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ABSTRACT
Subgroup discovery is a learning task that aims at find-
ing interesting rules from classified examples. The search
is guided by a utility function, trading off the coverage of
rules against their statistical unusualness. One shortcoming
of existing approaches is that they do not incorporate prior
knowledge. To this end a novel generic sampling strategy is
proposed. It allows to turn pattern mining into an iterative
process. In each iteration the focus of subgroup discovery
lies on those patterns that are unexpected with respect to
prior knowledge and previously discovered patterns. The re-
sult of this technique is a small diverse set of understandable
rules that characterise a specified property of interest. As
another contribution this article derives a simple connection
between subgroup discovery and classifier induction. For a
popular utility function this connection allows to apply any
standard rule induction algorithm to the task of subgroup
discovery after a step of stratified resampling. The proposed
techniques are empirically compared to state of the art sub-
group discovery algorithms.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining;
I.2.6 [Learning]: Induction

General Terms
Algorithms, Performance

Keywords
subgroup discovery, sampling, prior knowledge

1. INTRODUCTION
The discipline of Knowledge Discovery in Databases is

about finding useful and novel patterns, hidden in huge
amounts of real-world data. Common problems are that
the applied Data Mining techniques either find an unman-
ageable number of patterns, e.g. frequent itemsets, or that
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they are limited to finding “obvious” patterns only, which
are already known to domain experts.

This work presents an approach towards mining interest-
ing patterns sequentially. The most obvious patterns may
either be elicited from domain experts beforehand, or they
may be the result of a first application of Data Mining tools.
The main question that arises in an iterative Data Mining
framework is how to pre-process the data, so that subse-
quent steps do not report previously found patterns again,
but focus on uncorrelated new patterns.

The interestingness of patterns is a crucial notion when
formalising this task. A basic assumption underlying this
work is that patterns are interesting to the degree to which
they deviate from the user’s expectation. Hence, a straight-
forward heuristic for rule interestingness is the degree of
deviation from the user’s specified domain knowledge and
from previously found patterns.

For simplicity this work confines itself to probabilistic
rules as the representation language. The main ideas from
the literature on subgroup discovery are adopted, but ex-
tended to respecting prior knowledge. In subgroup discovery
the interestingness of rules is evaluated by a utility function.
This function can be regarded as a user specified parame-
ter of the learning task. The goal of subgroup discovery is
to identify subsets of the population that show an unusu-
ally high frequency of a specified property of interest. The
task of characterising groups of car drivers with an unusu-
ally high risk of accidents is considered as an intuitive toy
example. Assuming that the default probability, computed
from all registered drivers, is about 1% per year, sufficiently
large subgroups having a risk of 5% might be interesting.
This illustrates a major difference to classification, where
rules are only useful if they predict the most probable class.

In this work subgroups are identified with their corre-
sponding population in the database at hand, rather than
with their syntactical descriptions. This makes a difference,
since many databases allow to identify the same or similar
populations using correlated attributes, but these correla-
tions are often not subject to the Data Mining step. For
instance the subgroup of young drivers is almost identical
to the subgroup of people that recently acquired their driv-
ing license. If the former subgroup is known to have a high
risk of accidents then the same is expected for the latter.
Hence, there is no need to report both rules.

The presented iterative Data Mining procedure will iden-
tify a new subgroup in each iteration, favouring subgroups
that are new with respect to formalised prior knowledge and
all previously found patterns.



The remainder of this paper is organised as follows: Af-
ter the formal framework and basic definitions are given in
section 2, existing work on subgroup discovery is described
in section 3. As the main contribution a generic sampling
technique to incorporate prior knowledge into subgroup dis-
covery is presented in section 4. An algorithm operational-
ising this idea is presented in section 5, which is empirically
evaluated in section 6. Section 7 concludes the paper.

2. BACKGROUND
Two different learning tasks are subject to this paper,

subgroup discovery and classifier induction. Both tasks are
supervised, so the learning step is based on a classified sam-
ple. Examples are defined as classified elements of an in-
stance space X, assumed to be sampled i.i.d with respect to
a distribution D : X → IR+. To simplify formal aspects X
is assumed to be finite, although all results are easily gen-
eralised to continuous domains. The probability to observe
an instance x ∈ X under D is denoted as Prx∼D(x). The
probability to observe an instance from a subset W ⊆ X is
denoted as PrD [W ]. If the underlying distribution is clear
from the context the subscripts are omitted. Each example
is assigned a label from Y, the set of all possible labels by
the target function C : X → Y. This work considers only
supervised learning, unless noted otherwise with a boolean
target attribute Y = {0, 1}. C is assumed to be fixed but
unknown to the learner, whose task is to find a good approx-
imation. For subgroup discovery, the main learning task in
this work, Horn logic rules are the main representation lan-
guage for patterns.

Definition 1. A Horn logic rule consists of a body A, which
is a conjunction of atoms over attributes describing X, and
a head B, predicting a value for the target attribute. It is
notated as A→ B. If the body evaluates to true the rule is
said to be applicable, if the head also evaluates to true it is
called correct.

The focus of this work lies on propositional logic, so the bod-
ies of rules are conjunctions of attribute-value pairs. Rules
can be identified with the subset they apply for, defined by
an indicator function h : X→ {0, 1}, and the label they pre-
dict. To ease notation the following abbreviations are used
whenever Y = {0, 1}:

h := {x ∈ X | h(x) = 1} , h := X \ h

Y+ := {x ∈ X | C(x) = 1} , Y− := X \ Y+

Using this notation, the Horn logic rules predicting a boolean
target are of the form h → Y+ and h → Y−. The former
rule states that the target class is positive (Y+) if the rule
is applicable (h), the latter that it is negative in this case.

