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Chapter 1

Objectives

1.1 Introduction

The MiningMart project focuses on preprocessing chains for successful data
mining. Each step of a chain embeds an operator, applied to one or more
input tables or views. The output of a step depends on the operator, but in
all cases it is a view, a table, or a virtual column added to a view or table.

The variety ranges from so called manual operators to much more com-
plex Machine Learning operators The former just write the result of their
application as an SQL statement on the meta-level, usually without read-
ing the business data. The latter are integrated by means of a wrapper
approach. A sample of tractable size is drawn from the database and a
stand-alone learning algorithm is called. The result is found in an output
file or read from standard output, needs to be parsed, and is then written
to the database. For most operators the result is stored as an SQL function,
called by an SQL statement similar to those produced by manual operators.

For both manual and Machine Learning operators there are some con-
ditions to a successful application, subject to this deliverable. Before the
formalized operator conditions of this work package are described in the next
chapters, alternative approaches together with availability of necessary infor-
mation for different scenarios are sketched in section 1.2. Some remarks on
learnability, efficiency and related work on sampling can be found in sections
1.3 and 1.4. Chapter 2 holds a report about the phase space transition and
the border of the learnability for learning in first order logic. Chapter 3 is
about the representation of operator specifications related to constraints as
part of the Mining Mart Meta Model. The chapter ends with some examples
on the usage of this information by different components of the MiningMart
system. Appendix A contains the represented constraints, conditions and
assertions of operators used by the MiningMart system. Appendix B com-
plements this information by a short natural language description of these
operators.
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1.2 Available information for applicability condi-
tions

The goal of using applicability conditions is to ease the choice of the next
operator in an operator chain, by generating reasonable propositions, or by
excluding poor candidates from the beginning. Furthermore, early estimates
of quality measures are of interest, to decide if the application of a specific
learning operator will yield the desired results.

Which kind of information addressing this tasks are available depends
on which of the following settings we have in mind:

1. The online setting

Given a specific dataset, which might be the result of several prepro-
cessing steps, we want to choose the next operator.

2. The offline setting

We want to define an operator chain, given just a specification at the
conceptual level of M4. The general objective of this setting is to
guarantee that if all constraints are met, the case is executable after
adaptation to any specific dataset. Cases stored on the MiningMart
internet server are a good example for this setting. There we have
complete operator chain definitions not related to any database object.

1.2.1 Applicability Conditions in the Online Setting

In the online setting, the applicability of an operator can be estimated based
on meta data of the specific dataset. The statistics for COLUMN, part of
the M4 model (see D8/9, 2.1.2), offer a variety of information.

For instance for numerical attributes, we have the number of different
values, the number of missing values, minimum and maximum, the average
value, the standard deviation, and information on the distribution ( “distri-
bution blocks”).

For tables and views the statistics for COLUMN_SET (see D8/9, 2.1.3)
contain the total number of tupels and the number of attributes of types
ORDINAL, NOMINAL, and TIME.

If all the statistics are calculated, then this information is available at
“runtime”, which means that it can be extracted from M4 just before de-
ciding, whether an operator should be applied or not.

The assertions given for operators in M4 are such, that they can be
verified using the meta data. These assertions about results are mostly
about attributes being not null, about types of attributes and the type of
the output concept. In order to be able to check such conditions before
applying an operator, no information apart from M4 has to be stored.

The following information is relevant, but cannot be extracted from M4:
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e To answer the question “How important is feature selection for differ-
ent learning methods?” the independence of attributes (up to revealing
redundancies of attribute subsets) is an important issue.

o Low data quality, especially because of noise can prohibit successful
applications of learning algorithms. Some other reasons for low data
quality are reflected by the statistical meta-data, for example by the
number of missing values. A lack of standardization is easily detectable
checking the calculated average and standard deviation.

1.2.2 Applicability Conditions in the Offline Setting

When designing a case independently of a specific dataset, then no statistics
are available to guide the editing process. Available information at the
conceptual level of M4 is much less precise, because it just describes the
overall structure, namely the concepts and relations involved.

Thus an analysis of operator chains in this setting cannot be as sophis-
ticated as in the online setting. What can be verified, however, is if all
the known (and formalized) preconditions of operators match the postcon-
ditions of the prior operator chain. If this property is violated, the system
can propose operators addressing this inconsistency. Care has to be taken
when a case is generalized. When defining an operator chain for a specific
dataset, all preconditions might hold, but this is not necessarily given for
every possible application of this chain. If for example an operator A can-
not handle missing values, then an operator B with explicit postcondition
“Target concept has no missing values.” should be applied before. Further
on, this condition has to be invariant towards all operators applied between
B and A. For the above example this would be given for all operators of
type “RowSelection”. In order to verify this, pre- and postconditions on
the one hand, and invariance of conditions with respect to specific operator
applications have to be formalized.

Applicability conditions based on the syntactical representation of data
instead of statistics can be checked in the offline setting, as well.

o If a learning algorithm demands time series to have a specific repre-
sentation, e.g. one of those listed in Deliverable D3, operators tailored
to change the representation of time series can be proposed. The user
can be warned, when trying to apply the operator on an incompatible
representation. An example is the use of a windowing method before
applying a Support Vector Machine to a univariate time series.

e In Inductive Logic Programming conditions for effective learnability
can also be derived from the conceptual level, only. If “effective”
means polynomial runtime, then the hypothesis space can be restricted
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to ij-determinate horn clauses (see [8]). Given all the functional depen-
dencies in the data explicitly, this restriction can be formalized based
on meta data.

1.3 Analysis of Learnability

In learning theory in different paradigms criteria for learnability are an-
alyzed. E.g. in the PAC-paradigm upper bounds on the necessary size of
random samples are investigated, that allow to find an approximately correct
hypothesis with arbitrary high probability. For certain learning problems it
is known, that they cannot be solved by any algorithm, e.g. concept learning
with a very high noise rate.

But results of learning theory do not always reflect the practical experi-
ences. One of the reasons may be, that in the first place they tend to bound
the worst case, which does not occur often. For that reason experiments on
real world datasets could complement known theoretical results.

Apart from information theoretic bounds on learnability (due to the sam-
ples being of limited size), the runtime for finding “promising” hypotheses is
of major interest for practical applications. In this field experiments could
give estimates on the expected runtime based on the size of the dataset and
further properties. Hopefully, as with ij-determinate horn clauses [8], more
specific cases can be identified, where the runtime can be shown to be sig-
nificantly smaller than the worst case runtime in the general case. For other
cases it might be sufficient to use a subsample to achieve good results. A
very promising approach when dealing with large datasets, as given in Min-
ingMart, is to base estimation on statistically sound sampling at runtime
(adaptive/sequential sampling, see e.g. [20], [7]). This should yield more
precise results than theoretical results, bounding the worst case, and even
give good results much faster than when processing the complete dataset.

1.4 [Efficiency of Operator Application

The MiningMart system is meant as a tool for preprocessing large real world
datasets. While for toy example datasets algorithms with a high complexity
might still be applicable, for the intended use within MiningMart algorithms
with a complexity of O(n?) can be considered intractable. Even for linear
runtime algorithms a much more efficiently found estimate of the quality of
yielded results will probably prove useful.

One of the most promising approaches for efficient online analysis, if
an operator call will yield good results, is sampling. Sound applications of
sampling enable us to give well founded estimates on results, without having
to look and process a given large database as a whole. This can be exploited
in the following ways:



Mining Mart IST-1999-11993, Deliverable No. D18 6

e Before calling a learning operator on the whole training set (database)
one or more small subsamples are drawn to estimate, if the expensive
call of the operator on the large sample pays off.

A problem with this approach is, that it is hard to foresee the accuracy
of a classifier with a growing training set. In [7] John and Langley
describe a heuristic measure (the power law) addressing this problem
by extrapolating the quality measure for a specific incremental learner.

A more cautious way of evaluation at this point is to simply use the
quality value of intermediate results (trained on subsamples) as lower
bounds' for the hypothesis chosen when all examples are used for
training. If this quality bound is high enough, an application of this
operator for the complete set should be recommended.

Adaptive or sequential sampling methods constitute a more sophis-
ticated form of this idea. Examples are read incrementally and the
estimates for all the (remaining) different hypotheses are repeatedly
compared. By relying on a so called confidence interval, based on
the actual size of the subsample, probabilistic guarantees for an early
identification of an approximately optimal subset of all hypotheses can
be given. In contrast to usual sampling methods, which fix the sam-
ple size in order to bound the worst case before looking at the first
example, the adaptive methods exploit properties of the examples al-
ready read, which helps to significantly decrease the amount of data
processed.

If it is possible to actively choose examples from the database (e.g.
using index structures), examples might be chosen in a way that allows
for a more precise distinction between the remaining “most promising”
hypotheses. This allows to lower the error probability by reading a
small amount of examples, only. An example on how active learning
helps to more rapidly identify good hypotheses is given in [18].

e Quality estimates for hypotheses are often based on sampling.

Evaluation over a random sample is a well suited method to evaluate
the quality of hypotheses efficiently over large datasets. Applicabil-
ity ranges from estimating the accuracy of an association rule [21]
to measuring the degree of truth of universally (and with restrictions
existentially) quantified formulae in tuple calculus [9].

The computational costs of operators can be reduced by sampling, as
well. This advantage is bought by having a small chance of drawing a
poor sample and thus receiving poor results. A general approach is to
evaluate the error of a large hypothesis space over a small sample, in

11t is no “bound” in the usual sense, because performance can also decrease, when the
training set grows.
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order to focus on the most promising ones. With high probability the
hypothesis fitting the data best, or at least one hypothesis which is
e-close to the best one, is not excluded. For the small subset of empir-
ically best hypotheses a more sophisticated analysis can be performed.

This or similar methods are successfully applied to APRIORI [21],
MIDOS? ([17], [20], [19]) and TDIDT/Decision Stumps (see e.g. [4]
for an application in combination with boosting).

Accordingly adapted versions of these operators could be used to re-
port in advance? if an application does not appear promising. These
warnings would not be based on heuristics, but on statistically sound
evaluation.

Another interesting application of sampling is to reveal dependencies
between attributes, leading to problems with some learning algorithms.
Redundant or irrelevant attributes might be identified, which is again
fine for Feature Selection, and which can increase the performance of
instance based learners. One can hope to even find implicit functional
dependencies, which is of relevance for learning in logical representa-
tions.

2To be more precise: Subgroup discovery in combination with some measures integrated

in MIDOS.

3Which means “quite early” compared with applying the operator to the full training
set.



Chapter 2

A Monte Carlo Approach to
Hard Relational Learning
Problems

2.1 Introduction

In the last years there has been an increasing interest in learning with subsets
of predicate logics, notably function free Horn clauses. In order to approach
real-world problems, such as the ones encountered in Data Mining, one may
wonder whether such kind of learning is actually applicable or, at least, un-
der which conditions it might be.

Unfortunately, in a recent paper Giordana et al. [6] have shown that
relational learning becomes very hard when the target concept requires de-
scriptions involving more than three variables. The reason is related to the
presence of a phase transition in the covering test [14, 5], i.e., an abrupt
change in the probability that an inductive hypothesis covers a given exam-
ple, when the hypothesis and the example sizes reach some critical values.
Moreover, any top-down learner will search for discriminant hypotheses in
the phase transition region [6, 5], and, finally, heuristics commonly used to
guide top-down relational learning [15, 2] become useful only in the same
region. The consequence is that the top-down induction process is blind in
its first steps, so that the path to the correct concept definition is very easily
lost.

In order to cope with the above difficulties, we have investigated two
issues. The first one is how to estimate the ”difficulty” of a learning problem,
in terms of the density of sub-formulas of the target concept in the hypothesis
space. The second is how to estimate the probability of detecting one of
these, as a function of the target concept location with respect to the phase
transition.
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Finally, an induction algorithm, combining a Monte Carlo stochastic
search [3] with local deterministic search, is proposed to (partially) avoid
the pitfall that causes top-down search to fail. The new algorithm directly
jumps into a region of the hypothesis space where the information gain
heuristics has good chance of being successful, continuing its search exploit-
ing a classical hill climbing strategy. The complexity of this algorithm is
analyzed in a probabilistic framework, and it is proposed as a measure of
the difficulty of the induction task. Finally, the algorithm has been exper-
imentally evaluated on the set of hard induction problems provided by [6],
and it shows a good agreement with the theoretical estimates.

2.2 Hard Relational Problems

Relational languages [12] are appealing for describing highly structured data.
However, complex relational features may be hard to discover during the
very learning process; in fact, finding substructures can be considered a
learning problem of its own [10]. For the sake of exemplification, let us
consider the data set in Figure 2.1. The cue discriminating structures (b)
and (c) from structures (a) and (d) is the presence of at least one pentagonal
ring. Such a cue can be simply described by the logical formula

bound-to(x,y), bound-to(y,z), bound-to(z,w), bound-to(w,v), bound-
to(v,x),

where variables x, y, z, w and v are instantiated to vertices, and the pred-
icates bound-to(.,.) denote edges of the graphs. Capturing this cue in
a propositional language requires that one already knows what he/she is
searching for.

On the other hand, the same cue is difficult to learn also for rela-
tional /ILP learners [11, 15, 2, 12, 13]. In fact, a FOIL-like general-to-specific
learning strategy requires the construction of the sequence of hypotheses:
"bound-to(x,y)”, "bound-to(x,y) A bound-to(y,z)”, and so on, correspond-
ing to growing portions of the ring (see Figure 2.1-(e)). As all elements in
the sequence have a rather large number of models both in the positive and
in the negative examples, heuristics such as information gain [15] or MDL
[16] do not assign any special relevance to them until the last element is gen-
erated, and the number of models drops to zero on the negative examples.
Then, a general-to-specific strategy is likely to be misled by the presence of
other constructs, which may have a slightly higher information gain.

This problem has been detected both in real and artificial learning prob-
lems [5], and has been investigated in [6], where the results summarized in
the following have been obtained. Let L be the complexity of a structured
example e, measured by the number of atomic components, and let m be the
number of literals in a conjunctive formula ¢, in a first order logic language.
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Ne  bound-to(x,y), bound-to(y,2),
// bound-to(z,w), bound-to(w.v)
——=d
T - .\\ bound-to(x,y), bound-to(y,z),
| N  bound-to(zw), bound-to(w,v),
: // bound-to(v,x)
P E—e

Figure 2.1: Example of data requiring relational features to be discovered.
Examples (a) and (d) cannot be distinguished from (b) and (c) until a ring
of at least five edges is constructed. (e) Sequence of hypotheses that a
general-to-specific strategy should generate in order to learn a five edge ring
description in predicated logic.

N\ bound-to(x,y), bound-to(y,z)

\, bound-to(x,y), bound-to(y,z),
) bound-to(z,w)

o

Representing the pair (e, ) as a point (m,, L.) in the plane (m, L), three
regions have been found (see Figure 2.2(a)): the YES-region, the mushy-
region, and the NO-region. In a point (m, L) located in the YES- region,
it is highly probable that any formula ¢ with m literals has many different
models on a randomly selected example e. Instead, in the mushy region (or
phase transition region) a formula has, in average, 0.5 probability of having
a model on e, whereas this probability is close to 0 in the NO- region. Let
us now consider an inductive hypothesis ¢ and a set of learning examples
Er. When the points defined by pairing every example e € £, to ¢ fall in
the YES-region, there is no chance of deciding if it is a good or a bad hy-
pothesis, because in both cases it will have a comparable number of models
on the positives and negative examples in £7,. Then, a learner following a
general-to-specific strategy is blind until the hypotheses are complex enough
to reach the border of the mushy region.

