming Approach. Acad. Press, London [u.a.], 1992.

[12] G. Dong and S. Ginsburg. On the decomposition of chain datalog
programs into p (left-)linear l-rule components. Logic Programming,
23:203 { 236, 1995.

[13] Robert Engels. Planning tasks for knowledge discovery in databases;
performing task{oriented user{guidance. In Proc. of th 2nd Int. Conf.
on Knowledge Discovery in Databases, aug 1996.

[14] Robert Engels, Guido Lindner, and Rudi Studer. A guided tour through
the data mining jungle. In Proceedings of the 3nd International Confer-
ence on Knowledge Discovery in Databases (KDD-97), August 14{17
1997.

[15] Gerald Gazdar and Chris Mellish. Natural Language Processing in
PROLOG. Addison Wesley, Workingham u.a., 1989.

[16] Valery Guralnik and Jaideep Srivastava. Event detection from time
series data. In Proceedings of the �fth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 33 { 42, San
Diego, USA, 1999.

[17] T. Joachims. Making large-scale SVM learning practical. In
B. Sch�olkopf, C. Burges, and A. Smola, editors, Advances in Kernel
Methods - Support Vector Learning, chapter 11. MIT-Press, 1999.

[18] J.-U. Kietz and S. Wrobel. Controlling the complexity of learning in
logic through syntactic and task{oriented models. In Stephen Muggleton,
editor, Inductive Logic Programming., number 38 in The A.P.I.C. Series,
chapter 16, pages 335{360. Academic Press, London [u.a.], 1992.

[19] J�org-Uwe Kietz and Marcus L�ubbe. An e�cient subsumption algorithm
for inductive logic programming. In W. Cohen and H. Hirsh, editors,
Proceedings of the 11th International Conference on Machine Learning
IML{94, San Francisco, CA, 1994. Morgan Kaufmann.

Mining Mart IST-1999-11993, Deliverable No. D1.1 44

[20] Volker Klingspor. Reaktives Planen mit gelernten Begri�en. PhD thesis,
Univ. Dortmund, 1998.

[21] Volker Klingspor and Katharina Morik. Learning understandable con-
cepts for robot navigation. In K. Morik, V. Klingspor, and M. Kaiser,
editors,Making Robots Smarter { Combining Sensing and Action through
Robot Learning. Kluwer, 1999.

[22] S. Kramer, B. Pfahringer, and C. Helma. Stochastic propositional-
ization of non-determinate background knowledge. In D. Page, edi-
tor, Procs. 8th International Workshop on Inductive Logic Programming,
pages 80 { 94. Springer, 1998.

[23] Nada Lavra�c and Sa�so D�zeroski. Inductive Logic Programming | Tech-
niques and Applications. Number 148 in Arti�cial Intelligence. Ellis Hor-
wood, Hertfortshire, 1994.

[24] H. Liu and H. Motoda. Feature Extraction, Construction, and Selection:
A Data Mining Perspective. Kluwer, 1998.

[25] R.S. Michalski and T.G. Dietterich. Learning to predict sequences. In
R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine
Learning - An Arti�cial Intelligence Approach Vol II, pages 63{106.
Tioga Publishing Company, Los Altos, 1986.

[26] Ryszard Michalski. Inferential learning theory as a basis for multistrat-
egy task-adaptive learning. In Michalski and Tecuci, editors, Multistrat-
egy Learning. George Mason University, USA, 1991.

[27] D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine Learning,
Neural and Statistical Classi�cation. Ellis Horwood, New York u.a., 1994.

[28] Katharina Morik. Tailoring representations to di�erent requirements.
In Osamu Watanabe and Takashi Yokomori, editors, Algorithmic Learn-
ing Theory { Procs. 10th Int. Conf. ALT99, Lecture Notes in Arti�cial
Intelligence, pages 1 { 12. Springer, 1999.