As illustrated by the example of road accidents, rules are
not expected to match the data exactly. It is sufficient if
they point to interesting regularities in the data, for exam-
ple that the subgroup of young drivers faces an unusually
high risk of accidents. Hence, the intended semantics is
that the conditional probability Pr(Y+|h) (or Pr(Y−|h)) is
higher than the class prior P (Y+) (or P (Y−)). Probabilistic
rules are often annotated by their corresponding conditional
probabilities:

h→ Y+ [5%] :⇔ Prx∼D [C(x) = 1 | h(x) = 1] = 5%

For now any form of prior knowledge is assumed to be rep-
resented by rules of this form. Subsection 4.3 extends the

presented techniques to more general forms of prior knowl-
edge.

Performance metrics are functions that heuristically as-
sign a utility score to each rule under consideration. For the
notion of rule interestingness different formalisations have
been proposed in the literature (e.g. [24]). In this work in-
terestingness is considered equal to unexpectedness. The
following paragraphs discuss a few of the most important
metrics for rule selection.

The goal when training classifiers is to select a predictive
model that separates positive and negative examples accu-
rately.

Definition 2. The accuracy of rule A→ B is defined as

Acc(A→ B) := Pr [A ∩B] + Pr
ˆ
A ∩B

˜
Definition 3. The precision of a rule is defined as its prob-

ability of being correct, given that it is applicable:

Prec(A→ B) := Pr [B | A]

Subgroup discovery has a different focus. Rules are inter-
esting only, if for the covered subset the target attribute’s
distribution deviates from the default distribution.

Definition 4. The Bias of a rule is the difference between
conditional and default probability (prior) of the target:

Bias(A→ B) := Pr [B | A]− Pr [B]

The following metric has been used to measure interest in
the domain of frequent itemset mining [3]. In the supervised
context it measures the change in the target attribute’s fre-
quency for the subset covered by a rule.

Definition 5. For any rule A→ B the Lift is defined as

Lift(A→ B) :=
Pr [A ∩B]

Pr [A] Pr [B]
=

Pr [B | A]

Pr [B]

=
Prec(A→ B)

Pr [B]

The Lift is the multiplicative counterpart to the Bias, and
is often more convenient in the scope of this work. Both
metrics capture the value of “knowing” the prediction for
estimating the probability of the target attribute. For in-
dependent events A and B we have Lift(A → B) = 1 and
Bias(A→ B) = 0, for positively correlated events A and B
we have Lift(A → B) > 1 and Bias(A → B) > 0. In the
latter case the conditional probability of B given A is higher
than the default probability Pr [B].

If h characterises the subgroup of young drivers, Y+ de-
notes the event of having an accident, and if Pr [Y+] = 1%
is the default probability of this event, then the above rule
h → Y+ [5%] has a Bias of 4%, which is the absolute dif-
ference between conditional and default probability, and a
Lift of 5, reflecting the increase in terms of a relative factor.

Knowing the Lift of rules allows to combine them in a
simple way to predict the conditional probability of a tar-
get class. If a new attribute is defined according to the
prediction of each rule, then predictions can be combined
by means of classifier induction techniques. The underly-
ing assumption of Näıve Bayes [11] is that all attributes are
conditionally independent given the class. These classifiers
work surprisingly well in practice, often even if the under-
lying assumption is known to be violated. When mining



rules iteratively, using the sampling technique proposed in
section 4, the conditional independence assumption is not
as unrealistic as one might expect. The reason is that all
correlations “reported” by previously found patterns are “re-
moved” from subsequently constructed samples.

Let {hi → Y+/− | 1 ≤ i ≤ n} denote a set of rules,
〈h1, . . . , hn〉(x) the corresponding vector ŷ = 〈ŷ1, . . . , ŷn〉,
ŷ ∈ Yn, of predictions. Then for a given example x ∈ X
and class Yc the Näıve Bayes classifier estimates

Pr [Yc | 〈h1, . . . hn〉(x) = ŷ]

=
Pr [Yc]

Pr [〈h1, . . . hn〉(x) = ŷ]
· Pr [〈h1, . . . hn〉(x) = ŷ | Yc]

≈ Pr [Yc]

Pr [〈h1, . . . , hn〉(x) = ŷ]
·

Y
1≤i≤n

Pr [hi(x) = ŷi | Yc]

=
Pr [Yc] ·

Q
i Pr [hi(x) = ŷi]

Pr [〈h1, . . . , hn〉(x) = ŷ]

Y
1≤i≤n

Pr [Yc | hi(x) = ŷi]

Pr [Yc]

Defining

α(x) :=

Q
1≤i≤n Pr [hi(x) = ŷi]

Pr [〈h1, . . . , hn〉(x) = ŷ]

allows to rewrite this term to

α(x) · Pr [Yc] ·
Y

1≤i≤n

Lift((hi(x) = ŷi)→ Yc).

For boolean Y it is easier to consider the odds

β(x) :=
Pr [Y+ | 〈h1, . . . , hn〉(x) = ŷ]

Pr [Y− | 〈h1, . . . , hn〉(x) = ŷ]

=
Pr [Y+]

Pr [Y−]

Y
1≤i≤n

Lift((hi(x) = ŷi)→ Y+)

Lift((hi(x) = ŷi)→ Y−)
, (1)

as α(x) cancels out, but it is still possible to recalculate

Pr [Y+ | 〈h1, . . . , hn〉 = ŷ] =
β(x)

1 + β(x)
(2)

based on eqn. (1). So following the conditional indepen-
dence assumption it is possible to combine rules to predict
class probabilities, just knowing their Lift and the class pri-
ors. Eqn. (1) has an intuitive interpretation. The first fac-
tor reflects the positive-negative ratio, which is 1/99 for the
prior Pr [Y+] = 1%. The Lift-ratios specify how to update
these positive-negative ratios in relative terms, if it is known
whether a specific rule is applicable or not. If the driver un-
der consideration is young, then there is a known factor as-
sociated to the corresponding rule, which allows to update
the previously computed ratio, increasing it from 1/99 to
5/95. The same holds for further, subsequently discovered
rules, each of which may be annotated by an empirically
estimated Lift-ratio.