2.3 A Stochastic Approach

In absence of admissible heuristics, stochastic search may be a valid alterna-
tive. Moreover, stochastic search may be succesfully combined with deter-
ministic search when the search space is structured into regions such that,
after entering in a given region R, there exists admissible heuristics able to
guide the search toward the locally best solution existing in R. Examples
of how Monte Carlo search can be combined with deterministic search in
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20 25

Figure 2.2: Regions characterizing the (m, L)-plane.

classical search problems, such as the k-Queens, can be found in [3].

Let Pg be the probability that ¢ is subformula of w, the number 7
of trials required to find at least one generalization of w with confidence
confidence 1 — ¢, is

l—e=1—(1—Pg). (2.1)

Solving (2.1) with respect to 7 we obtain

log e

T = Tog (1= Pg) (2.2)

An analytical method for estimating Pg will be supplied in the next section.

The algorithm we propose is based on a two step strategy. The first
step creates a hypothesis ¢, with a complexity m, sufficiently close to the
border between the YES-region and the mushy region, by randomly sam-
pling the hypothesis space. The second step performs a general-to-specific
search starting from ¢, according to a hill-climbing strategy guided by the
information gain heuristics.

Algorithm 7*
let my, = po and let @ = ()
while the learning set £, is not fully covered do:

1. Generate a set ® of 7 hypotheses of complexity m,, ran-
domly selected.

2. Rank hypotheses in ® according to their information gain
with respect to the formula True that covers all examples,
by definition.

3. Starting from the top ranked hypothesis, apply the hill-
climbing specialization step to the K best ranked hypothe-
ses.
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4. Add to @ the best hypothesis produced in the previous step.

5. Declare covered all the examples verified by some element
in @

It is immediate to verify that, if the target concept has a conjunctive de-
scription w in the hypothesis space H, and 7 is large enough, algorithm 7'
will find w or at least a generalization @ of it, correct on the learning set £r,.
Otherwise, it will produce a disjunctive description.

However, the question we want to answer is: assuming to know the
complexity m,, and the number of variables n,, in w what is the complexity
7 we should allocate to Algorithm T*.

2.4 Evaluation the Hypothesis Space Size

In the following we will provide methods for computing or estimating the
size of the hypothesis space in dependence of the complexity of the concept
description language. Moreover, we will provide an estimate of the proba-
bility of finding a generalization of the target concept by randomly sampling
the hypothesis space.

2.4.1 Estimating the hypothesis space size for a function free
language

Let P be the union of a set B of binary predicates and a set U = {;(x)|0 <
Jj < p} of unary predicates.

We will first estimate the number of possible hypotheses consisting of ¢
binary literals built on r variables. Let mp be the cardinality of B and let
my be the cardinality of U. Let moreover Lp, be the set of literals built
on B and r variables. The cardinality of set Lp, is -7 -mp

Then the number of syntactically different formulas containing ¢g binary
reT-mp

tB
from this quantity, the number of formulas having less than r variables, the
number of syntactically different formulas containing exactly r variables

literals and up to r different variables is By subtracting,

r—1
M(mp,tp,r) = ( rerome ) — Z ( r ,)Ms(mB,tB,r —1) (2.3)

t _
B i— T 7

is obtained.

Notice that syntactically different formulas can be semantically equiv-
alent, being unifiable by properly renaming the variables. For instance,
formula a;(z1,z2) A az(x2,x3) is unifiable with a;(z2,x3) A as(xs3, 1) and
hence they cover the same models in any learning instance. Actually, the
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complexity of a learning task depends upon the number of semantically dif-
ferent hypotheses.

In order to estimate the number M (mp,tp,r) of semantically different
hypotheses with r variables, we observe that the maximum number of syn-
tactic variants a formula may have is r!. Then, the following relation holds:

Mg(mp,tg,T)

My(mp,tp,r) > M(mp,tp,r) > ,
T

(2.4)

of the interval

We will choose the central value M (mp,tg,r) = 2%

[Ms(mp,tg,T) — %] as an approximation of M(mp,tg,T).
Let ¢p(x1,22,...,2;) a syntactic instance of a hypothesis containing

only binary predicates. Let moreover 5 a unary literal built on one of the

variables 1, . .., z,. It is immediate to verify that the formula pp(x1,x2, ...,z )A

B will be the syntactic instance of a semantically different hypothesis, for any

B. More in general, let ¢(z1,%2,...,2,) a formula containing both binary

and unary predicates, any formula ¥(z1,z,...,2,) = @(z1,T2,...,2,) NS,

being 8 ¢ ¢(x1,%2,...,2,), is semantically different from any other con-

junction ¢(z1,z9,...,2,) A B if B/ # B. On the basis of this observation,

we conclude that the complexity of the hypothesis space for hypotheses

© = vB Ay, being gy a formula of only unary literals, lies in the interval:

Ms(mBatBar) ) Ms(mUatUar)
7!

Ms(mB,tB,’f')'Ms(mU,tU,T) > M(m,t,r) >

(2.5)
where t = tg + ty, m = mp + my, and

my
m .
Ms(mU,tU,T'):Z< 'U>MS(mU7tU_ZaT_1)

1
=1

is the number of formulas having up to r variable made of unary literals
selected from set U without replacement. We will approximate M (m,t,r)
with the value

~ 2
M(m,t,r) = FM(mB,tB,T) - M(mp,ty,r) (2.6)

2.4.2 Estimating the frequency of concept generalizations

The last problem we will face is that of estimating the frequency of gener-
alizations 1, of a concept w, existing in a space of semantically different
hypotheses. In other words, this is equivalent to estimate the probability
P(1,|w) assuming that w exists. Let Mg(w,t,r) be the number of semanti-
cally different generalizations of ¢ literals and r variables we may expect for
a concept w of t,, literals, and r,, variables (r,, > r). The number of existing
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generalizations of ¢ literals having number Mg(w,t) of variables between 1
and r,, is precisely evaluated by the expression

Mg = < o ) (2.7)
Evaluating the generalizations of exactly r variables, is impossible if w is
not known. As, for values of ¢, ¢, close to the mushy region, it has been
found that Mc;(w, t) is quite close to Mg (w,t,r), we will use Mg(w, t) as an
estimate of Mg (w,t,7).
Then an approximation of Pg(w, m,t,7) can be obtained as the ratio

~ MG w,t
Pg(w,m,t,r) = W (28)

2.5 An Experimental Evaluation

Algorithm T* has been tested on the set of 451 artificial learning problems
described in [6].

The artificial learning problem set has been generated by imposing that
all target concept be describable using only binary predicates and exactly
four variables (n = 4). Moreover, it has been required that all binary predi-
cates have an extension of N = 100 tuples on any learning example. Given n
and N, let (m, L) be a point in the plane (m, L). A set of 451 points has been
sampled in the plane (m, L). Then, for each point, a learning problem II,, r,
has been built up from the 4-tuple (n = 4, N = 100, m, L). A target concept
w with m literals and n variables has been built up, and then a training set
&1, and a test set &7 have been generated. Let A be a set of L constants;
every example is a collection of m relational tables of size N obtained by
sampling the binary table A X A. In order to generate balanced training and
test sets in each point of the (m, L) plane, the random generation of the
examples has been modified in order to obtain examples with models also
in the NO-region, and examples without models also in the YES region (see
[6] for more details). The result has been the generation of training and test
sets, &1, and &7, each one with 100 positive and 100 negative examples in
each (m, L) point.

Some details about the problems lying in the mushy region are reported
in Table 2.1. The first five columns report the number m of predicates in
the concept description language, the number L of components in every
single learning instance, the critical value m, of the center of the mushy
region, and the value for ¢, and r, chosen for every single run. The eleventh
column reports the error rate on &r for the solution selected by the algo-
rithm. Columns from 6 to 10 report the values of M(m,t,,r) (computed
by expression (2.6)), the real value of M, the estimated value My (as-
suming a concept of 4 variables lying close to the phase transition), the size
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Figure 2.3: Results obtained with FOIL: Failure region (legend “.”) and
success region (legend “47), for n = 4 and N = 100. The contour plot cor-
responds to the value Ps, = 0.5 of the probability that randomly generated
covering test is positive.

Mg(m,t,,r) of the syntactic hypothesis space, the probability Pz computed
from the values in column 6 and 7, and the number of trials 7. The results
obtained by FOIL on this set of problems is summarized in Figure 2.3. It
appears that most problems beyond FOILS’s capability have been solved.
Anyhow, for low L some problems have been found beyond the complex-
ity affordable with the available computational resources. A problem was
considered solved when the error rate on the test set of the learned concept
definition was smaller than 20%. Figure 2.3 shows a large area, across the
mushy region, where FOIL systematically fails.

Algorithm T* has been run on the problems lying in the mushy region
and in the NO-region obtaining the results described in Figure 2.4. In all
experiments, we started with minimal assumptions about the difficulty of
the problems, scaling up until the problem 7% was not able to find a good
solution or the predicted complexity was not affordable. More specifically,
in the area where the problems are easy to solve, we started with r = 3
and m, = 4, and usually T* found the solution at the first attempt. In
the more difficult region (the blind spot), we started with r = 4 and m, =
m. — 6 increasing m,, up to reach m, — 1, when necessary. Parameter 7 was
determined using (2.6), by requiring confidence 1 — e = 0.999. The number
K of hypotheses refined at each run was chosen K = 7/100. Given the high
confidence required, the stochastic step always succeeded in finding at least
one generalization of the target concept. Nevertheless, the hill climbing step
did not succeed to find a correct generalization until ¢, was not close enough
to the mushy region. Even if the ¢, and r was known in advantage, for the
most complex problems, several trials have been done with smaller r and
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Table 2.1: Results obtained by adding a stochastic search step to the basic
hill climbing strategy. Horizontal lines separate the results reported for dif-
ferent problems. Rows between two horizontal lines refer to a same problem.

m [ L [ me [[ ¢ [ 7 || M[0%] [ Mg [103] | Mg [103] [ Ms [10°] ] P 70.999 [ Err % |
7 [ 36 6 4 | a 22.82 0.03 0.035 40.320 0.0011947 5778 100%
7 35 6 4 4 22.82 0.03 0.035 40.320 0.0011947 5778 100%
T 34 6 4 4 22.82 0.03 0.035 40.320 0.0011947 5778 100%
7 | 33 6 1 | 4 22.82 0.03 0.035 40.320 0.0011947 5778 100%
7 | 32 6 1 | 4 22.82 0.03 0.035 40.320 0.0011947 5778 7%
5 | 4 190.68 0.02 0.021 725.760 0.0000996 69379 100%
8 31 6 4 4 45.64 0.05 0.07 80.640 0.0011758 5871 53%
5 4 508.48 0.05 0.056 1935.360 0.0000980 70497 100%
8 30 T 4 4 45.64 0.05 0.07 80.640 0.0011758 5871 49%
5 4 508.48 0.05 0.056 1935.360 0.0000980 70497 100%
8 | 29 7 1 | 4 15.64 0.05 0.07 80.640 0.0011758 5871 51%
5 | 4 508.48 0.05 0.056 1935.360 0.0000980 70497 100%
8 | 28 7 1 | a 45.64 0.05 0.07 80.640 0.0011758 5871 50%
5 | 4 508.48 0.05 0.056 1935.360 0.0000980 70497 100%
8 27 T 4 4 45.64 0.05 0.07 80.640 0.0011758 5871 48%
5 | 4 508.48 0.05 0.056 1935.360 0.0000980 70497 100%
9 26 T 4 4 82.15 0.10 0.126 145.152 0.0011665 5918 49%
5 4 1144.08 0.11 0126 4354.560 0.0000972 71056 100%
9 24 8 4 4 82.15 0.10 0.126 145.152 0.0011665 5918 50%
5 4 1144.08 0.11 0.126 4354.560 0.0000972 71056 100%
10 23 8 4 4 136.92 0.16 0.21 241.920 0.0011619 5941 51%
5 | 4 2288.16 0.22 0.252 8709.120 0.0000968 71336 48%
6 | 4 24497.76 0.20 0.21 174182.400 0.0000081 856074 100%
10 22 8 4 4 136.92 0.16 0.21 241.920 0.0011619 5941 49%
5 | 4 2288.16 0.252 0.22 8709.120 0.0000968 71336 52%
6 | 4 24497.76 0.20 0.210 174182.400 0.0000081 856074 100%
11 21 9 4 4 215.16 0.25 0.33 380.160 0.0011597 5953 48%
5 | 4 4194.96 0.41 0.462 15966.720 0.0000966 71476 50%
6 | 4 53895.07 0.43 0.462 383201.280 0.0000081 857753 100%
12 20 9 4 4 322.74 0.37 0.495 570.240 0.0011585 5959 51%
5 4 7191.36 0.69 0.792 27371.520 0.0000965 71581 50%
6 4 107790.14 0.87 0.924 766402.560 0.0000080 858592 100%
13 19 10 4 4 466.18 0.54 0.715 823.680 0.0011580 5961 50%
5 4 11685.96 1.13 01.287 44478.720 0.0000965 71581 49%
6 4 200181.70 1.61 1.716 1423319.040 0.0000080 859012 49%
7 4 2481967.49 1.66 1.716 29889699.840 0.0000007 10308184 100%
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Figure 2.4: Results obtained by Algorithm 7. The numbers denote the
minimum value that was necessary to assume for m, in order to solve the
learning problem. When the number is prefixed by ”+”, it means that n = 4
has been assumed, otherwise n = 3. Symbol ”-” means that the problem
has not been solved.

my. It appears that a good generalization has been obtained always and
only when the values ?,, 7, predicted by the theory have been used.
All runs have been done using a cluster of 20 Pentium ITI, 800Mz.

2.6 Discussion

We have shown that combining stochastic search with local deterministic
search it is possible to learn approximated concept descriptions where no
known classical algorithm was successful. Even if the algorithm is used un-
der the stringent assumption that a conjunctive concept description exists,
it is not difficult to extend it in order to cope with more general concept
descriptions. For instance, disjunctive descriptions can be learned by inte-
grating T* with a set covering algorithm as it is made in most relational
learner [15, 2].

However, this is not the fundamental result that emerges from the frame-
work we propose. In our opinion, the most important outcome is the method
for estimating the complexity of a learning problem: given a specific hypoth-
esis about the structure of the concept, we have a method for predicting the
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expected cost for testing the hypothesis. Moreover, a criterion for deciding
on-line when stop testing the hypothesis is provided.

A second important result is a negative one, and concerns the possibility
of learning descriptions with many variables. Even considering quite sim-
ple concept description languages, the task looks hard for many concepts
requiring at least four variables. Increasing the number of variables, the
complexity rises up exponentially. Considering the presence of irrelevant
predicates, the analysis we performed still holds, but the the density of sub-
formulas of the target concept close to the phase transition becomes even
more tiny, and so the difficulty will increase further.



Chapter 3

Representing Constraints,
Conditions and Assertions

3.1 Operator Specifications and MiningMart

Chapters 1 and 2 show different kinds of pre-conditions for efficient and suc-
cessful operator applications. For operator specifications alternative formal-
ization granularities are possible, complementing the information required
and available for different scenarios and tasks. Guiding a case designer when
editing a case conceptually requires formal representations of situations in
which one learning method is superior to another. This task is far to com-
plex for this work package and is addressed by other projects, for instance by
the European research project MetaL!. A planning approach, not database
oriented and too far reaching for the scope of this work package has been
proposed by Bernstein, Hill, and Provost [1].