[29] Katharina Morik, Peter Brockhausen, and Thorsten Joachims. Com-
bining statistical learning with a knowledge-based approach { A case
study in intensive care monitoring. In Proc. 16th Int'l Conf. on Machine
Learning (ICML-99), Bled, Slowenien, 1999.

[30] Katharina Morik and Stephanie Wessel. Incremental signal to symbol
processing. In K.Morik, M. Kaiser, and V. Klingspor, editors, Making
Robots Smarter { Combining Sensing and Action through Robot Learn-
ing, chapter 11, pages 185 {198. Kluwer Academic Publ., 1999.

Mining Mart IST-1999-11993, Deliverable No. D1.1 45

[31] S. Muggleton, A. Srinivasan, R. King, and M. Sternberg. Biochemical
knowledge discovery using inductive logic programming. In Hiroshi Mo-
toda, editor, Procs. First International Conference on Discovery Science.
Springer, 1998.

[32] Dorian Pyle. Data Preparation for Data Mining. Morgan Kaufmann
Publishers, 1999.

[33] Anke D. Rieger. Program Optimization for Temporal Reasoning within
a Logic Programming Framework. PhD thesis, Universit�at Dortmund,
Germany, Dortmund, FRG, 1998.

[34] D. Sleeman, R. Oehlman, and R. Davidge. Speci�cation of Consultant{
0 and a Comparision of Several Learning Algorithms. Deliverable D5.1,
Esprit Project P2154, 1989.

[35] Devika Subramanian. A theory of justi�ed reformulations. In D. Ben-
jamin, Paul, editor, Change of Representation and Inductive Bias, pages
147{167. Kluwer, 1990.

[36] C. Theusinger and G. Lindner. Benutzerunterst�utzung eines KDD-
Prozesses anhand von Datencharackteristiken. In F. Wysotzki, P. Geibel,
and K. Sch�adler, editors, Beitr�age zum Tre�en der GI-Fachgruppe 1.1.3
Machinelles Lernen (FGML-98), volume 98/11 of Technical Report.
Technical University Berlin, 1998.

[37] Vladimir N. Vapnik. The Nature of Statistical Learning Theory.
Springer, New York, 1995.

[38] D.H. Wolpert and W.G. Macready. No free lunch theorems for search.
Technical Report SFI-TR-95-02-010, Santa F�e Institute, Santa F�e, CA.,
1995.

[39] Stefan Wrobel. Concept Formation and Knowledge Revision. Kluwer
Academic Publishers, Dordrecht, 1994.

[40] Wei Zhang. A region-based approach to discovering temporal structures
in data. In Ivan Bratko and Saso Dzeroski, editors, Proc. of 16th Int.
Conf. on Machine Learning, pages 484 { 492. Morgan Kaufmann, 1999.

[41] U.M. Fayyad. Data Mining and Knowledge Discovery: Making Sense
out of Data. IEEE Expert, 11(5):20{25, 1996. October 1996.

[42] G.H. John, R. Kohavi, and K. P
eger. Irrelevant features and the
subset selection problem. In Proceedings of the Eleventh International
Conference on Machine Learning, volume MLC-94, pages 121{129, New
Brunswick, NJ, 1994. Morgan Kaufman.

Mining Mart IST-1999-11993, Deliverable No. D1.1 46

[43] R. Kohavi and D. Sommer�eld. Features subset selection using the
wrapper method: Over�tting and dynamic search space topology. In
Proceedings of the First International Conference on Knowlede Discovery
and Data Mining, pages 192{197, Montreal, Quebec, 1995. AAAI Press.

[44] W. H. Inmon. The data warehouse and data mining. Communications
of the ACM, 39(11):49{50, November 1996.

[45] M. Staudt, J.-U. Kietz, und U. Reimer. A data mining support en-
vironment and its application on insurance data. In R. Agrawal und
P. Stolorz, editors, Proceedings of the Fourth International Conference
on Knowledge Discovery and Data Mining, pages 105{111. AAAI Press,
1998.