It is not necessary to restrict rules to the case in which
they are applicable. Please note that

Lift(h→ Y+) > 1 ⇒ Lift(h→ Y−) > 1,

but the precisions of both rules may differ. This is easily
seen considering an example. If, compared to the average
driver, young drivers have a higher risk of accidents, then the
average risk of the remaining drivers has to be lower, since
removing a subgroup with higher risk always decreases the
overall risk. So each rule (h→ Y+/−) should rather be con-

sidered to partition the instance space into h and h, making

a prediction for both subsets. As a consequence any two
rules overlap. Thus, for any known degree of overlap be-
tween a rule R1 that is part of the prior knowledge and a
rule candidate R2 under consideration, there is an expec-
tation for Lift(R1) based on Lift(R2). This expectation
reflects the assumption that R2 does not introduce a Lift of
its own, but simply shares a biased subset with R1. If this
assumption is met, then the rule candidate is redundant and
should be ranked low. The Lift of a rule should change in
the presence of prior knowledge. A corresponding technique
is introduced in section 4.

3. SUBGROUP DISCOVERY
Subgroup discovery aims at finding interesting subsets of

the instance space that deviate from the overall distribution.
Different search strategies led to several algorithms, which
are briefly described in subsection 3.1. In all cases the search
is guided by a utility function, a specific type of rule selection
metric, which can be regarded as a parameter of the learning
task itself. Choosing this function carefully allows to direct
the search towards different kinds of interesting rules, e.g.
rules having a lower bias but a higher coverage compared to
those found via standard classifier induction. For a specific
utility function some recently proposed subgroup discovery
algorithms are limited to, there is a simple way to transform
the corresponding formal Data Mining problem into a clas-
sifier induction problem. This transformation is presented
in subsection 4.4 and it will be used later on to evaluate
the proposed techniques empirically. The benefits of incor-
porating prior knowledge into subgroup discovery and some
existing approaches are discussed in subsection 3.2, before
the generic knowledge-based sampling approach is presented
in section 4.

3.1 Existing Approaches
The common goal of all subgroup discovery strategies is to

find interesting and novel patterns in datasets. To this end
utility functions are used that formalise a trade-off between
the size of the subgroup and its unusualness in terms of
a target attribute’s observed frequency. Each subgroup is
represented by a Horn logic rule. A popular utility function
is the weighted relative accuracy [13]. It is used for subgroup
discovery since EXPLORA [12], and it is the default utility
function of MIDOS [27].

Definition 6. The weighted relative accuracy (WRAcc)
of a rule A→ B multiplies coverage (Pr [A]) with bias:

WRAcc(A→ B) := Pr [A] ·Bias(A→ B)

Several other functions have been suggested in the litera-
ture [12], basically putting more emphasis on either coverage
or bias. This work only makes use of the commonly used
WRAcc metric for mainly two reasons. First of all it allows
the underlying formal Data Mining problem to be tackled
with approved rule induction algorithms (subsection 4.4),
which simplifies the evaluation in practice. The second rea-
son is that it is sufficient to compare the presented approach
to the reweighting schemes that have recently been proposed
in the scope of subgroup discovery [14].

There are two different strategies of searching for interest-
ing rules: exhaustive and heuristic search. EXPLORA [12]
and MIDOS [27] tackle subgroup discovery by exhaustively
evaluating the set of rule candidates. The set of rules are



ordered by generality, which allows to prune large parts of
the search space. The advantage of this strategy is that it
allows to find the n best subgroups reliably. Finding sub-
groups on subsamples of the original data is a straightfor-
ward method to speed up the search process. As shown
in [22] most of the utility functions commonly used for sub-
group discovery are well suited to be combined with adaptive
sampling. This sampling technique reads examples sequen-
tially, continuously updating upper bounds for the sample
errors, based on the data read so far. In this way, the re-
quired sample size allowing to give a probabilistic guarantee
of not missing any of the n best subgroups can be reduced.

Heuristic search strategies are fast, but do not come with
any guarantee to find the most interesting patterns. One
recent example implementing a heuristic search is a variant
of CN2. By adapting its rule selection metric to WRAcc
the well known CN2 classifier has been turned into CN2-SD
[14]. As a second modification the iterative cover approach
of CN2 has been replaced by a heuristic weighting scheme.
Example weights are either changed by a constant factor or
by an additive term each time the example has been cov-
ered by a rule. In section 4 a new generic weighting scheme
is proposed that allows to overcome some shortcomings of
CN2-SD.

3.2 Missing Features
A drawback of classical subgroup discovery lies in a lack of

expressiveness. Especially interesting exceptions to rules are
hard to be detected using standard techniques, for mainly
two reasons. First of all, due to the syntactical structure
imposed by Horn logic it is often hard to exclude excep-
tions from rules, even if this improves the score assigned
by the utility function. The syntactical bias is important,
however, because results are required to be understandable
and because it is the main reason for diversity within the
n best subgroups. The syntactical bias might not be suffi-
cient to avoid sets of similar rules. Redundancy filters are a
common technique to overcome this problem [12]. Overlap-
ping patterns like exceptions to rules are not found reliably
that way. Exceptions could still be represented by separate
rules. This fails for the second reason, namely that utility
functions evaluate rules globally. Interactions between rules
do not affect their scores.