In this work-package the supported complexity has been limited to a
tractable amount. The distinction between on-line (compile-time, data re-
lated) and off-line (just conceptually) scenario, described in section 1.2 is
reflected by the chosen representation.

The off-line constraints focus on syntactic properties of a valid chain
of steps, like admissible data types, inputs, outputs, and valid parameter
settings. The amount of information allows the HCI to edit steps embedding
new operators, if just their formal constraints are known. The output can
also be generated by the HCI, given just this source of information.

The on-line constraints, to avoid confusion called conditions from now
on, cover all pre-conditions of successful operators applications only avail-
able at runtime. Some operators cannot handle missing or negative values,
for instance. These properties can only be evaluated after mapping the con-
ceptual level to specific database objects, for steps inside a chain often even
after compilation of the preceeding step(s). On the other hand many opera-

"http:/ /www.metal-kdd.org/
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tors have known data related assertions, which are also formalized, similar to
conditions. In MiningMart there are several operators for replacing missing
values, for example, asserting to produce an output without missing values.
This information can help the M4 compiler to increase performance, because
it is superfluous for example to check for missing values after an operator
replacing missing values has just been applied.

3.2 Changes to the Mining Mart Meta Model (M*)

In order to directly attach constraints, conditions and assertions to the op-
erators in the M4 model, some modifications were necessary in the scope of
this work package. According to deliverable 8 parameters are attached to
the class of operators, implying that operators in the model refer to operator
applications, rather than to operators as such. In the relational represen-
tation, for each step an operator is embedded in, another instance of the
operator appears in the table OPERATOR_T.

It seems more intuitive to link the arguments, including inputs, outputs
and parameters?, to the steps, rather than to single operators. Thus the
first change applied to the model, is to change the semantics of the class
OPERATOR.

Each operator should appear exactly once in this class and thus in the
table OPERATOR._T. For each step that the operator is embedded in, a for-
eign key reference in STEP_T is sufficient to specify the particular operator.
Further foreign key references, from PARAMETER._T to STEP_T should de-
termine the arguments and output of the operator application. No changes
are necessary here, because references to STEP_T and OPERATOR_T are
already foreseen in M4. As a consequence of the new structure the table
OP_NAMEL_T will be redundant and can be removed from the M4 model, as
soon as the compiler is adjusted to this change. The attribute PAR_OPID
of the table PARAMETER.T will be replaced by PAR_STEPID, a foreign
key reference to the step the parameters belong to. In this setting the con-
straints, conditions and assertions can be defined referencing the operators
specified in the table OPERATOR_T. The table OPCONSTRAINT_T will
be deleted. Instead four new tables will be added.

Figure one depicts the changes to the model. The constraints are rep-
resented in two tables, OP_PARAMS_T to define the inputs and outputs
and OP_CONSTR._T for other constraints. Conditions and constraints will
be described by two other tables. This results in the following list of new
tables:

e OP_PARAMS_T defining the admissible inputs and outputs
e OP_CONSTR.T for constraints

%Please note that the sum of these arguments is also called parameters in the model!
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Case
1
Param [— Step
n 2 Gonstraint
1 1
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Figure 3.1: Modifications

e OP_COND._T for conditions
e OP_ASSERT_T for assertions.

The following sections will describe these tables in detail. An example
scenario for using the formalism is given in section 3.7.

3.3 Specifying inputs and outputs

The first of the tables is added to be able to state restrictions on the argu-
ments used by operators. In detail:

e type and number of input arguments

e type of output

The new table OP_ PARAMS_T is the first of two tables implementing the
concept “Constraint” in figure 3.1. It has the following attributes:

e PARAM_ID: ID of the parameter tuple
e OP_ID: foreign key reference to OPERATOR._T
e MINARG: minimum number of parameters of this kind - might be ”0”

e MAXARG: maximum number of parameters of this kind - NULL, if
unrestricted
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e NAME: The name given here has to be used in table PARAME-
TER_T? in order to be able to identify parameters. The name is
interpreted as a prefix, to allow more than one parameter. The or-
dering over the set of parameters, matching the prefix, is determined
by their number given within PARAMETER_T. The identification is
necessary in order to formulate applicability conditions, constraints
and assertions.

e I0: Is this parameter(set) an input or the output.

e TYPE: The M4 model uses different kind of object types handled by
operators. The following list shows the alternatives:
— CON (CONCEPT)
— REL (RELATION)
— BA (BASE_ATTRIBUTE)
— MCF (MULTI COLUMN FEATURE)
— FEA (Feature, either BA or MCF)
— V (VALUE)
— FUNC (FUNCTION)

The following types appear in deliverable D8/9, but seem to be dep-
recated, or at least not handled by software of any kind:

~ Q (QUERY)
— TI (TIME_INTERVAL, in D8/9: just output)
— DR (DEVIATION_RULES, in D8/9: just output)

They are no longer supported. Time intervals can be represented by
two time features and are a typical kind of multi column features,
anyway. Queries do not have to be handled as an extra data type in
M4 and deviation rules can be stored as database functions, similar to
decision trees and SVM models.

e DOCU: Basically for the HCI, this attribute holds a brief free text
description of the according parameter.

The intended usage of the above specifications of inputs and outputs is to
list the admissible arguments, one after another, declaring types and names.
To support arrays* as well, the minimum and maximum number of objects
is necessary. In this case the name is interpreted as a prefix. The names of

3Concept PARAM in figure 3.1.
“By the same mechanism optional arguments could be handled, as well. However, there
was no necessity, yet.
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the arguments are important to identify single arguments on the instance
level, namely in the table PARAMETER._T. Having these references enables
a formulation of constraints, conditions and assertions.

As an example let’s give the declaration of the first argument of operator
no. 35, which has to be a (single) value labeled '"HEAD_W”:

PARAMID | OPID | MINARG | MAXARG | NAME I0 | TYPE

1001 35 1 1 'HEAD-W’ | "IN’ | 'V’

Let us then specify an array of inputs. For arrays the following convention is
used: Given NAME=“WEIGHT” all inputs with the appropriate type and
name prefix “WEIGHT” will be considered part of this input array. The
ordering of the array is derived from the order of the arguments in the table
PARAMETER.T.

To specify a list of weights, the following statement can be used:

PARAM.ID | OP.ID | MINARG | MAXARG | NAME I0 | TYPE

1002 35 1 NULL "WEIGHT” | "IN | *V?

This would aggregate input arguments like “WEIGHT01” or “WEIGHT-
ING” with data type “V” (value) for this operator. The same convention is
applicable, if the output is an array.

3.4 Representing Operator Constraints

To formulate other operator constraint than expressible by the mechanism
presented in section 3.3 the table OP_CONSTR_T is added to the M4
schema. It contains the attributes CONSTR_ID, CONSTR_OPID, CON-

STR_TYPE, CONSTR_OBJ1, CONSTR_OBJ2, and CONSTR_SQL.
The semantics of these attributes is as follows:

e CONSTR_ID: constraint identifier
e CONSTR_OPID: foreign key reference to operator

o CONSTR_TYPE: different kinds of constraints can be used. Depend-
ing on the type, CONSTR_OBJ1 and CONSTR_OBJ2 may have dif-

ferent semantics

— IS_.LOOPED: if the operator is looped then parameter OBJ1 is
defined per loop, which means that there is an instance of this
parameter for each of the operator’s loops. If OBJ1 denotes a
parameter, which is an array, then there has to be such an array
for each loop.
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— ISA: the concept or relation (CONSTR_)OBJ1 isA concept or
relation (CONSTR_)OBJ2

— SAME FEAT: The concepts OBJ1 and OBJ2 have the same set of
features, where “same” only means that feature names are equal.
The assumption is made, that two different BaseAttributes may
have the same name, e.g. “CUSTOMER”, one time with, one
time without missing values, as long as they do not share the
same concept.

— SAME_TYPE: OBJ1 and OBJ2 denote BaseAttributes, which
need to have the same conceptual and relational datatype. This is
meant to determine the type of output attributes given the input.
Additionally either OBJ1 or OBJ2 might refer to a parameter
value, rather than to a BaseAttribute. In this case it needs to be
checked if the value (a string in the database) can be converted
into the format of the specified BaseAttribute.

— COMP:
If OBJ1 is a CONCEPT, then OBJ2 is a relation. If OBJ1 is a
relation, then OBJ2 can be either a concept or a relation. The
constraint states, that the relations or the concept and the rela-
tion are of compatible type.

* If a concept C is followed by a relation R, then C isA domain(R).

x If a relation R; is followed by another relation Ry, then
range(Ry) isA domain(Ry).

+ If a relation R is followed by a concept C, then range(R)
1sA C'. Instead of a single relation, R might also denote a set
of relations, using their name prefix. The chaining of these
relations is done by their ordering, using the above rules.
Finally a BaseAttribute may be used, wherever a Concept is
expected. In this case the BaseAttribute must be present in
the according concept.

— LINK:
This kind of constraint makes sure, that several features are de-
terministically and efficiently reachable (“joinable”) on the level
of relational tables.
If OBJ1 and OBJ2 are BaseAttributes, then they have to refer to
attributes of the same relational table, or there has to be a foreign
key reference from the table containing OBJ1 to that containing
OBJ2.
If OBJ1 and OBJ2 are concepts, then all of their features have
to be connected. Features are connected by sharing a relational
table, by being in tables connected by a foreign key reference or
by chaining these two alternatives. In case of chaining, references
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are directed and all features in OBJ2 need to be reachable from
OBJ1 (not necessarily vice versa).
If one object is a feature and one is a concept, then the ideas
above will be canonically adopted, treating a feature like a single
feature concept.
Instead of single concepts, prefixes might be used, to have con-
cept arrays. The constraint for two concepts has to hold for each
concept and its successor.

— IN:
OBJ1 holds the name of one or the prefix for more features.
OBJ2 is the name of a concept, containing all these features. If
OBJ2 denotes the (an) output concept, then this concept needs
to contain a feature (or all, if a feature set is given) with the
original name(s) of the object(s) referenced by OBJ1. If there
are multiple tuples of this constraint present for a fixed OBJ1,
then OBJ1 has to be present in the union of OBJ2 objects.
If OBJ1 denotes a concept, then all BaseAttributes of OBJ1 need
to be contained in OBJ2.
If the "IN’ constraint occurs more than once for the same OBJ1,
then OBJ1 needs to be in only one of the corresponding OBJ2
objects.

— TYPE:
OBJ1 holds the name of one or the prefix for more features.
OBJ2 is the name of a conceptual data type, allowed for the
according attribute(s). If more data types are supported (not
correctly subsumable by one of the M4 categories) multiple tuples
for a single feature are possible.

— LT, GT, LE, GE, NE:
OBJ1 is the name of one (or more — name prefix) input param-
eters.
OBJ2 is usually a number, in case of “NE” it might be a nom-
inal constant. The conditions are ”lower than”, ”greater than”,
"lower or equal”, ”greater or equal” and "not equal”.

— ONE_OF:
OBJ1 is the name of one (or more — name prefix) input param-
eters.
OBJ2 is a comma separated string of possible values for this
(these) parameter(s). An example for parameter “kernel type”
could be: “linear,polynomial,radial”. If necessary, a comma within
a possible parameter value can be expressed by writing “\,”.

— SUM:
OBJ1 references a set of numerical parameters by their name
prefix. Additionally summing over multiple parameters can be
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expressed by a comma separated list, where each element might
either refer to an array or to a single parameter value.
OBJ2 gives the value the sum of these parameters needs to have.

— ORDERED: OBJ1 denotes an array of values, which have to be
in a specific order. OBJ2 specifies if the values have to ascending
(“INC”) or descending (“DEC”).

e CONSTR_DOCU: This attribute holds a brief free text description of
the constraint. It is intended to be used by the HCI.

e CONSTR_SQL: If possible an SQL-query implementing the test of the
constraint is stored here, NULL otherwise.

The following examples demonstrate the usage®:

e Constraint 1: For operator no. 35 the output concept C_OUT has to
be of the same type or a specialization of the input concept C_IN.

ID OPID | TYPE | OBJ1 OBJ2
1003 | 35 ISA” | ’C_.OUT’ | "CIN’

e Constraint 2: A given array of relationships, passed to operator no. 35,
defines a domain compatible chain. The chain shall start with input
concept C. The relationships should have the name prefix “REL” (e.g.
RELO01,..., REL20) and have to be given in the relevant order. The
concept that corresponds to the domain of the last relation should
contain the BaseAttribute F'.

|ID | OPID | TYPE | OBJ1 | OBJ2 |

1004 | 35 '"COMP’ | 'C’ 'REL’
1005 | 35 'COMP’ | 'REL’ | 'F’

e Constraint 3: A join on a given array of concepts, prefix C, has to
be efficiently computable. Thus first of all the concepts in the array
need to be stored in a single table, or to be easily joinable by exploit-
ing foreign key references. The same holds for successive concepts.
They need to be reachable via foreign key references, or might even
be stored in the same table as the predecessor concept. Finally the
BaseAttribute ATT R should be connected equivalently easy from the
last concept of the array.

|ID | OPID | TYPE | OBJ1 | OBJ2 |
1006 [ 35 [ ’LINK’ ['C’ [ ’ATTR’ |

e Constraint 4: All input attributes mentioned need to be part of the
input concept C. This can be stated by using “IN”-constraints. E.g.

®Omitting the suffix “CONSTR._” in attribute names.
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for attributes Att_1, ..., Att_-10 and B:

|ID [ OPID [ TYPE [ OBJ1 | OBJ2 |

1007 | 35 IN Att | °C
1008 35 ,IN, ’B’ ’C’

e Constraint 5: A BaseAttribute D has to be of type
TIME or CATEGORIAL:
[ID [OPID [ TYPE | OBJ1 | OBJ2 \

1009 | 35 "TYPE’ | 'D’ "TIME’
1010 | 35 "TYPE’ | 'D’ "CATEGORIAL’

e Constraint 6: The definition of a valid interval [0,1] for a numerical
parameter PROBABILITY of operator no. 35 can be expressed by
the following two tuples:

|ID [ OPID | TYPE | OBJ1 | OBJ2 |
1011 | 35 'GE’ | 'PROBABILITY’ | 0
1012 | 35 'LE’ | 'PROBABILITY’ | 1
e Constraint 7: The sum of an array of weights, name prefix WEIGHT,
has to be 1:
|ID [ OPID [ TYPE | OBJ1 | OBJ2 |
1013 [ 35 [ ’SUM’ | 'WEIGHT’ | 1 |

3.5 Representing Conditions for Operator Appli-
cations

Conditions are represented using the table OP_COND_T, which contains the
attributes COND_ID, COND_OPID, COND_TYPE, COND_OBJ1, COND_OBJ2
and COND_SQL:

e COND_ID: condition identifier
e COND_OPID: foreign key reference to OPERATOR._T

e COND_TYPE: different kinds of conditions can be formulated. De-
pending on the type, COND_OBJ1 and COND_OBJ2 may have differ-
ent semantics. For conditions taking one argument only, COND_OBJ2
needs to be NULL.

The list below describes the set of applicable conditions. If nothing
else is stated, a BaseAttribute (or multiple BaseAttributes, using name
prefixes) is given by (COND_)OBJ1, while (COND_)OBJ2 has to be
NULL.
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— HAS_NULLS: At least one NULL value is present in the BaseAt-
tribute.

— NOT_NULL: No values are missing. If OBJ1 specifies a concept,
then in each of the concept’s features no NULL entries are al-
lowed.

— HAS_VALUES: OBJ1 refers to a BaseAttribute, OBJ2 is a num-
ber or NULL. At least OBJ2 entry of OBJ1 are not NULL. If
OBJ2 is NULL at least 1 value needs to be in OBJ1.

— UNIQUE: The given BaseAttribute contains no duplicates.

— ORDERED: The concept values are ordered by the given fea-
ture, while OBJ2 determines if ascending (“INC”), descending
(“DEC”), or if it does not matter (NULL).

— EQUIDIST: This condition is especially interesting for time se-
ries. It is checked, if the BaseAttribute (specified by OBJ1) is
ordered and equidistant, which is the normal form for time se-
ries. OBJ2 might be NULL or specify a step size.

— LOWER_BOUND: The given BaseAttribute may not contain val-
ues below OBJ2. This condition applies to attributes of type
TIME, as well.

— UPPER_BOUND: analogous for upper bounds

— AVG: The given feature has to have the average value specified
by OBJ2.

— STD_DEV: The feature has a standard deviation of OBJ2.

— LE, LT, GE, GT: As for constraints, “LE” stands for “lower or
equal”’, “GT” means “greater than” and so on. In case of such
a condition it has to be checked, if the inequality between two
BaseAttributes, given as arguments OBJ1 and OBJ2, holds for
all instances of the according concept®. If the BaseAttributes be-
long to different concepts, the condition is not met.

OBJ2 might also be a numerical constant, rather than a BaseAt-
tribute.

Further on, OBJ1 and/or OBJ2 can also refer to multiple BaseAt-
tributes by giving their name prefixes, stating that the condi-
tion is met between all objects 01 and 09, with 01 € OBJ1 and
09 € OBJ2.

5Please note, that in the original version each BaseAttribute belongs to exactly one
concept, so there is no need to provide the concept as an additional argument. In a later
version there might be a n..m relation between Concepts and BaseAttributes. Even in this
case it does not matter, which Concept containing both BaseAttributes will be chosen to
check the condition. For all these concepts the same columns will be referenced, and the
pairing of the columns values within each tuple will be the same.
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e COND_DOCU: This attribute holds a brief free text description of the
condition.

e COND_SQL: If possible an SQL-query implementing the test of the
condition is stored here, NULL otherwise.

Examples on usage’:

e Condition 1: A concept T'C constituting a time series that is ascend-
ingly sorted over the time feature T'A%:

|ID [ OPID [ TYPE | OBJ1 | OBJ2 |
[1014 [ 35 [ 'ORDERED’ [ 'TA’ ['INC’ |

e Condition 2: A numerical BaseAttribute labeled Attr has to be strictly
positive (e.g. for LogScaling):
[ID [ OPID [ TYPE [ OBJ1 | OBJ2 |
11015 [ 35 ['GT’ |’Attr’ |0 |

e Condition 3: Two attributes of type TIME belong to the same concept
and specify time intervals. Thus for all instances the starting time
(START) must not be later than the end of the interval (EN D):

|ID [ OPID [ TYPE [ OBJ1 | OBJ2 |
1016 [ 35 [ 'LE’ [ ’'START’ | 'END’ |

3.6 Representation of Assertions

Assertions are at the same level as conditions, giving guarantees about char-
acteristics of the output. If an assertion is related to a feature of the output,
while the output is a concept, then the following kind of reference is meant:
The output needs to contain a feature with the same original name than the
specified feature. The statement is about this feature.

Assertions are stated using the table OP_ASSERT_T containing the
attributes ASSERT_ID, ASSERT_OPID, ASSERT_TYPE, ASSERT_OBJ1,
ASSERT_OBJ2, ASSERT_SQL:

o ASSERT _ID: assertion identifier
o ASSERT_OPID: reference to OPERATOR_T

e ASSERT_TYPE: different kinds of conditions can be formulated. De-
pending on the type, ASSERT_OBJ1 and ASSERT _OBJ2 may have
different semantics. For assertions taking one argument only, AS-
SERT_OBJ2 needs to be NULL.

"Omitting the suffix “COND_” in attribute names.

8That T A has to be a feature of concept T'C is a constraint, that should be stated in
the according table, using “IN”.
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— SUBSET: (ASSERT_)OBJ1 is an input concept of which the out-
put concept OBJ2 is a subset. This statement makes sense only,
if the input and the output concept are of same type (same fea-
tures).

— PROJ: OBJ1 is an input concept of which the output concept
OBJ2 is a projection (Complete projection of all tuples!).

— NOT_NULL: OBJ1 denotes the name of the feature which is as-
serted not to be NULL in the output. Alternatively the name of
the output concept may be entered here, stating that in all of the
features no missing values are present.

— LOWER_BOUND and UPPER_BOUND: The output feature OBJ1
only contains values greater or equal / lower or equal OBJ2. This
kind of assertion is applicable for TIME features, as well.

— UNIQUE, ORDERED, EQUIDIST, AVG, STD_DEV might be
used as well, in the meaning described for conditions, but this is
not necessary, yet.

— LT, LE, EQ, GE, GT: As for constraints, “LE” stands for “lower
or equal”’, “GT” means “greater than” and so on. OBJ1 is a
BaseAttribute, OBJ2 is a numerical value or another BaseAt-
tribute. The given inequality holds after applying the operator.

e ASSERT_DOCU: A brief free text description of the assertion should
be entered here.

o ASSERT_SQL: If possible an SQL-query implementing a test of the
assertion is stored here, NULL otherwise.

Examples for Assertions®:

e Assertion 1: The output concept of an operator is a projection of the
input concept IN_CON. This can be stated as

ID OPID | TYPE | OBJ1 OBJ2
1015 | 35 'PROJ’ | IN_CON’ | NULL

o Assertion 2: An attribute A which is part of the input concept IN_.CON
and of the output concept OUT_CON does not have missing values in
the output concept. This bundles two constraints with an assertion.
The constraints, A being in IN_.CON and A being in OUT_CON,
can be formulated using “IN”, as illustrated before.

The tuple representing the “NOT_NULL” assertion, again for example
operator no. 35, looks like this:

ID OPID | TYPE OBJ1 | OBJ2
1017 | 35 'NOTNULL’ | "A’ NULL

®Omitting the suffix “ASSERT_” in attribute names.
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3.7 A Use-Case

This section illustrates the use of the representation framework for a spe-
cific operator. Let’s specify the details for the operator FeatureSelection,
having ID 43 in M*. First of all it should be recalled, that this operator
with the corresponding ID is stored in table OPERATOR_T rather than in
OP_NAME_T, which was deleted from the M* schema. The entry in this
table, omitting OP_REALIZES:

OPID | OP.NAME OP_LOOP | OP.MULTI | OP.MANUAL
43 'FEATURE_SEL.” | 'NO’ 'NO’ 'YES’

This operator has the following constraints:

e There is exactly one input concept.

o A set of features specifies a subset of the concept’s features.
e The output is a single concept.

Using the same variables as in deliverable 8/9 the input/output constraints
(OP_PARAMS._T) would be represented as

[ID [ OPID | MINARG | MAXARG | NAME [10 [ TYPE |
1018 | 43 1 1 "TheInputConcept’ INY "CON’
1019 | 43 1 NULL "TheSelectedFeatures’ | 'IN’ 'FEA’
1020 | 43 1 1 "TheOutputConcept’ ’OUT’ | "CON’

The constraints that T'heSelectedFeatures are all present in T'helnputConcept

and in TheOutputConcept are still missing. They are entered in table
OP_CONSTR._T:

|ID | OPID | TYPE | OBJ1 | OBJ2 |
1021 | 43 N "TheSelectedFeatures’ | *"ThelnputConcept’
1022 | 43 N "TheSelectedFeatures’ | *ThelnputConcept’

To illustrate, how this is related to the corresponding instances, let’s have a
look at table STEP_TC, step no. 1 of case 123, embedding this operator:

[ STID | ST_CAID | STNR [ ST-OPID |
[1023 [ 123 [ 1 | 43 |

The arguments for this specific step are stored in table PARAMETER._T,
as shown below!'!. The attribute (PAR_)OBJID references the parameter
object. For a concept the according concept ID of table CONCEPT_T will

0L00p and multistep information is omitted.
1 The column PAR_STLOOPNR and the prefix “PAR_” of attribute names are omitted.
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be given here, for relations or other types the IDs of the according M* ta-
bles will be referenced, instead. The type is defined in (PAR_)OBJTYPE.
(PAR.)STID is a foreign key reference to the step.

| 1D | NAME | OBJID | OBJTYPE | OPID | TYPE | NR | STID |
1024 | ThelnputConcept 1030 "CON’ 43 IN 1 1023
1025 | TheSelectedFeaturesl | 1031 'BA’ 43 IN 2 1023
1026 | TheSelectedFeatures2 | 1032 ‘BA’ 43 IN 3 1023
1027 | TheSelectedFeatures3 | 1033 'BA’ 43 IN 4 1023
1028 | TheSelectedFeaturesd | 1034 ‘BA’ 43 IN 5 1023
1029 | TheOutputConcept 1035 "CON’ 43 ouT 6 1023

The names of (PAR_)NAME have to match the specifications given in the
table OP_PARAMS_T. The object IDs of the arguments (PAR_OBJID) and
the internal names of these objects, e.g. the CONCEPT name, can of course
not be used for the formulation of constraints, etc. The arguments are refer-
enced by the parameter names of OP_ PARAMS_T, instead. Together with
the above specification in table OP_PARAMS_T the following set of argu-
ments is found from the table PARAMETER._T:

e ThelnputConcept points to the object with ID 1030 in table CON-
CEPT.T.

e TheAttributes is an array of four BaseAttributes, referenced by ID:

— TheSelectedFeatures[1] points to BA no. 1031

— TheSelectedFeatures[2] points to BA no. 1032

— TheSelectedFeatures[3] points to BA no. 1033

— TheSelectedFeatures[4] points to BA no. 1034
The ordering of these four BaseAttributes is given by their (PAR_)NR
values. The elements of this array are all input arguments of type

BaseAttribute, which have a name beginning with “TheSelectedFea-
tures”.

e TheOutputConcept is the concept with ID 1035.

Now let’s formulate the assertion for the FeatureSelection operator:
TheOutputConcept is an extensionally equivalent projection of
ThelnputConcept. This can be formulated using an assertion of type pro-
jection (“PROJ”):

1D OPID | TYPE | OBJ1 OBJ2
1036 | 43 "PROJ’ | "TheInputConcept’ | "TheOutputConcept’
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3.8 Embedding the knowledge

The knowledge represented by the altered part of M4, described in the previ-
ous sections, will be necessary to maintain case consistency. The consistency
is enforced by different parts of the system. To some extent the referential
integrity constraints in the database will forbid to enter problematic data
into M4, for instance steps not embedding any operator. The triggers, also
part of the M4 model, constitute an even more powerful consistency checking
mechanism.

However, due to limitations in representing constraints directly at the
database level, the main efforts for consistency checking will be elsewhere,
namely in the case editor. The constraints and conditions provided in the
tables named above should be checked whenever the case designer adds a
step and/or modifies a case.

Figure 3.1 shows the organization of the relevant parts of M*. The
concepts CASE, STEP and PARAM can be conceived as instances, while
OPERATOR, CONSTRAINT, CONDITION and ASSERTION are com-
parable to classes'? in the sense of object oriented modelling. Steps are
instances of operators. If a case designer adds a step, then the case editor
should automatically check, which input and output arguments are required
and forbid to submit any combination of argument settings, not allowed due
to constraints represented in M*. In contrast to steps, the list of existing
operators and the information about operator constraints, conditions and
assertions may not be altered by the case designer, but can be considered as
fixed. If a case designer wants to connect two steps, then assertions might
be of relevance, as well.

Operator conditions can generally be checked at runtime, only, because
before the relational tables behind the meta-data cannot be analyzed. In the
extreme case of steps using a FeatureSelection operator, even the conceptual
level cannot be specified before executing the operator, because the features
of the output concept depend on the specific dataset. The compiler needs
to check the conditions of an operator before executing it. This is necessary
in order to generate runtime exceptions and meaningful messages to the
user. Additionally to checking conditions, the compiler can also exploit
constraints, especially for conveniently loading parameters using a single
mechanism for all operators, and for not executing an operators if the set
of parameters does not meet the operator’s specification. However, this is
less important for consistency checking, because the case editor should not
allow for entering steps violating the constraints. Meta-data resulting from
assertions like “NOT NULL” helps to avoid unnecessary checking of data

12Please note, that this distinction is different from conceptual and relational /executable
level. One should also keep in mind that the distinction between information available
early on (while designing a case) and that, available at runtime (executing a case) is still
something else. All these distinctions are of importance for the given context!
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properties at runtime.

3.9 An Example on how to use Constraints in the
HCI

This section illustrates the use of the representation framework for the HCI.
Let’s assume that the case designer wants to add a step embedding the
operator MISSING_VALUES_WITH_REGRESSION_SVM!3.

In table OPERATOR.T the following information is stored!*:

OPID | OP NAME OP_LOOP | OP_.MULTI | OP.MANUAL
53 "MISSING_V..WITHR._.SVM’ | 'YES’ NO’ 'NO’

As stated above, this operator is LOOPABLE, not MULTISTEPABLE
and not MANUAL.

The constraints for this operator can be read from the tables OP_PARAMS_T
and OP_.CONSTR_T:

e There is exactly one input concept ThelnputConcept.

o A set of BaseAttributes ThePredictingAttributes specifies a subset of
the input concept’s features.

o All attributes ThePredictingAttributes are of type scalar.

e A BaseAttribute specifies the target attribute TheTargetAttribute,
for which missing values shall be replaced.

e TheTargetAttribute is of type scalar.

e The output is a (single) BaseAttribute TheOutputAttribute, attached
to ThelnputConcept. Its data type is the same as that of TheTarget—
Attribute.

e The parameters C, LossFunctionPos, LossFunctionNeg and Epsilon
are numerical values. All values are strictly positive.

e The KernelType is one of “dot”, “polynomial”, “radial”, “neural” and
“anova”.

e The operator is loopable. The following parameters are defined per
loop: TheTargetAttribute, ThePredictingAttributes, KernelType,

13The recently added feature of using a database implementation of the SVM implied
some extra parameters and constraints. These aspects are rather technical and are omitted
in this section.