For the task of finding exception rules some efficient al-
gorithms have been developed [25]. They focus on mining
pairs of a strong rule and a corresponding exception, which
is too specific for subgroup discovery in general. Subgroups
do not necessarily have exceptions, and they may overlap in
arbitrary ways.

As a strategy for pruning rulesets to cover different as-
pects, ROC analysis was suggested in [14]. According to
the false positive and false negative rates all rules are plot-
ted in ROC space [5]. Only rules lying on the convex hull are
deemed relevant and may be turned into a single classifier by
weighted majority vote. A major drawback of this filter is
that it systematically discards one of two rules covering dis-
joint subsets and having almost the same performance. As
soon as one of these rules is superior in both true positive
and false negative rates the other rule is considered to be
redundant. This is not desirable in descriptive scenarios, as
the only rule covering a specific subset of the instance space
should not easily be discarded, nor for predictive settings,
as diversity of base classifiers is crucial for reaching high

predictive accuracy. The latter has empirically been shown
by the success of Random Forests [2] and similar ensemble
methods.

A way to improve the interestingness and diversity of rule-
sets is to make use of previously found patterns and for-
malised prior knowledge during construction. Incorporating
prior knowledge like Bayesian Networks into existing Data
Mining techniques is an active field of research. Some ap-
proaches like [28, 20] try to utilise prior knowledge to com-
pensate for a lack of data. In these scenarios the models are
fitted to both, the prior knowledge and the dataset at hand.
In contrast, the goal of subgroup discovery is to find rules
that contradict expectation, as this is assumed to indicate
interestingness. In such a scenario any available information
that allows to compute estimates of the user’s expectation
may help to refine the metric for selecting interesting rules.
A similar idea has recently been proposed in the scope of
frequent itemset mining [10].

Following this idea, a subgroup pattern may be interest-
ing relative to prior knowledge, only, as illustrated by the
following example:

Pr [Y+ | A] = Pr [Y+] = 0.5 for a rule A→ Y+.

Y is distributed in A just as in the overall population, so
this rule would not be deemed interesting by any reasonable
utility function. Now assume that in the prior knowledge
there is a statement about a superset of A:

B → Y+ [0.9] with A ⊂ B.

This rule predicts a higher conditional probability of Y+

given B. In this context the rule A → Y+ becomes inter-
esting as an exception to the prior knowledge, because one
would rather expect Pr [Y+ | A] = Pr [Y+ | B]. The reason
is that the prediction for B ⊂ X is more specific than the
general class priors.

To the best of the author’s knowledge the only approach
towards incorporating available knowledge into subgroup
discovery reported in the literature so far, is the ILP sys-
tem RSD [15]. It uses background knowledge exclusively to
propositionalise relational data, a step which is out of the
scope of this work. For the learning step itself CN2-SD is
used. The next section shows a generic technique to incor-
porate prior knowledge into subgroup discovery and similar
supervised learning tasks.

4. KNOWLEDGE-BASED SAMPLING
This section introduces a sampling-based technique to in-

corporate prior knowledge into supervised Data Mining al-
gorithms. Subsection 4.1 discusses the overall idea before
some constraints for sampling are defined in subsection 4.2.
These constraints define a unique distribution as shown in
4.3. The last subsection 4.4 shows how to use stratified sam-
pling in order to solve specific subgroup discovery tasks by
means of classifier induction algorithms.

4.1 Weighting examples by prior knowledge
The most crucial question in an iterative Data Mining

framework is how to pre-process the training data so that
subsequent learning steps do not yield previously found pat-
terns again. The goal is to find uncorrelated new patterns,
so that the resulting ruleset is compact, but still allows
for a precise characterisation of the target attribute. The
two example subgroups mentioned in the introduction, one



containing all young drivers, and the other containing all
persons who recently acquired their driving license, illus-
trates how a stand-alone evaluation of each rule may result
in highly overlapping rulesets. This bears the risk of almost
redundant rules.

The algorithm proposed in this work allows to focus on
previously undiscovered patterns by means of sampling. Tar-
get samples are constructed in a way that does not allow to
rediscover the available prior knowledge, because the tar-
get attribute is made independent of the available predic-
tions. At the same time it is taken care, that the remaining
patterns part of the original data remain intact. Similar
techniques are found in the boosting literature [7, 8, 21].
Please note, that boosting was first introduced in terms of
altering an initial distribution function and a corresponding
sampling technique [19].

The technique which is shown to be capable of sampling
out prior knowledge in the following sections is called rejec-
tion sampling [16]. It allows to sample with respect to a
distribution D′, given a procedure to sample from another
distribution D: Assume that an example set of size n at
hand has been sampled from distribution Dn. Then each
example x is assigned a weight

w : X→ IR+, w(x) :=
PrD′(x)

PrD(x)

rather than sampling directly with respect to D′, which may
be infeasible. A sample

xm ∼ D′ with m := n ·
»
sup
x∈X

w(x)

–−1

may then be constructed by weight-proportionate resam-
pling. Alternatively, the weights may be interpreted as fac-
tors of being over- or underrepresented by all subsequently
applied algorithms.

Rejection sampling has also been approved as a generic
way to incorporate costs into the Data Mining step. In [29]
a proof is given, that this kind of sampling does not in-
crease the sample complexity in the agnostic PAC learning
framework for cost sensitive classification. As illustrated
in the next subsections, rejection sampling even allows to
generically incorporate a user-given or previously discovered
probabilistic model into the Data Mining step. For this pur-
pose a knowledge-based sampling scheme based on altering
the original distribution underlying a dataset is introduced.
Depending on the application, examples may be weighted
or resampled.