4 Omitting OP_REALIZES.
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LossFunctionPos, LossFunctionNeg, C, Epsilon, TheOutput—

Attribute

The input/output constraints (OP_.PARAMS_T) would be represented as

|ID [ OPID | MIN | MAX [ NAME | 10 | TYPE |

1040 | 53 1 1 "ThelnputConcept’ N’ "CON’
1041 | 53 1 NULL | 'ThePredictingAttributes’ | "IN’ 'BA’
1042 | 53 1 1 "TheTargetAttribute’ IN’ 'BA’
1043 | 53 1 1 C IN vV’
1044 | 53 1 1 "Epsilon’ IN vV’
1045 | 53 1 1 "LossFunctionPos’ IN? V?
1046 | 53 1 1 "LossFunctionNeg’ IN’ A
1047 | 53 1 1 "Kernel Type’ IN’ vV’
1048 | 53 1 1 "TheOutputAttribute’ ’OUT’ | 'BA’

In table OP_CONSTR_T the other constraints can be stated as

[ID [ OPID [ TYPE [ OBI1 [ OBJ2
1049 | 53 TN "ThePredictingAttributes’ | *ThelnputConcept’
1050 | 53 "TYPE’ "ThePredictingAttributes’ | ’SCALAR’
1051 | 53 IN "TheTarget Attribute’ "ThelnputConcept’
1052 | 53 "TYPE’ "TheTargetAttribute’ 'SCALAR’
1053 | 53 "TYPE’ X 'SCALAR’
1054 | 53 GT? Hox 0
1055 | 53 "TYPE’ "LossFunctionPos’ 'SCALAR’
1056 | 53 ‘G "LossFunctionPos’ 0
1057 | 53 "TYPE’ "LossFunctionNeg’ ’SCALAR’
1058 | 53 'GT "LossFunctionNeg’ 0
1059 | 53 "TYPE’ "Epsilon’ 'SCALAR’
1060 | 53 GT "Epsilon’ 0
1061 | 53 ’"ONE_OF’ ’KernelType’ ’dot,polynomial,. ..’
1062 | 53 TN "TheOutputAttribute’ "ThelnputConcept’
1063 | 53 'SAME_TYPE’ | 'TheTargetAttribute’ "TheOutputAttribute’
1064 | 53 IS.LOOPED’ "TheTarget Attribute’ NULL
1065 | 53 IS LOOPED’ "ThePredictingAttributes’ | NULL
1066 | 53 IS.LOOPED’ . NULL

The most important information for the case editor will be, which inputs
and outputs belong to a certain operator. As stated in OP_PARAMS_T a
step embedding the MISSING_VALUES _WITH_REGRESSION_SVM needs
to be provided with an input concept, a target attribute, a set of base
attributes used to predict the missing target attribute and four parameters of
type VALUE. The operator produces a single output of type BaseAttribute.
Additionally to these constraints, the second table gives further restrictions.
The parameters have to be of matching type and the numerical values need
to be strictly positive. The user is guided by the HCI when entering the
necessary information.

Together, these constraints provide the HCI with all the necessary in-
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formation about the validity of steps, regarding the demands of operators.
The output needs to be specified, too, when setting up a step. In this case
the output feature is just added to the input concept, because of the con-
straint with ID 1062. For other operators the output is a concept, which
is constructed automatically by the HCI exploiting simple constraints and
conventions. For instance a constraint like

“SAME_FEAT TheOutputConcept ThelnputConcept”

makes the HCI construct an output concept with the same set of features
as the input concept.

After validating the set of parameters for a certain step with respect
to the general constraints given for the embedded operator, the HCI enters
these parameters into table PARAMETER_T. The names used in this table
have to match the names used in OP_CONSTR_T.

3.10 When to check Conditions and how to exploit
Assertions

The conditions can hardly be exploited by the case editor. To illustrate their
runtime specific character, let’s continue with the operator
MISSING_VALUES_-WITH_REGRESSION_SVM, having the following con-
ditions:

e The predicting attributes ThePredictingAttributes do not contain
any missing values.

e The target attribute has both, present and missing values.

Represented in the table OP_COND_T:

| ID [ OP.ID [ COND.TYPE | OBJ1 | OBJ2 |
1067 | 53 HAS_NULLS "TheTarget Attribute’ NULL
1068 | 53 HAS_VALUES | "TheTargetAttribute’ NULL
1069 | 53 NOT_NULL "ThePredictingAttributes’ | NULL

In general it will not be possible to decide, if a base attribute contains
a missing value, without looking at the data. This condition could rather
be checked by the compiler at runtime, in order to avoid an unnecessary
operator application, if there are no missing values, anyway. In other cases,
maybe if a time attribute is not equidistant, although an equidistant time
series is expected, a runtime exception with a meaningful message to the
user should be generated.

The main advantage of formalizing assertions is to avoid checking con-
ditions, which can already be concluded to hold or to be violated. For the
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example operator the output base attribute will not contain any missing
values, which is represented in table OP_ASSERT_T as follows:

[ID [ OP.ID [ ASSERT_TYPE | OBJ1 | OBJ2 |
| 1070 | 53 | NOT.NULL | 'TheOutputAttribute’ | NULL |

Once such an assertion is true, it can be memorized by the compiler, in
order to avoid unnecessary checks at runtime.



Appendix A

This chapter shows the complete list of constraints, conditions, and asser-
tions collected on 17th of December 2002.

A.1 MultiRelationalFeatureConstruction

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

| 'NO' | 'NO’ | 'YES' |

ParameterConstraints
| MINARG | MAXARG | Parameter Name | In/Out | Type |

1 1 "ThelnputConcept’ TN’ "CON’
0 NULL "TheConcepts’ TN’ "CON’
0 NULL "TheRelations’ N 'REL’
1 NULL "TheChainedFeatures’ IN’ 'FEA’
1 1 "TheOutputConcept’ | ’OUT’ | "CON’
Further Operator Constraints
‘ Type ‘ Objectl ‘ Object2 ‘
"COMP’ "ThelnputConcept’ "TheRelations’
"COMP’ "TheRelations’ "TheConcepts’
TN’ "TheChainedFeatures’ | "TheOutputConcept’
IN’ "TheChainedFeatures’ | 'ThelnputConcept’
IN’ "TheChainedFeatures’ "TheConcepts’

A.2 RowSelectionByRandomSampling

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

| NO | 'NO’ | 'YES® |

38
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ParameterConstraints
| MINARG | MAXARG |

Parameter Name | In/Out | Type |

1 1 "ThelnputConcept’ TN’ "CON’
1 1 "HowMany’ TN’ vV’
1 1 "TheOutputConcept’ | ’OUT’ | "CON’
Further Operator Constraints
‘ Type ‘ Objectl ‘ Object2 ‘
'SAME_FEAT’ | "TheOutputConcept’ | 'ThelnputConcept’
'TYPE’ "HowMany’ 'NUMERIC’
'GE’ "HowMany’ 1
Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘

‘ 'SUBSET” ‘ "ThelnputConcept’ ‘ "TheOutputConcept’ ‘

A.3 DeleteRecordsWithMissingValues

General Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

NO’ ‘

’NO,

| 'YES' |

ParameterConstraints

| MINARG | MAXARG | Parameter Name | In/Out | Type |

1 1 "ThelnputConcept’ N’ "CON’
1 1 "TheTarget Attribute’ "IN 'BA’
1 1 "TheOutputConcept’ | ’OUT’ | 'CON’
Further Operator Constraints
‘ Type ‘ Objectl ‘ Object2 ‘
'SAME _FEAT’ | *TheOutputConcept’ | "ThelnputConcept’
IN’ "TheTarget Attribute’ | "ThelnputConcept’
Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘

‘ 'SUBSET” ‘ "ThelnputConcept’ ‘ "TheOutputConcept’ ‘
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A.4 RowSelectionByQuery

General Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

'YES' |

NO' | 'YES |

ParameterConstraints

| MINARG | MAXARG | Parameter Name | In/Out | Type |
1 1 "ThelnputConcept’ TN’ "CON’
1 1 "TheLeftCondition’ N’ 'BA’
1 1 "TheConditionOperator’ TN’ VvV’
1 1 "TheRightCondition’ IN’ A
1 1 "TheOutputConcept’ 'OUT” | ’"CON’
Further Operator Constraints
‘ Type ‘ Objectl ‘ Object2 ‘
'SAME_FEAT’ "TheOutputConcept’ "ThelnputConcept’
TN’ "TheLeft Condition’ "ThelnputConcept’
'IS_.LOOPED’ "TheLeftCondition’ NULL
IS _.LOOPED’ | "TheConditionOperator’ NULL
IS LOOPED’ "TheRight Condition’ NULL
Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘

'SUBSET” ‘ "ThelnputConcept’ ‘ "TheOutputConcept’ ‘

A.5 SegmentationStratified

General Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

NO’ ‘

'YES' | 'YES |

ParameterConstraints

| MINARG | MAXARG |

Parameter Name

‘In/Out ‘ Type ‘

1 1 "ThelnputConcept’ TN’ "CON’
1 1 "TheAttribute’ TN’ 'BA’
1 1 "TheOutputConcept’ | ’OUT’ | "CON’

Further Operator Constraints

Type ‘ Objectl ‘ Object2

‘ TN’ ‘ "TheAttribute’ ‘ "ThelnputConcept’ ‘

40
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Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘
‘ 'SUBSET” ‘ "ThelnputConcept’ ‘ "TheOutputConcept’ ‘

A.6 SegmentationByPartitioning

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

[ 'NO’ | YES' [ 'YES |

ParameterConstraints
| MINARG | MAXARG |

Parameter Name | In/Out | Type |

1 1 "ThelnputConcept’ N’ "CON’
1 1 "HowManyPartitions’ N %A
1 1 "TheOutputConcept’ | ’OUT’ | ’'CON’
Further Operator Constraints
‘ Type ‘ Object1 ‘ Object2 ‘
'SAME_FEAT” | "TheOutputConcept’ | "ThelnputConcept’
'GE’ "HowManyPartitions’ 1
Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘

‘ 'SUBSET’ ‘ "ThelnputConcept’ ‘ "TheOutputConcept’ ‘

A.7 FeatureSelectionByAttributes

General Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

| NO* |

’NO’

| 'YES' |

ParameterConstraints

| MINARG | MAXARG |

Parameter Name

‘ In/Out ‘ Type ‘

1 1 "ThelnputConcept’ TN’ "CON’
1 1 "TheOutputConcept’ IN’ "CON’
1 NULL "TheSelectedFeatures’ | ’OUT’ | 'FEA’
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Further Operator Constraints

‘ Type ‘ Object1 ‘ Object2
'IN’ | *TheOutputConcept’ "ThelnputConcept’
'IN’ | "TheSelectedFeatures’ | 'ThelnputConcept’
IN’ | "TheSelectedFeatures’ | "TheOutputConcept’
Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘

‘ "PROJ’ ‘ "ThelnputConcept’ ‘ "TheOutputConcept’ ‘

A.8 LinearScaling

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

| YES' |  'NO' | YES |

ParameterConstraints
| MINARG | MAXARG |

Parameter Name | In/Out | Type |

1 1 "ThelnputConcept’ IN’ "CON’
1 1 "TheTarget Attribute’ IN’ 'BA’
1 1 "NewRangeMin’ IN? A
1 1 "NewRangeMax’ 'IN? A
1 1 "TheOutputAttribute’ | ’OUT’ | 'BA’
Further Operator Constraints
‘ Type ‘ Objectl ‘ Object2 ‘
IS_.LOOPED’ | TheTarget Attribute’ NULL
IS LOOPED’ 'NewRangeMin’ NULL
IS LOOPED’ "NewRangeMax’ NULL
'IS_.LOOPED’ | 'TheOutputAttribute’ NULL
IN’ "TheTargetAttribute’ "ThelnputConcept’
IN’ "TheQutputAttribute’ "ThelnputConcept’
'SAME_TYPE’ | 'TheTargetAttribute’ | "TheOutputAttribute’
"TYPE’ 'NewRangeMin’ 'NUMERIC’
"TYPE’ 'NewRangeMax’ 'NUMERIC’
'GT? "NewRangeMax’ "NewRangeMin’
Operator Conditions
‘ Type ‘ Objectl ‘ Object2 ‘

| 'NOTNULL’ | "TheTargetAttribute’ | NULL |
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Operator Assertions

‘ Type ‘ Object1 ‘ Object2 ‘
'NOT_NULL’ | "TheOutputAttribute’ NULL
'GE’ "TheOutputAttribute’ | 'NewRangeMin’
LE’ "TheOutputAttribute’ | 'NewRangeMax’

A.9 LogScaling

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

| YES' |  'NO' | YES |

ParameterConstraints

‘ MINARG ‘ MAXARG ‘ Parameter Name ‘ In/Out ‘ Type ‘

1 1 "ThelnputConcept’ N "CON’
1 1 "TheTarget Attribute’ IN’ 'BA’
1 1 "LogBase’ 'IN? vV’

1 1 "TheOutputAttribute’ | "OUT’ | 'BA’

Further Operator Constraints

‘ Type ‘ Objectl ‘ Object2

'IS.LOOPED’ | 'TheTargetAttribute’ NULL

IS LOOPED’ "LogBase’ NULL

IS LOOPED’ | "TheOutputAttribute’ NULL
IN’ "TheTarget Attribute’ "ThelnputConcept’
IN’ "TheQutputAttribute’ "ThelnputConcept’

'SAME_TYPE’ | 'TheTargetAttribute’ | "TheOutputAttribute’

"TYPE’ "LogBase’ 'NUMERIC’

'GT? "LogBase’ 0

Operator Conditions

‘ Type ‘ Objectl ‘ Object2 ‘
'NOT_NULL’ | "TheTargetAttribute’ | NULL
'GT’ "TheTarget Attribute’ 0

Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘
‘ 'NOT_NULL’ ‘ "TheOutputAttribute’ ‘ NULL ‘
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A.10 AssignDefault

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

[ YES | 'NO° | 'YES |

ParameterConstraints

| MINARG | MAXARG | Parameter Name | In/Out | Type |

1 1 "ThelnputConcept’ "IN’ "CON’
1 1 "TheTarget Attribute’ IN’ 'BA’
1 1 "Default Value’ N’ A
1 1 "TheOutputAttribute’ | ’OUT’ | 'BA’
Further Operator Constraints
‘ Type ‘ Objectl ‘ Object2 ‘
'IS.LOOPED’ | 'TheTargetAttribute’ NULL
'IS_.LOOPED’ "DefaultValue’ NULL
IS_.LOOPED’ | "TheOutputAttribute’ NULL
IN "TheTargetAttribute’ "ThelnputConcept’
IN "TheQutputAttribute’ "TheInputConcept’
'SAME_TYPE’ | "TheTargetAttribute’ | 'TheOutputAttribute’
'SAME_TYPE’ "DefaultValue’ "TheOQutputAttribute’

Operator Conditions
‘ Type ‘ Objectl ‘ Object2 ‘
| 'HAS_NULLS’ | 'TheTargetAttribute’ | NULL |

Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘
| 'NOT_NULL’ | 'TheOutputAttribute’ | NULL |

A.11 AssignModalValue

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

| YES' |  'NO' | YES |
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ParameterConstraints

| MINARG | MAXARG |

Parameter Name

| In/Out | Type |

1 1 "ThelnputConcept’ IN’ "CON’
1 1 "TheTarget Attribute’ "IN’ 'BA’
1 1 "TheOutputAttribute’ | ’OUT’ | 'BA’
Further Operator Constraints
‘ Type ‘ Objectl ‘ Object2 ‘
'IS_.LOOPED’ | ’TheTargetAttribute’ NULL
IS_.LOOPED’ | 'TheOutputAttribute’ NULL
IN’ "TheTargetAttribute’ "ThelnputConcept’
"IN "TheOutputAttribute’ "ThelnputConcept’
'SAME_TYPE’ | 'TheTargetAttribute’ | "TheOutputAttribute’
Operator Conditions
‘ Type Objectl ‘ Object2 ‘

‘ "HAS_NULLS’ ‘ "TheTarget Attribute’ ‘ NULL ‘

Operator Assertions

Type ‘

Objectl

‘ Object2 ‘

| 'NOTNULL’ | 'TheOutputAttribute’ | NULL |

A.12 AssignMedianValue

General Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

'YES' |

7NO7

| 'YES' |

ParameterConstraints

| MINARG | MAXARG |

Parameter Name

‘ In/Out ‘ Type ‘

1 1 "ThelnputConcept’ N "CON’
1 1 "TheTarget Attribute’ IN’ 'BA’
1 1 "TheOutputAttribute’ | ’OUT’ | 'BA’
Further Operator Constraints
‘ Type ‘ Objectl ‘ Object2 ‘
'IS.LOOPED’ | ’TheTargetAttribute’ NULL
IS_.LOOPED’ | 'TheOutputAttribute’ NULL
IN’ "TheTargetAttribute’ "ThelnputConcept’
IN "TheQutputAttribute’ "TheInputConcept’
'SAME_TYPE’ | 'TheTargetAttribute’ | 'TheOutputAttribute’
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Operator Conditions
‘ Type ‘ Objectl ‘ Object2 ‘
| 'HAS_NULLS’ | 'TheTargetAttribute’ | NULL |

Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘
‘ 'NOT_NULL’ ‘ "TheOQutputAttribute’ ‘ NULL ‘

A.13 AssignAverageValue

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

| 'YES' | 'NO’ | 'YES’ |

ParameterConstraints

‘ MINARG ‘ MAXARG ‘ Parameter Name ‘ In/Out ‘ Type ‘

1 1 "ThelnputConcept’ N’ "CON’
1 1 "TheTarget Attribute’ IN’ 'BA’
1 1 "TheOutputAttribute’ | ’OUT’ | 'BA’
Further Operator Constraints
‘ Type ‘ Objectl ‘ Object2 ‘
IS LOOPED’ | 'TheTargetAttribute’ NULL
IS LOOPED’ | "TheOutputAttribute’ NULL
IN’ "TheTarget Attribute’ "ThelnputConcept’
IN’ "TheOutputAttribute’ "ThelnputConcept’
'SAME_TYPE’ | 'TheTargetAttribute’ | "TheOutputAttribute’

Operator Conditions
‘ Type ‘ Objectl ‘ Object2 ‘
‘ "HAS_NULLS’ ‘ "TheTargetAttribute’ ‘ NULL ‘

Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘
‘ 'NOT_NULL’ ‘ "TheOutputAttribute’ ‘ NULL ‘

A.14 AssignStochasticValue

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

| 'YES' | 'NO’ | 'YES’ |

46
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ParameterConstraints

| MINARG | MAXARG | Parameter Name | In/Out | Type |

1 1 "ThelnputConcept’ IN’ "CON’
1 1 "TheTarget Attribute’ "IN’ 'BA’
1 1 "TheOutputAttribute’ | 'OUT’ | 'BA’
Further Operator Constraints
‘ Type ‘ Objectl ‘ Object2 ‘
'IS_.LOOPED’ | ’TheTargetAttribute’ NULL
IS_.LOOPED’ | 'TheOutputAttribute’ NULL
IN’ "TheTargetAttribute’ "ThelnputConcept’
"IN "TheOutputAttribute’ "ThelnputConcept’
'SAME_TYPE’ | 'TheTargetAttribute’ | "TheOutputAttribute’

Operator Conditions
‘ Type ‘ Objectl ‘ Object2 ‘
‘ "HAS_NULLS’ ‘ "TheTarget Attribute’ ‘ NULL ‘

Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘
| 'NOTNULL’ | 'TheOutputAttribute’ | NULL |
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A.15 MissingValuesWithRegressionSVM

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

| 'YES' | 'NO’ | NO’ |

Operator Conditions

‘ Type ‘ Object1 ‘ Object2 ‘
"HAS_NULLS’ "TheTarget Attribute’ NULL
"HAS_VALUES’ "TheTargetAttribute’ NULL
'NOT_NULL’ | 'ThePredictingAttributes’ | NULL

Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘
'NOT_NULL’ "TheOutputAttribute’ NULL
'NOT_NULL’ | "ThePredictingAttributes’ | NULL

ParameterConstraints

| MINARG | MAXARG | Parameter Name | In/Out | Type |

1 1 "ThelnputConcept’ N’ "CON’
1 1 "TheTarget Attribute’ IN’ 'BA’
1 NULL "ThePredictingAttributes’ N 'BA’
1 1 "Kernel Type’ N vV’
0 1 ’SampleSize’ TN’ '
1 1 "LossFunctionPos’ 'IN’ '
1 1 "LossFunctionNeg’ N’ vV’
1 1 'C’ N %A
1 1 "Epsilon’ N '
1 1 "TheOutputAttribute’ 'OUT’ | 'BA’
0 1 "UseDB_SVM’ N A
0 1 "TheKey’ N 'BA’
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Further Operator Constraints
‘ Type ‘ Objectl ‘ Object2
'IS_ LOOPED’ "TheTarget Attribute’ NULL
'IS.LOOPED’ | 'ThePredictingAttributes’ NULL
IS LOOPED’ "Kernel Type’ NULL
'IS_ LOOPED’ ’SampleSize’ NULL
'IS_.LOOPED’ "LossFunctionPos’ NULL
'IS_.LOOPED’ "LossFunctionNeg’ NULL
'IS_LOOPED’ C’ NULL
'IS_.LOOPED’ "Epsilon’ NULL
IS LOOPED’ "TheOutputAttribute’ NULL
IS LOOPED’ "UseDB_SVM’ NULL
IS LOOPED’ "TheKey’ NULL
IN’ "TheTarget Attribute’ "ThelnputConcept’
IN’ "ThePredictingAttributes’ "ThelnputConcept’
IN’ "TheQutputAttribute’ "ThelnputConcept’
'SAME_TYPE’ "TheTarget Attribute’ "TheOutputAttribute’
"TYPE’ "ThePredictingAttributes’ 'SCALAR’
"TYPE’ ’SampleSize’ 'NUMERIC’
"TYPE’ "LossFunctionPos’ 'NUMERIC’
"TYPE’ "LossFunctionNeg’ 'NUMERIC’
"TYPE’ '’ 'NUMERIC’
"TYPE’ "Epsilon’ 'NUMERIC’
'GE’ ’SampleSize’ 0
'GE’ "LossFunctionPos’ 0
'GE’ "LossFunctionNeg’ 0
'GE’ C’ 0
'GE’ "Epsilon’ 0
"ONE_OF’ "KernelType’ ’dot polynomial neural radial anova’
IN’ "TheKey’ "ThelnputConcept’

A.16 SupportVectorMachineForRegression

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

| 'YES' | 'NO’ | NO’ |
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ParameterConstraints

| MINARG | MAXARG | Parameter Name | In/Out | Type |

1 1 "ThelnputConcept’ N’ "CON’
1 1 "TheTarget Attribute’ "IN’ 'BA’
1 NULL "ThePredictingAttributes’ | ’IN’ 'BA’
1 1 "Kernel Type’ 'IN’ '
0 1 ’SampleSize’ N %A
1 1 "LossFunctionPos’ N’ vV’
1 1 "LossFunctionNeg’ N vV’
1 1 'C’ N A
1 1 "Epsilon’ N %A
1 1 "TheOQutputAttribute’ OUT | BA’
0 1 "UseDB_SVM’ N’ %A
0 1 "TheKey’ N 'BA’

Operator Conditions

‘ Type ‘ Object1 ‘ Object2 ‘
"HAS_NULLS’ "TheTargetAttribute’ NULL
"HAS_VALUES’ "TheTargetAttribute’ NULL
'NOT_NULL’ | 'ThePredictingAttributes’ | NULL

Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘
'NOT_NULL’ "TheOutputAttribute’ NULL
'NOT_NULL’ | "ThePredictingAttributes’ | NULL
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Further Operator Constraints
Type Objectl ‘ Object2
'IS_ LOOPED’ "TheTarget Attribute’ NULL
'IS.LOOPED’ | 'ThePredictingAttributes’ NULL
IS LOOPED’ "Kernel Type’ NULL
'IS_ LOOPED’ ’SampleSize’ NULL
'IS_.LOOPED’ "LossFunctionPos’ NULL
'IS_.LOOPED’ "LossFunctionNeg’ NULL
'IS_LOOPED’ C’ NULL
'IS_.LOOPED’ "Epsilon’ NULL
IS LOOPED’ "TheOutputAttribute’ NULL
IS LOOPED’ "UseDB_SVM’ NULL
IS LOOPED’ "TheKey’ NULL
IN’ "TheTarget Attribute’ "ThelnputConcept’
IN’ "ThePredictingAttributes’ "ThelnputConcept’
IN’ "TheQutputAttribute’ "ThelnputConcept’
'SAME_TYPE’ "TheTarget Attribute’ "TheOutputAttribute’
"TYPE’ "ThePredictingAttributes’ 'SCALAR’
"TYPE’ ’SampleSize’ 'NUMERIC’
"TYPE’ "LossFunctionPos’ 'NUMERIC’
"TYPE’ "LossFunctionNeg’ 'NUMERIC’
"TYPE’ '’ 'NUMERIC’
"TYPE’ "Epsilon’ 'NUMERIC’
'GE’ ’SampleSize’ 0
'GE’ "LossFunctionPos’ 0
'GE’ "LossFunctionNeg’ 0
'GE’ C’ 0
'GE’ "Epsilon’ 0
"ONE_OF’ "KernelType’ ’dot polynomial neural radial anova’
IN’ "TheKey’ "ThelnputConcept’
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A.17

52

MissingValueWithDecisionTree

General Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

'YES' |

NO | NO’ |

ParameterConstraints

| MINARG | MAXARG |

Parameter Name | In/Out | Type |

1 1 "ThelnputConcept’ "IN’ "CON’
1 1 "TheTarget Attribute’ N’ 'BA’
1 NULL "ThePredictingAttributes’ N 'BA’
1 1 "SampleSize’ N A
1 1 "TheOutputAttribute’ 'OUT’ | 'BA’
1 1 "PruningConf’ IN? vV’
Further Operator Constraints
‘ Type ‘ Objectl ‘ Object2 ‘
IS LOOPED’ "TheTarget Attribute’ NULL
'IS_.LOOPED’ | 'ThePredictingAttributes’ NULL
'IS_.LOOPED’ "SampleSize’ NULL
IS_.LOOPED’ "TheOutputAttribute’ NULL
'IS_.LOOPED’ "PruningConf’ NULL
IN’ "TheTarget Attribute’ "ThelnputConcept’
IN’ "ThePredictingAttributes’ "ThelnputConcept’
IN’ "TheQutputAttribute’ "ThelnputConcept’
'SAME_TYPE’ "TheTarget Attribute’ "TheOutputAttribute’
"TYPE’ "ThePredictingAttributes’ 'SCALAR’
"TYPE’ "ThePredictingAttributes’ "CATEGORIAL’
"TYPE’ "ThePredictingAttributes’ "ORDINAL’
"TYPE’ "TheTarget Attribute’ "CATEGORIAL’
"TYPE’ ’SampleSize’ 'NUMERIC’
"TYPE’ "PruningConf’ 'NUMERIC’
Operator Conditions
‘ Type ‘ Objectl ‘ Object2 ‘
"HAS_NULLS’ "TheTargetAttribute’ NULL
"HAS_VALUES’ "TheTargetAttribute’ NULL
'NOTNULL’ | 'ThePredictingAttributes’ | NULL
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Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘
'NOT_NULL’ "TheOutputAttribute’ NULL
'NOT_NULL’ | "ThePredictingAttributes’ | NULL

A.18 Windowing

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

N0 | NO' | NO' |

ParameterConstraints
‘ MINARG ‘ MAXARG ‘ Parameter Name ‘ In/Out ‘ Type ‘

NULL "WindowedValuesBA’ | 'OUT’ | ’BA’
1 "TheOutputConcept’ | ’OUT’ | "CON’

1 1 "ThelnputConcept’ N’ "CON’
1 1 "TimeBaseAttrib’ IN’ 'BA’
1 1 "ValueBaseAttrib’ TN’ 'BA’
1 1 "WindowSize’ IN A

1 1 "Distance’ TN’ VvV

1 1 ’OutputTimeStartBA’ | "OUT’ | ’BA’
1 1 ’OutputTimeEndBA’ | "OUT’ | 'BA’
1

1

Operator Conditions

‘ Type ‘ Objectl ‘ Object2 ‘
'NOT_NULL’ | *TimeBaseAttrib’ | NULL
"UNIQUE’ "TimeBaseAttrib’ | NULL
’ORDERED’ | 'TimeBaseAttrib’ | INC’
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Further Operator Constraints

‘ Type ‘ Object1 Object2
IN’ "TimeBaseAttrib’ "ThelnputConcept’
IN "ValueBaseAttrib’ "ThelnputConcept’
IN ’OutputTimeStartBA’ | "TheOutputConcept’
IN’ ’OutputTimeEndBA’ | "TheOutputConcept’
IN’ "WindowedValuesBA’ | *TheOutputConcept’
"TYPE’ "TimeBaseAttrib’ "TIME’
'SAME_TYPE’ | "OutputTimeStartBA’ "TimeBaseAttrib’
'SAME_TYPE’ | ’OutputTimeEndBA’ 'TimeBaseAttrib’
'SAME_TYPE’ "ValueBaseAttrib’ "Windowed ValuesBA’
"TYPE’ "WindowSize’ 'NUMERIC’
"TYPE’ "Distance’ 'NUMERIC’
'GE’ "WindowSize’ 1
'GE’ "Distance’ 1
Operator Assertions
‘ Type ‘ Objectl ‘ Object2
'NOT_NULL’ | ’OutputTimeStartBA’ NULL
"UNIQUE’ ’OutputTimeStartBA’ NULL
"ORDERED’ | 'OutputTimeStartBA’ INC’
'NOT_NULL’ | ’OutputTimeEndBA’ NULL
"UNIQUE? ’OutputTimeEndBA’ NULL
’ORDERED’ | ’OutputTimeEndBA’ INC’
LT ’OutputTimeStartBA’ | ’OutputTimeEndBA’

A.19 SignalToSymbolProcessing

General

Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

"NO’ ‘

NO’ ‘ NO’ ‘
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ParameterConstraints

| MINARG | MAXARG |

Parameter Name

| In/Out | Type |

1 1 "ThelnputConcept’ TN’ "CON’
1 1 InputTimeBA’ TN’ 'BA’
1 1 InputValueBA’ IN? 'BA’
1 1 "Tolerance’ TN’ vV’
1 1 "AverageValueBA’ 'oUT’ | 'BA’
1 1 IncreaseValueBA’ 'OUT’ | 'BA’
1 1 ’OutputTimeStartBA’ | 'OUT’ | ’BA’
1 1 ‘OutputTimeEndBA’ | 'OUT’ | ’BA’
1 1 "TheOutputConcept’ | ’OUT’ | ’"CON’
Operator Conditions
‘ Type ‘ Objectl ‘ Object2 ‘
'NOT_NULL’ | 'InputTimeBA’ | NULL
"UNIQUE’ TnputTimeBA’ | NULL
’ORDERED’ | 'InputTimeBA’ | ’INC’
'NOT_NULL’ | 'InputValueBA’ | "INC’
Operator Assertions
‘ Type ‘ Objectl ‘ Object2
'NOT_NULL’ | ’OutputTimeStartBA’ NULL
"UNIQUE’ ’OutputTimeStartBA’ NULL
’ORDERED’ | 'OutputTimeStartBA’ INC’
'NOT_NULL’ | ’OutputTimeEndBA’ NULL
"UNIQUE’ ’OutputTimeEndBA’ NULL
"ORDERED’ | ’OutputTimeEndBA’ INC’
T ’OutputTimeStartBA’ | ’OutputTimeEndBA’
'NOTNULL’ "AverageValueBA’ NULL
'NOT_NULL’ IncreaseValueBA’ NULL