4.2 Constraints for resampling
Before going into detail the idea of removing prior knowl-

edge by means of sampling is formulated in terms of con-
straints. Formally, this step means to define a new distribu-
tion D′, as close to the original function D as possible, but
independent of the estimates produced by available prior
knowledge. Switching from the initial distribution to the re-
sampled data is a step of applying prior knowledge by means
of sampling. As a result the previously discussed rule selec-
tion metrics – when applied to these kind of samples – are
“blinded” regarding the parts of rules that could already be
concluded from prior knowledge. All that is accounted for
is the unexpected component of each rule.

The scenario is discussed along the simplified case of a

single rule as available prior knowledge:

R : h→ Y+

The distribution to be constructed should no longer support
rule R, so h and Y+ should be independent events:

PrD′ [Y+ | h] = PrD′ [Y+] (3)

If R predicts a higher accident probability for young drivers,
for example, then in the constructed sample this subgroup
should share the default probability of accidents.

As further constraints the probabilities of events part of
the rule should not change, since it is sufficient to remove
their correlation. This means that the class priors and the
probability of R being applicable to a randomly drawn in-
stance are equal for both distributions:

PrD′ [h] = PrD [h] (4)

PrD′ [Y+] = PrD [Y+] (5)

For the example rule the probability of accidents and the
probability of seeing a young driver will not change from
the original training set to the constructed sample.

Finally, within each partition sharing the same class and
prediction of R the new distribution is defined proportion-
ally to the initial one. The simple reason is that having
just R as prior knowledge all instances within one partition
are indistinguishable. Changing the conditional probabil-
ities within one partition would mean to prefer some in-
stance over others despite their equivalence with respect to
the available prior knowledge. For the boolean rule R these
constraints translate into the following equalities:

PrD′(x | h ∩ Y+) = PrD(x | h ∩ Y+) (6)

PrD′(x | h ∩ Y−) = PrD(x | h ∩ Y−) (7)

PrD′(x | h ∩ Y+) = PrD(x | h ∩ Y+) (8)

PrD′(x | h ∩ Y−) = PrD(x | h ∩ Y−) (9)

Hence, if the probability of seeing a specific driver halves
from the original to the new distribution, then the same will
happen to all other drivers sharing both, the property of
being young or not, and the property of having had an acci-
dent or not. All that changes are the marginal probabilities
of the partitions.

Given a database and pattern R it is possible to apply
any Data Mining technique after sampling with respect to
D′. Further interesting patterns, even if they are overlap-
ping with R, are still observable in the new sample. For
instance subgroups that are subsets of h and have an even
significantly higher or much lower Lift than rule R are just
rescaled proportionally. For instance, if unexperienced per-
sons driving a specific kind of car tend to be involved in ac-
cidents even more frequently than young drivers in general,
then this more specific rule can be found in a subsequent
step. As motivated in subsection 3.2, various exceptions
to previously found rules and patterns overlapping in some
other way can be found, analogously.

4.3 Constructing a new distribution function
In subsection 4.2 the idea of sampling with respect to an

altered distribution function has been presented. Intuitively,
prior knowledge and known patterns are “filtered out”. This
subsection proves that the proposed constraints (3)-(9) in-
duce a unique target distribution.



Definition 7. The Lift of an example x ∈ X for a rule
h→ Y+ is defined as

Lift(h→ Y+, x) :=

8>><
>>:

Lift(h→ Y+), for x ∈ h ∩ Y+

Lift(h→ Y−), for x ∈ h ∩ Y−
Lift(h→ Y+), for x ∈ h ∩ Y+

Lift(h→ Y−), for x ∈ h ∩ Y−

Theorem 1. For any initial distribution D and given rule
R the constraints (3)-(9) are equivalent to

Prx∼D′(x) = Prx∼D(x) · (LiftD(R,x))−1 .

Up to a constant factor they induce D′ : X→ IR+ uniquely.

Proof. The proof is exemplarily shown for the partition
(h ∩ Y+), in which the rule under consideration is both ap-
plicable and correct. Assuming that the constraints hold D′

can be rewritten in terms of D and Lift(R, x):

(∀x ∈ h ∩ Y+) : PrD′(x)

= PrD′(x | h ∩ Y+) · PrD′ [h ∩ Y+]

= PrD(x | h ∩ Y+) · PrD′ [h] · PrD′ [Y+]

=
PrD(x)

PrD [h ∩ Y+]
· PrD [h] · PrD [Y+]

= PrD(x) · (LiftD(h→ Y+))−1

The other three partitions can be rewritten analogously. On
the other hand, it can easily be validated that D′ as defined
by theorem 1 is in fact a distribution satisfying the con-
straints:

PrD′ [h ∩ Y+] = PrD [h ∩ Y+] · (LiftD(R, x))−1

= PrD [h] · PrD [Y+]

and analogously for the other partitions. This directly im-
plies constraints (3)-(5) by marginalising out. Constraints
(6)-(9) are met, because for all four partitions D′ is defined
proportionally to D.

Please recall, that the Lift simply reflects the factor by
which a label is overrepresented in a considered subset, com-
pared to the label’s prior. For the example rule the Lift is
5, since the risk for young drivers is 5 times higher than for
the average driver. Hence, the probability to see a specific
young driver who had an accident in the target sample is
reduced by a factor of 1/5 compared to the original data.
Each of the four partitions that are defined by a combination
of prediction and true label is rescaled in the same fashion.