55



Mining Mart IST-1999-11993, Deliverable No. D18

Further Operator Constraints

‘ Type ‘ Object1 ‘ Object2
IN’ InputTimeBA’ "ThelnputConcept’
IN’ InputValueBA’ "ThelnputConcept’
IN ’AverageValueBA’ "TheOutputConcept’
IN’ IncreaseValueBA’ "TheOutputConcept’
IN’ ’OutputTimeStartBA’ | "TheOQutputConcept’
IN’ ’OutputTimeEndBA’ | "TheOutputConcept’
"TYPE’ InputTimeBA’ "TIME’
"TYPE’ 'InputValueBA’ 'SCALAR’
'SAME_TYPE’ | ’OutputTimeStartBA’ TnputTimeBA’
'SAME_TYPE’ | ’OutputTimeEndBA’ InputTimeBA’
'SAME_TYPE’ "AverageValueBA’ 'InputValueBA’
'SAME_TYPE’ IncreaseValueBA’ 'InputValueBA’
"TYPE’ "Tolerance’ 'NUMERIC’
'GE’ "Tolerance’ 1

A.20 SimpleMovingFunction

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

| NO' |  ’NO* | NO |

ParameterConstraints
‘ MINARG ‘ MAXARG ‘ Parameter Name ‘ In/Out ‘ Type ‘

"ThelnputConcept’ TN’ "CON’
InputTimeBA’ TN’ 'BA’
InputValueBA’ IN’ BA’

"WindowSize’ IN’ vV’
"Distance’ TN’ vV’

’OutputTimeStartBA’ | ’OUT’ | 'BA’

’OutputTimeEndBA’ | ’OUT’ 'BA’

’OutputValueBA’ OUT’ | 'BA’
"TheOutputConcept’ | ’OUT’ | ’"CON’

[EG) (YT YT UG YUY N S S -
[EG) (YT YR UG UG N W S -
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Further Operator Constraints

‘ Type ‘ Object1 ‘ Object2
IN’ InputTimeBA’ "ThelnputConcept’
IN’ InputValueBA’ "ThelnputConcept’
IN ’OutputTimeStartBA’ | "TheOutputConcept’
IN’ ’OutputTimeEndBA’ | "TheOutputConcept’
"IN’ ’OutputValueBA’ "TheOQutputConcept’
"TYPE’ InputTimeBA’ "TIME’
"TYPE’ InputValueBA’ "'SCALAR’
'SAME_TYPE’ | ’OutputTimeStartBA’ InputTimeBA’
'SAME_TYPE’ | 'OutputTimeEndBA’ InputTimeBA’
'SAME_TYPE’ InputValueBA’ ’OutputValueBA’
"TYPE’ "WindowSize’ 'NUMERIC’
"TYPE’ "Distance’ 'NUMERIC’
'GE’ "WindowSize’ 1
'GE’ "Distance’ 1
Operator Conditions
‘ Type ‘ Objectl ‘ Object2 ‘
'NOT_NULL’ | 'InputTimeBA’ | NULL
"UNIQUE’ TnputTimeBA’ | NULL
'ORDERED’ | 'InputTimeBA’ | ’INC’
'NOT_NULL’ | 'InputValueBA’ | ’"INC’
Operator Assertions
‘ Type ‘ Objectl ‘ Object2
'NOT_NULL’ | ’OutputTimeStartBA’ NULL
"UNIQUE’ "OutputTimeStartBA’ NULL
"ORDERED’ | 'OutputTimeStartBA’ INC’
'NOT_NULL’ | ’OutputTimeEndBA’ NULL
"UNIQUE’ ’OutputTimeEndBA’ NULL
’ORDERED’ | ’OutputTimeEndBA’ INC’
LT ’OutputTimeStartBA’ | ’OutputTimeEndBA’
'NOT_NULL’ ’OutputValueBA’ NULL

A.21 WeightedMovingFunction

General Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

| NO* |

NO’ ‘ NO’ ‘
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ParameterConstraints

| MINARG | MAXARG |

Parameter Name

| In/Out | Type |

1 1 "ThelnputConcept’ TN’ "CON’
1 1 InputTimeBA’ TN’ 'BA’
1 1 InputValueBA’ IN? 'BA’
1 NULL "Weights’ 'IN? vV’
1 1 "Distance’ TN’ vV’
1 1 ’OutputTimeStartBA’ | ’OUT’ | 'BA’
1 1 ’OutputTimeEndBA’ | ’OUT’ | 'BA’
1 1 ’OutputValueBA’ 'OUT’ | 'BA’
1 1 "TheOutputConcept’ | ’OUT’ | ’"CON’
Further Operator Constraints
Type ‘ Objectl ‘ Object2 ‘
IN’ ‘InputTimeBA’ "ThelnputConcept’
IN’ 'InputValueBA’ "ThelnputConcept’
IN’ ’OutputTimeStartBA’ | "TheOutputConcept’
IN ’OutputTimeEndBA’ | "TheOutputConcept’
IN ’OutputValueBA’ "TheOutputConcept’
"TYPE’ InputTimeBA’ "TIME’
"TYPE’ InputValueBA’ 'SCALAR’
'SAME_TYPE’ | "OutputTimeStartBA’ InputTimeBA’
'SAME_TYPE’ | ’OutputTimeEndBA’ InputTimeBA’
'SAME_TYPE’ InputValueBA’ ’OutputValueBA’
"TYPE’ "Weights’ 'NUMERIC’
"TYPE’ "Distance’ 'NUMERIC’
'SUM” "Weights’ 1
'GE’ "Distance’ 1
Operator Conditions
‘ Type ‘ Objectl ‘ Object2 ‘
'NOT_NULL’ | ’InputTimeBA’ | NULL
"UNIQUE’ 'InputTimeBA’ | NULL
’ORDERED’ | ’InputTimeBA’ | ’INC’
'NOT_NULL’ | 'InputValueBA’ | "INC’

58



Mining Mart IST-1999-11993, Deliverable No. D18

Operator Assertions

‘ Type Object1 Object2
'NOT_NULL’ | ’OutputTimeStartBA’ NULL
"UNIQUE’ ’OutputTimeStartBA’ NULL
"ORDERED’ | 'OutputTimeStartBA’ INC’
'NOT_NULL’ | ’OutputTimeEndBA’ NULL
"UNIQUE? "OutputTimeEndBA’ NULL
"ORDERED’ | ’OutputTimeEndBA’ INC’
LT ’OutputTimeStartBA’ | ’OutputTimeEndBA’
'NOTNULL’ ’OutputValueBA’ NULL

A.22 ExponentialMovingFunction

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

| N0’ |  ’NO* | 'NO |

ParameterConstraints
| MINARG | MAXARG |

Parameter Name ‘ In/Out ‘ Type ‘

1 1 "ThelnputConcept’ TN’ "CON’
1 1 InputTimeBA’ N’ 'BA’
1 1 InputValueBA’ TN’ 'BA’
1 1 "Head Weight’ IN’ A

1 1 "TailWeight’ TN’ A

1 1 "Distance’ "IN’ VvV’

1 1 ’OutputTimeBA’ 'OUT’ | 'BA’
1 1 ’OutputValueBA’ OUT’ | 'BA’
1 1 "TheOutputConcept’ | ’OUT’ | "CON’

Operator Conditions

‘ Type ‘ Objectl ‘ Object2 ‘
'NOT_NULL’ | 'InputTimeBA’ | NULL
"UNIQUE’ 'TnputTimeBA’ | NULL
’ORDERED’ | ’InputTimeBA’ | ’INC’
'NOT_NULL’ | 'InputValueBA’ | "INC’

Operator Assertions

‘ Type ‘ Objectl ‘ Object2 ‘
'NOT_NULL’ | ’OutputTimeBA’ | NULL
"UNIQUE’ "OutputTimeBA’ | NULL
’ORDERED’ | 'OutputTimeBA’ | 'INC’
'NOT_NULL’ | "OutputValueBA’ | NULL
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Further Operator Constraints

‘ Type ‘ Objectl ‘ Object2
IN’ InputTimeBA’ "ThelnputConcept’
IN’ InputValueBA’ "ThelnputConcept’
IN ’OutputTimeBA’ "TheOutputConcept’
IN’ ’OutputValueBA’ "TheOutputConcept’
"TYPE’ InputTimeBA’ "TIME’
"TYPE’ 'InputValueBA’ 'SCALAR’
'SAME_TYPE’ ’OutputTimeBA’ InputTimeBA’
'SAME_TYPE’ InputValueBA’ ’OutputValueBA’
"TYPE’ "Head Weight’ 'NUMERIC’
"TYPE’ "TailWeight’ 'NUMERIC’
"TYPE’ "Distance’ 'NUMERIC’
'GE’ 'Distance’ 1
'SUM? "Head Weight, TailWeight’ 1

A.23 ComputeSVMError

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

[ NO | NO' | NO' |

ParameterConstraints

| MINARG | MAXARG | Parameter Name | In/Out | Type |

1 1 "ThelnputConcept’ IN’ "CON’
1 1 "TheTargetValueAttribute’ "IN’ 'BA’

1 1 "ThePredicted ValueAttribute’ N 'BA’

0 1 "LossFunctionPos’ N vV’

0 1 "LossFunctionNeg’ N’ vV’

1 1 'C’ N %A

1 1 "Epsilon’ "IN’ vV’
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Further Operator Constraints

‘ Type ‘ Objectl ‘ Object2 ‘
N "TheTargetValueAttribute’ "TheInputConcept’
N "ThePredicted ValueAttribute’ | *"ThelnputConcept’

"TYPE’ | ’'TheTargetValueAttribute’ 'SCALAR’
"TYPE’ | "ThePredicted ValueAttribute’ 'SCALAR’
"TYPE’ "LossFunctionPos’ 'NUMERIC’
"TYPE’ "LossFunctionNeg’ 'NUMERIC’
"TYPE’ ¢’ 'NUMERIC’
"TYPE’ "Epsilon’ 'NUMERIC’
'GE’ "LossFunctionPos’ 0
'GE’ "LossFunctionNeg’ 0
'GE’ C 0
'GE’ "Epsilon’ 0
Operator Conditions
‘ Type ‘ Objectl ‘ Object2 ‘

‘ 'NOT_NULL’ ‘ "ThePredicted ValueAttribute’ ‘ NULL ‘

A.24 Unsegment

General Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

’NO’

\ 'NO’ | 'YES' |

ParameterConstraints

| MINARG | MAXARG |

Parameter Name

‘ In/Out ‘ Type ‘

1 1 "ThelnputConcept’ TN’ "CON’
1 1 "UnsegmentAttribute’ | "OUT’ | 'BA’
1 1 "TheOutputConcept’ | ’OUT’ | "CON’

A.25 SegmentationWithKMean

General Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

’NO’

| YES' | 'NO’ |
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ParameterConstraints
| MINARG | MAXARG | Parameter Name | In/Out | Type |
1 1 "ThelnputConcept’ N’ "CON’
1 NULL "ThePredictingAttributes’ N 'BA’
1 1 ’SampleSize’ N vV’
1 1 "TheOutputConcept’ 'OUT’ | "CON’
1 1 "HowManyPartitions’ N '
1 1 "OptimizePartitionsNum’ IN? vV’
Further Operator Constraints
‘ Type ‘ Objectl Object2 ‘
IN’ "TheAttributes’ "TheOutputConcept’
N "ThePredictingAttributes’ "ThelnputConcept’
"TYPE’ "ThePredictingAttributes’ 'SCALAR’
"TYPE’ "ThePredictingAttributes’ "CATEGORIAL’
"TYPE’ "ThePredictingAttributes’ "ORDINAL’
"TYPE’ "TheAttributes’ "CATEGORIAL’
"TYPE’ ’SampleSize’ 'NUMERIC’
"TYPE’ "HowManyPartitions’ 'NUMERIC’
"TYPE’ ’OptimizePartitionsNum’ 'NUMERIC’
'GT’ ’SampleSize’ 0
"ONE_OF’ ’OptimizePartitionsNum’ | "TRUE FALSE true false’
'GT’ "HowManyPartitions’ 0
'SAME_FEAT’ "TheOutputConcept’ "ThelnputConcept’
Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘

‘ 'SUBSET”’ ‘ "ThelnputConcept’ ‘ "TheOutputConcept’ ‘

A.26 JoinByKey

General Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

| 'YES' |

’NO’

| 'YES’ |

ParameterConstraints

| MINARG | MAXARG |

Parameter Name

‘In/Out ‘ Type ‘

2 NULL "TheConcepts’ N’ "CON’
2 NULL "TheKeys’ IN’ 'BA’

1 1 "TheOutputConcept’ | 'OUT’ | "CON’
0 1 "MapInput’ TN’ 'FEA’
0 1 "MapOutput’ 'OUT’ | '"FEA’
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Further Operator Constraints

‘ Type ‘ Objectl ‘ Object2
IS LOOPED’ | ’MaplInput’ NULL
IS_.LOOPED’ | "MapOutput’ NULL
N "TheKeys’ "TheConcepts’
TN’ "MapInput’ "TheConcepts’
N’ "MapOutput’ | '"TheOutputConcept’

A.27 SpecifiedStatistics

General Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

| NO* |

'NO’ | 'YES’ |

ParameterConstraints

63

| MINARG | MAXARG |

Parameter Name

‘In/Out ‘ Type ‘

1 1 "TheInputConcept’ N "CON’
0 NULL ’AttributesComputeSum’ IN’ 'BA’
0 NULL ’AttributesComputeCount’ IN 'BA’
0 NULL 'AttributesComputeUnique’ TN’ 'BA’
0 NULL 'AttributesComputeDistrib’ IN’ 'BA’
0 NULL "DistribValues’ IN’ A
1 1 "TheQutputConcept’ 'OUT” | ’"CON’
Further Operator Constraints

‘ Type ‘ Objectl ‘ Object2 ‘
IN ’AttributesComputeSum’ | *ThelnputConcept’
IN’ ’AttributesComputeUnique’ | *ThelnputConcept’
N ’AttributesComputeDistrib’ | 'ThelnputConcept’

"TYPE’ | ’AttributesComputeSum’ 'NUMERIC’

A.28 MissingValueWithDecisionRules

General Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

| 'YES' |

NO’ ‘ NO’ ‘
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ParameterConstraints

| MINARG | MAXARG | Parameter Name | In/Out | Type |
1 1 "ThelnputConcept’ N’ "CON’
1 1 "TheTarget Attribute’ "IN’ 'BA’
1 NULL "ThePredictingAttributes’ | ’'IN’ ‘BA’
1 1 ’SampleSize’ N’ vV’
1 1 "TheOutputAttribute’ 'OUT’ | 'BA’
1 1 "PruningConf’ IN? vV’

Further Operator Constraints

‘ Type ‘ Objectl ‘ Object2 ‘
'IS_.LOOPED’ "TheTarget Attribute’ NULL
IS_.LOOPED’ | 'ThePredictingAttributes’ NULL
'IS_LOOPED’ ’SampleSize’ NULL
'IS_.LOOPED’ "TheOutputAttribute’ NULL
IS LOOPED’ "PruningConf’ NULL

IN’ "TheTarget Attribute’ "ThelnputConcept’

IN’ "ThePredictingAttributes’ "ThelnputConcept’

IN "TheOutputAttribute’ "TheInputConcept’