Theorem 1 defines a new distribution to sample from,
given a single rule R as prior knowledge. The same strat-
egy may be applied iteratively, defining a new distribution
after each selected rule. Section 6 introduces an appropriate
algorithm and evaluates it empirically.

Please note, that without any changes to theorem 1 more
complex forms of prior knowledge may be incorporated. En-
sembles of base learners like propositional rules are valid
background theories, for example, as long as the predictions
are discrete. Straightforward generalisations of constraints
(3)-(9) allow to incorporate probabilistic predictions: Let
the prior knowledge θ be associated to a function

cPr(x, y | θ) = cPr(C(x) = y | x, θ) ≈ Pr [C(x) = y | x]

estimating the target distribution for each 〈x, y〉 ∈ X ×Y.
Assuming the class priors Pr [C(x) = y] to be known for

each y ∈ Y and applying the definition of the Lift the cor-
responding estimated Lift can easily be computed as

dLift(x→ y | θ) :=
cPr(x, y | θ)

Prz∼D(C(z) = y)

Given a procedure for sampling examples x ∼ D i.i.d., the
following distribution that generalises theorem 1 can be used
to weight examples:

D′(x) = D(x) ·
“ dLift(x→ C(x) | θ)

”−1

(10)

To remove prior probabilistic knowledge, for example from
a data stream, it is sufficient to assign to each example x a

weight of ( dLift(x → C(x) | θ))−1. This strategy is surpris-
ingly simple and well suited to apply rejection sampling.

Up to here no assumptions about the utility function for
evaluating rule candidates were made. In fact any utility
function can be used in combination with knowledge-based
sampling.

4.4 A Connection to Classifier Induction
This subsection shows a simple connection between sub-

group discovery limited to the utility function WRAcc and
the better known task of classifier induction.

The goal when inducing a classifier from data generally
is to select a predictive model that separates positive and
negative examples with high predictive accuracy. Many al-
gorithms and implementations exist for this purpose [18, 26],
basically differing in the set of models (hypothesis space H)
and search strategies. Subgroup discovery demands the def-
inition of a property of interest, which can be assumed to be
present in the form of a target attribute. In this sense this
task is also supervised. The process of model selection is
guided by a utility function. In the following definition sub-
group discovery is simplified to finding the most interesting
rule.

Definition 8. Let H denote the set of models (rules) valid
as output and D denote a distribution function over X.
The task of classifier induction is to find

h∗ := maxarg
h∈H

Acc(h).

For a given utility function q : H → IR the task of subgroup
discovery is to find

h∗ := maxarg
h∈H

q(h).

For boolean target attributes common classifier induction
algorithms do not benefit from finding rules with a preci-
sion below 50%. In contrast, for subgroup discovery it is
sufficient if the precision of a rule is higher than the corre-
sponding class prior. Choosing the utility function WRAcc
we can transform subgroup discovery as defined above into
classifier induction by a simple sampling technique to over-
come imbalanced class distributions.

Definition 9. For D : X→ IR+, C : X→ Y the stratified
random sample distribution D′ of D (and C) is defined by

Prx∼D′(x) :=
Prx∼D(x)

|Y | · Prz∼D [C(z) = C(x)]

D′ is defined by rescaling D so that the class priors are
equal. This definition allows to state the following theorem.



Input:
- labelled example set E = 〈x1, y1〉, . . . , 〈xm, ym〉
- integer n
Output:
- Set of n (probabilistic) Horn logic rules

KBS(E, n):

1. Let D0 denote the uniform distribution over E.

2. For each c ∈ Y define π(c) := Prx∼D0(C(x) = c).

3. Let D1(xi) := π(yi)
−1 for i ∈ {1, . . . , n}.

4. For k = 1 to n do

(a) rk ← RuleInduction(Dk, E)

(b) Compute LiftDk (rk, xi) applying definition 7.

(c) Let Dk+1(xi) := Dk(xi) · (LiftDk (rk, xi))
−1.

5. Output the set of rules {r1, . . . , rn} and their Lifts.

Figure 1: Algorithm KBS

Theorem 2. For every rule h → Y+ the following equali-
ties hold if D′ is the stratified random sample distribution
of D:

AccD′(h→ Y+) = 2WRAccD′(h→ Y+) + 1/2

= WRAccD(h→ Y+) · 1

2PrD [Y+] · PrD [Y−]
+ 1/2| {z }

irrelevant for ranking rules

Proof. The first equality can be proved by rewriting ac-
curacy in terms of WRAcc, exploiting PD′(C) = PD′(C).
The second equality follows by applying the definition of
D′ to WRAccD′(h → Y+), reaching at a reformulation in
terms of the original distribution D.

For a full proof please refer to [23], for a broader discus-
sion of rule selection metrics to [6, 9]. As a consequence
of theorem 2 subgroup discovery tasks with utility function
WRAcc can as well be solved by rule induction algorithms
optimising predictive accuracy after stratified resampling.
The induced rankings of rules are equivalent.

5. ALGORITHMS
This section discusses three subgroup discovery algorithms,

which have been integrated into the learning environment
YALE [17]. The first of these is the knowledge-based sam-
pling algorithm (KBS) shown in figure 1. It applies sampling
as presented in subsection 4.3. More precisely, the imple-
mentation allows to use example reweighting if the training
data fits into main memory. As discussed in subsection 4.1
the probabilities computed by rejection sampling procedures
may as well be interpreted as example weights.

The KBS algorithm iteratively selects a single rule cor-
responding to a subgroup with high WRAcc, updates the
distribution according to theorem 1, and selects the next rule
according to the updated distribution. Theorem 2 implies
that high predictive accuracy on stratified samples directly
translates into high WRAcc on the original data. To this

end lines 1-3 define a distribution D1 by reweighting the
training examples E with respect to definition 9. Each loop
in line 4 induces a single rule with high predictive accuracy,
characterising a new subgroup. The rule induction algo-
rithm used in the experiments is ConjunctiveRule, part
of the WEKA learning environment [26]. It iteratively con-
structs the body of rules comparing the information gain
of each candidate literal, and it prunes rules applying the
reduced error pruning heuristic.

As distribution updates are computed according to the-
orem 1 (line 4c) all constraints defined in subsection 4.2
hold. Constraint (5) implies that all subsequently defined
distributions share the stratification property of D1. The
corresponding distributions without stratification are very
similar to the distributions actually used. They can be re-
constructed by rescaling with respect to the original class
priors.

In a prediction scenario significance tests help to avoid
overfitting, in a descriptive setting they avoid to report rules
which could easily be valid just by chance. For simplicity
significance tests are avoided in the experiments, but the
mining step is restricted to n iterations. Rules are selected
by WRAcc, a metric proportional to coverage, so rules are
not expected to overfit if n is chosen small enough.

The selected rules annotated by the Lifts allow to com-
pute predictions for the target attribute. If the property
of interest is boolean1, then all rules ri are of the form
hi → Y+/−. An application of the Näıve Bayes strategy
for combining predictions (see section 2) yields

β(x) =
PrD0(Y+)

PrD0(Y−)
·

Y
1≤i<k

LiftDi((hi → Y+), x)

LiftDi((hi → Y−), x)| {z }
=:βi(x)

(11)

for the odds (eqn. (2)). Estimating each βi with respect to
Di prevents poor approximations in case of violated condi-
tional independence. If the precision of a selected rule is 1
then eqn. (11) is not applicable, but the covered subset may
simply be removed during training.

The reweighting performed by KBS is very similar to
eqn. (10). Enumerator and denominator of the product in
(11) approximate the Lifts for positives and negatives, re-
spectively, e.g.:

dLift(x→ Y+ | θ) ≈
Y

1≤i<k

LiftDi((hi → Y+), x),

where θ denotes the set of probabilistic rules {r1, . . . rk}.
It can easily be seen that after stratification the algorithm
weights examples inverse proportionally to these estimates.

In the next section KBS is compared to the only two
other reweighting strategies reported in the subgroup dis-
covery literature so far [14]. These strategies just affect the
reweighting step of the algorithm shown in figure 1: After
a positive example e has been covered by i rules its new
weight is computed as either

additive update: wi(e) := 1
i+1

or

multiplicative update: wi(e) := γi for given γ ∈ [0, 1]

Accordingly, two versions of subgroup discovery ruleset in-
duction (SDRI) have been implemented, which are similar

1This restriction is only made for simplicity, as it is always
possible to estimate each class against all the others.



Dataset Examples Discr. Cont. Minority

KDD Cup 10.000 – 71 50.0%
Adult 32.562 8 6 24.1%
Ionosphere 351 – 34 35.8%
Credit Domain 690 6 9 44.5%
Voting-Records 435 16 – 38.6%
Mushrooms 8.124 22 – 48.2%

Table 1: Data characteristics: size, number dis-
crete/continuous attributes, frequency min. class

to CN2-SD. The variant that applies ConjunctiveRule
on stratified samples after additive updates is referred to
as SDRI+, the one with multiplicative updates as SDRI∗.
Weights are updated after each iteration. The class explic-
itly predicted by a rule is defined to be the positive one, as
fixing one of the classes as positive gave worse experimen-
tal results. Multiple occurrences of rules in the ruleset are
allowed, reflecting the importance of patterns that are still
observable after reweighting. The rulesets constructed by
SDRI are combined as in CN2-SD rather than by applying
Näıve Bayes: The predicted target class distributions of all
applicable rules are averaged.

6. EXPERIMENTS
A primary goal of subgroup discovery is to find a small set

of understandable rules that characterise a target variable.
In more formal terms the probabilistic classifiers built from
the rulesets should be accurate. This property is commonly
measured by the area under the ROC curve metric (AUC).

The proposed idea of sequential sampling-based subgroup
discovery has been evaluated on five datasets from the UCI
Machine Learning Library [1] and a 10K sample taken from
the KDD Cup 2004 Quantum Physics dataset2. All datasets
have boolean target attributes. Further characteristics are
listed in table 1.

Figure 2 to 7 show how the AUC performance changes
with an increasing number of iterations. All values have
been estimated by 10fold cross-validation3. The columns n
and auc in table 2 list the average performances of rule-
sets from the cross-validation experiments for the empiri-
cally best choice of n. For the KDD Cup data and the
adult dataset the number of iterations were limited. To fur-
ther evaluate the differences between the algorithms another
ruleset was induced for each variant, using the same value
for parameter n. For evaluation the same set was used as
for training, as common for descriptive learning tasks. Ta-
ble 2 shows the resulting average coverages (cov) and aver-
age weighted relative accuracies (wracc). The ROC filter
for rulesets discussed in subsection 3.2 was applied to both
SDRI variants, denoted as RF in table 2.

The column div reflects the diversities of rulesets. The
entropy of predictions is an appropriate measure for diver-
sity of classifier ensembles in general [4]. Each rule can be
considered to predict the conditional distribution of the tar-
get, given whether it is applicable or not. For a boolean
target, a set of n rules with pi(x) := Pr(Y+ | hi(x)), and a

2http://kodiak.cs.cornell.edu/kddcup/
3For SDRI∗ results are reported for the empirically best γ
from the candidate set {.1, .2, .3, .4, .5, .6, .7, .8, .9, .95}.

set of m examples the diversity was computed as

1

m

mX
k=1

1

n

nX
i=1

−pi(xk) log(pi(xk))−(1−pi(xk)) log(1−pi(xk))

after removing multiple occurrences of rules.
Throughout the figures 2 to 7 the KBS algorithm outper-

forms SDRI with both reweighting strategies, while none of
the SDRI variants is clearly superior to the other one. In
figure 2 all three algorithms manage to find useful rules re-
peatedly. SDRI+ performs best for sets of 3 to 6 rules, but
for larger rulesets and for any other dataset and number of
iterations KBS is superior. In figures 3 to 5 KBS improves
AUC much quicker than SDRI, although for the smallest
dataset (fig. 4) it overfits after the 3rd iteration. For the
credit domain data (fig. 5) the AUC values of the SDRI
rulesets improve non-monotonically. Inspecting the rulesets
reveals many duplicates. For the voting-records (figure 6)
SDRI effectively finds just 2 useful rules with both reweight-
ing strategies, improving AUC by about 1% compared to the
first iteration. KBS selects 6 rules and improves AUC by
about 4%. Finally, in the experiment shown in figure 7 KBS
reaches 100% AUC with just 12 rules, while SDRI hardly
improves over the performance of the first rule at all. For the
smaller datasets the ROC filter basically just removes dupli-
cates from the rulesets, which has a marginal impact on the
performance metrics. For the large datasets the filter prunes
the ruleset at the price of a reduced AUC performance and
diversity.

Although the KBS rulesets often have a smaller coverage
and WRAcc their predictions outperform those of the other
algorithms. It is interesting to note that for all datasets the
KBS rulesets have the highest diversity, but according to the
standard deviation of the AUC performance (column “±”)
they are nevertheless most robust against minor changes to
the data.

7. CONCLUSION
In this paper the idea of knowledge-based sampling has

been presented, a generic technique of making rule selection
metrics sensitive to prior knowledge. The interestingness
of rules is often relative to a user’s expectation or previ-
ously found patterns. A set of intuitive constraints has been
proposed, that formalise how to construct samples which
are independent of prior knowledge, so that subsequently
applied rule induction techniques focus on novel patterns.
The constraints have been shown to uniquely define a new
distribution, which can easily be operationalised by either
resampling or defining example weights.

Incorporating prior knowledge has been shown to be bene-
ficial for the learning task of subgroup discovery. Evaluating
rules globally results in overlapping patterns. To cover var-
ious aspects of a dataset it is more appropriate to construct
sets of smaller rules, each of which captures a new pattern.
Knowledge-based sampling is a way to shift the focus of
subgroup discovery to undiscovered patterns, which allows
to construct small sets of rules with high diversity. A new
subgroup discovery technique based on stratification, itera-
tive reweighting, and an arbitrary embedded rule learner has
been presented. Experiments with six real world datasets in-
dicate that the algorithm outperforms state of the art sub-
group discovery algorithms which are based on alternative
reweighting strategies.
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algorithm n auc ± cov wracc div

KBS 15 76.8 1.2 38.6% 0.023 0.972
SDRI+ 15 76.0 1.9 50.5% 0.054 0.932
SDRI+, RF 12 74.3 2.0 50.0% 0.056 0.928
SDRI∗ 15 74.8 2.1 42.7% 0.071 0.917
SDRI∗, RF 8 74.2 2.1 44.7% 0.074 0.914

KDD Cup

algorithm n auc ± cov wracc div

KBS 15 89.5 1.1 48.8% 0.036 0.739
SDRI+ 20 86.1 2.8 47.0% 0.053 0.703
SDRI+, RF 7 83.6 2.6 49.8% 0.055 0.703
SDRI∗ 20 88.8 1.5 43.5% 0.051 0.719
SDRI∗, RF 7 84.9 1.4 39.6% 0.050 0.706

Adult

algorithm n auc ± cov wracc div

KBS 3 96.0 3.0 42.7% 0.121 0.669
SDRI+ 7 92.0 7.4 37.6% 0.120 0.643
SDRI+, RF 4 91.7 7.0 35.3% 0.120 0.643
SDRI∗ 6 91.9 7.3 60.1% 0.123 0.652
SDRI∗, RF 3 91.0 6.7 40.6% 0.119 0.652

Ionosphere

algorithm n auc ± cov wracc div

KBS 7 90.4 3.4 42.2% 0.057 0.893
SDRI+ 31 88.4 4.2 56.8% 0.156 0.796
SDRI+, RF 3 87.0 5.3 66.9% 0.139 0.668
SDRI∗ 27 89.9 4.0 55.8% 0.164 0.739
SDRI∗, RF 2 85.7 5.3 66.9% 0.139 0.668

Credit Domain

algorithm n auc ± cov wracc div

KBS 8 99.1 1.0 46.2% 0.142 0.615
SDRI+ 2 96.1 2.0 50.0% 0.215 0.244
SDRI+, RF 2 96.1 2.0 49.8% 0.215 0.244
SDRI∗ 6 96.2 2.0 50.3% 0.214 0.244
SDRI∗, RF 2 96.4 1.9 51.4% 0.216 0.254

Voting-Records

algorithm n auc ± cov wracc div

KBS 12 100 0.0 69.5% 0.086 0.843
SDRI+ 6 98.7 0.2 43.4% 0.195 0.470
SDRI+, RF 1 98.6 0.1 43.4% 0.195 0.470
SDRI∗ 1 98.6 0.1 43.4% 0.195 0.470
SDRI∗, RF 1 98.6 0.1 43.4% 0.195 0.470

Mushrooms

Table 2: Performance of different subgroup discovery algorithms.
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