'SAME_TYPFE’ "TheTarget Attribute’ "TheOutputAttribute’
"TYPE’ "ThePredictingAttributes’ 'SCALAR’
"TYPE’ "ThePredictingAttributes’ "CATEGORIAL’
"TYPE’ "ThePredictingAttributes’ "ORDINAL’
"TYPE’ "TheTarget Attribute’ "CATEGORIAL’
"TYPE’ ’SampleSize’ 'NUMERIC’
"TYPE’ "PruningConf’ 'NUMERIC’
Operator Conditions

‘ Type ‘ Objectl ‘ Object2 ‘
"HAS_NULLS’ "TheTargetAttribute’ NULL
"HAS_VALUES’ "TheTarget Attribute’ NULL
'NOT_NULL’ | "ThePredictingAttributes’ | NULL

Operator Assertions

‘ Type ‘ Objectl ‘ Object2 ‘
'NOT_NULL’ "TheOQutputAttribute’ NULL
'NOT_NULL’ | "ThePredictingAttributes’ | NULL
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A.29 AssignPredictedValueCategorial

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

[ YES | 'NO° | 'YES |

ParameterConstraints
| MINARG | MAXARG |

Parameter Name | In/Out | Type |

1 1 "ThelnputConcept’ TN’ "CON’
1 1 "TheTarget Attribute’ "IN 'BA’
1 NULL "ThePredicted Attribute’ TN’ 'BA’
1 1 "TheOutputAttribute’ 'OUT’ | 'BA’
Further Operator Constraints
‘ Type ‘ Objectl ‘ Object2 ‘
'IS_LOOPED’ "TheTarget Attribute’ NULL
IS_.LOOPED’ | 'ThePredicted Attribute’ NULL
IS _.LOOPED’ "TheOutput Attribute’ NULL
IN "TheTarget Attribute’ "ThelnputConcept’
IN’ "ThePredictedAttribute’ | 'ThelnputConcept’
IN’ "TheOutputAttribute’ "ThelnputConcept’
'"TYPE’ "ThePredicted Attributes’ 'SCALAR’
"TYPE’ "ThePredictedAttributes’ | 'CATEGORIAL’
"TYPE’ "ThePredicted Attributes’ "ORDINAL’
"TYPE’ "TheOutputAttribute’ "CATEGORIAL’
"TYPE’ "TheTarget Attribute’ "CATEGORIAL’

A.30 PredictionWithDecisionTree

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

| YES' | 'NO' | NO |

ParameterConstraints
| MINARG | MAXARG |

Parameter Name | In/Out | Type |

1 1 "ThelnputConcept’ TN’ "CON’
1 1 "TheTarget Attribute’ N 'BA’
1 NULL "ThePredictingAttributes’ | 'IN’ ‘BA’
1 1 ’SampleSize’ N A

1 1 "TheOQutputAttribute’ OUT” | BA’
1 1 "PruningConf’ "IN’ '
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Further Operator Constraints

‘ Type ‘ Objectl ‘ Object2
'IS_.LOOPED’ "TheTarget Attribute’ NULL
'IS.LOOPED’ | 'ThePredictingAttributes’ NULL
'IS_.LOOPED’ "SampleSize’ NULL
IS _.LOOPED’ "TheOutputAttribute’ NULL
'IS_LOOPED’ "PruningConf’ NULL

IN’ "TheTarget Attribute’ "ThelnputConcept’

"IN’ "ThePredictingAttributes’ "ThelnputConcept’

"IN’ "TheOutputAttribute’ "TheInputConcept’

'SAME_TYPE’ "TheTarget Attribute’ "TheOutputAttribute’
"TYPE’ "ThePredictingAttributes’ 'SCALAR’
"TYPE’ "ThePredictingAttributes’ "CATEGORIAL’
"TYPE’ "ThePredictingAttributes’ "ORDINAL’
"TYPE’ "TheTarget Attribute’ "CATEGORIAL’
"TYPE’ ’SampleSize’ 'NUMERIC’
"TYPE’ "PruningConf’ 'NUMERIC’
Operator Conditions

‘ Type ‘ Objectl ‘ Object2 ‘

"HAS _NULLS’ "TheTargetAttribute’ NULL

"HAS_VALUES’ "TheTarget Attribute’ NULL

'NOT_NULL’ | 'ThePredictingAttributes’ | NULL
Operator Assertions

‘ Type ‘ Objectl ‘ Object2 ‘
'NOT_NULL’ "TheOutputAttribute’ NULL
'NOT_NULL’ | "ThePredictingAttributes’ | NULL

A.31 PredictionWithDecisionRules

General

Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

'YES’ |

NO’ ‘ NO’ ‘
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ParameterConstraints

| MINARG | MAXARG | Parameter Name | In/Out | Type |
1 1 "ThelnputConcept’ N’ "CON’
1 1 "TheTarget Attribute’ "IN’ 'BA’
1 NULL "ThePredictingAttributes’ | ’'IN’ ‘BA’
1 1 ’SampleSize’ N’ vV’
1 1 "TheOutputAttribute’ 'OUT’ | 'BA’
1 1 "PruningConf’ IN? vV’

Further Operator Constraints

‘ Type ‘ Objectl ‘ Object2 ‘
'IS_.LOOPED’ "TheTarget Attribute’ NULL
IS_.LOOPED’ | 'ThePredictingAttributes’ NULL
'IS_LOOPED’ ’SampleSize’ NULL
'IS_.LOOPED’ "TheOutputAttribute’ NULL
IS LOOPED’ "PruningConf’ NULL

IN’ "TheTarget Attribute’ "ThelnputConcept’

IN’ "ThePredictingAttributes’ "ThelnputConcept’

IN "TheOutputAttribute’ "TheInputConcept’

'SAME_TYPFE’ "TheTarget Attribute’ "TheOutputAttribute’
"TYPE’ "ThePredictingAttributes’ 'SCALAR’
"TYPE’ "ThePredictingAttributes’ "CATEGORIAL’
"TYPE’ "ThePredictingAttributes’ "ORDINAL’
"TYPE’ "TheTarget Attribute’ "CATEGORIAL’
"TYPE’ ’SampleSize’ 'NUMERIC’
"TYPE’ "PruningConf’ 'NUMERIC’
Operator Conditions

‘ Type ‘ Objectl ‘ Object2 ‘
"HAS_NULLS’ "TheTargetAttribute’ NULL
"HAS_VALUES’ "TheTarget Attribute’ NULL
'NOT_NULL’ | "ThePredictingAttributes’ | NULL

Operator Assertions

‘ Type ‘ Objectl ‘ Object2 ‘
'NOT_NULL’ "TheOQutputAttribute’ NULL
'NOT_NULL’ | "ThePredictingAttributes’ | NULL




Mining Mart IST-1999-11993, Deliverable No. D18

A.32 Apriori

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

| NO' |  NO* | NO |

ParameterConstraints

‘ MINARG ‘ MAXARG ‘ Parameter Name

| In/Out | Type |

1 1 "ThelnputConcept’ TN’ "CON’
1 1 "TheOutputConcept’ | ’OUT’ | "CON’
1 1 "CustID’ IN’ 'BA’
1 1 "TransID’ IN’ 'BA’
1 1 Ttem’ IN’ 'BA’
1 1 "MinSupport’ IN’ A

1 1 "MinConfidence’ N’ Vv’

1 1 ’SampleSize’ TN’ VvV’

1 1 "PremiseBA’ OUT’ | 'BA’
1 1 "’ConclusionBA’ 'OUT’ | 'BA’

Further Operator Constraints

‘ Type ‘ Objectl ‘ Object2 ‘
IN’ "CustID’ "ThelnputConcept’
IN’ "TransID’ "ThelnputConcept’
N’ Ttem’ "ThelnputConcept’

TN’ "PremiseBA’ | "TheOutputConcept’

IN’ | ’ConclusionBA’ | "TheOutputConcept’

A.33 StatisticalFeatureSelection

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

[ NO | NO' | NO' |

ParameterConstraints

‘ MINARG ‘ MAXARG ‘ Parameter Name

| In/Out | Type |

1 1 "ThelnputConcept’ TN’ "CON’
1 NULL "TheAttributes’ "IN’ 'BA’
1 1 ’SampleSize’ IN %A

1 1 "TheOutputConcept’ | 'OUT’ | "CON’
1 1 "Threshold’ IN A%
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Further Operator Constraints

‘ Type ‘ Objectl ‘ Object2 ‘
IN’ "TheAttributes’ "ThelnputConcept’
"TYPE’ "TheAttributes’ 'SCALAR’
"TYPE’ "TheAttributes’ "CATEGORIAL’
"TYPE’ "TheAttributes’ ’ORDINAL’
"TYPE’ ’SampleSize’ 'NUMERIC’
"TYPE’ "Threshold’ 'NUMERIC’
'SAME_FEAT” | "TheOutputConcept’ | "ThelnputConcept’
Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘

‘ "PROJ’ ‘ "ThelnputConcept’ ‘ "TheOutputConcept’ ‘

A.34 GeneticFeatureSelection

General Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

| NO* |

NO’ ‘ NO’ ‘

ParameterConstraints

| MINARG | MAXARG |

Parameter Name ‘ In/Out ‘ Type ‘

1 1 "ThelnputConcept’ N "CON’
1 NULL "TheAttributes’ TN’ 'BA’
1 1 "TheTarget Attribute’ TN 'BA’
1 1 ’SampleSize’ TN’ vV’

1 1 "TheOutputConcept’ | ’OUT’ | 'CON’
1 1 "PopDim’ TN’ A

1 1 StepNum’ IN’ VvV’

1 1 "ProbMut’ IN’ %A
1 1 "ProbCross’ IN’ 'V’
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Further Operator Constraints

‘ Type ‘ Objectl ‘ Object2 ‘
IN’ "TheAttributes’ "ThelnputConcept’
IN’ "TheTargetAttribute’ | '"ThelnputConcept’
"TYPE’ "TheTargetAttribute’ | 'CATEGORIAL’
"TYPE’ "TheAttributes’ 'SCALAR’
"TYPE’ "TheAttributes’ "CATEGORIAL’
"TYPE’ "TheAttributes’ "ORDINAL’
"TYPE’ ’SampleSize’ 'NUMERIC’
"TYPE’ "PopDim’ 'NUMERIC’
"TYPE’ "StepNum’ 'NUMERIC’
"TYPE’ "ProbMut’ 'NUMERIC’
"TYPE’ "ProbCross’ 'NUMERIC’
'SAME_FEAT’ | "TheOutputConcept’ | "ThelnputConcept’
Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘

‘ "PROJ’ ‘ "ThelnputConcept’ ‘ "TheOutputConcept’ ‘

A.35 SGFeatureSelection

General Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

N0

NO’ ‘ NO’ ‘

ParameterConstraints

| MINARG | MAXARG |

Parameter Name | In/Out | Type |

1 1 "ThelnputConcept’ TN’ "CON’
1 NULL "TheAttributes’ IN’ 'BA’
1 1 "TheTarget Attribute’ 'IN’ 'BA’
1 1 ’SampleSize’ N A

1 1 "TheOutputConcept’ | ’OUT’ | "CON’
1 1 "Threshold’ N’ %A

1 1 "PopDim’ TN’ A

1 1 StepNum’ TN’ vV’

1 1 "ProbMut’ IN’ %
1 1 "ProbCross’ 'IN’ A
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Further Operator Constraints

‘ Type ‘ Objectl ‘ Object2 ‘
IN’ "TheAttributes’ "ThelnputConcept’
IN’ "TheTargetAttribute’ | '"ThelnputConcept’
"TYPE’ "TheTargetAttribute’ | 'CATEGORIAL’
"TYPE’ "TheAttributes’ 'SCALAR’
"TYPE’ "TheAttributes’ "CATEGORIAL’
"TYPE’ "TheAttributes’ "ORDINAL’
"TYPE’ ’SampleSize’ 'NUMERIC’
"TYPE’ "PopDim’ 'NUMERIC’
"TYPE’ StepNum’ 'NUMERIC’
"TYPE’ "ProbMut’ 'NUMERIC’
"TYPE’ "ProbCross’ 'NUMERIC’
"TYPE’ "Threshold’ 'NUMERIC’
'SAME_FEAT” | *"TheOutputConcept’ | "ThelnputConcept’

Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘
‘ "PROJ’ ‘ "ThelnputConcept’ ‘ "TheOutputConcept’ ‘

A.36 FeatureSelectionWithSVM

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

| NO | NO' | NO |

ParameterConstraints
| MINARG | MAXARG | Parameter Name | In/Out | Type |

1 1 "ThelnputConcept’ TN’ "CON’
1 1 "TheTarget Attribute’ 'IN? 'BA’
1 NULL "TheAttributes’ N 'BA’
1 1 "Kernel Type’ N’ A

1 1 C TN’ A

1 1 "Epsilon’ N’ A

1 1 ’SearchDirection’ TN’ VvV’

1 1 "PositiveTarget Value’ IN? vV’

1 1 "TheKey’ IN? 'BA’
1 1 "TheOutputConcept’ | ’OUT’ | "CON’
0 1 "SampleSize’ N %A

0 1 "UseDB_SVM’ N %A
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Further Operator Constraints

‘ Type ‘ Objectl ‘ Object2
IN’ "TheTarget Attribute’ "ThelnputConcept’
IN’ "TheAttributes’ "ThelnputConcept’
'SAME_TYPE’ | "TheTargetAttribute’ "TheOutputAttribute’
"TYPE’ ek 'NUMERIC’
"TYPE’ "Epsilon’ 'NUMERIC’
"TYPE’ ’SampleSize’ 'NUMERIC’
'GE’ C’ 0
'GE’ "Epsilon’ 0
'GE’ ’SampleSize’ 0
"ONE_OF’ "KernelType’ "dot polynomial neural radial anova’
"ONE_OF’ "SearchDirection’ "backward forward’
"ONE_OF’ "UseDB_SVM’ "true false’
IN’ "TheKey’ "ThelnputConcept’
'SAME_FEAT’ | "TheOutputConcept’ "ThelnputConcept’
Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘

‘ '"PROJ’ ‘ "ThelnputConcept’ ‘ "TheOutputConcept’ ‘

A.37 SupportVectorMachineForClassification

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

| 'YES' | 'NO’ | 'NO’ |

ParameterConstraints
| MINARG | MAXARG |  Parameter Name

‘ In/Out ‘ Type ‘

1 1 "TheInputConcept’ N "CON’
1 1 "TheTarget Attribute’ "IN’ 'BA’
1 NULL "ThePredictingAttributes’ TN’ 'BA’
1 1 "Kernel Type’ 'IN’ '
0 1 ’SampleSize’ N’ vV’
1 1 'C’ N %A
1 1 "Epsilon’ N A
1 1 "TheOutputAttribute’ 'OUT’ | 'BA’
1 1 "PositiveTarget Value’ N vV’
0 1 "UseDB_SVM’ N %A
0 1 "TheKey’ N 'BA’




Mining Mart IST-1999-11993, Deliverable No. D18 73
Further Operator Constraints
‘ Type ‘ Objectl ‘ Object2
'IS_ LOOPED’ "TheTarget Attribute’ NULL
IS LOOPED’ | 'ThePredictingAttributes’ NULL
IS LOOPED’ "Kernel Type’ NULL
IS _.LOOPED’ ’SampleSize’ NULL
'IS_.LOOPED’ C NULL
IS_ LOOPED’ "Epsilon’ NULL
IS . LOOPED’ "TheOutputAttribute’ NULL
'IS_.LOOPED’ "PositiveTarget Value’ NULL
IS LOOPED’ "UseDB_SVM’ NULL
IS LOOPED’ "TheKey’ NULL
IN’ "TheTarget Attribute’ "ThelnputConcept’
IN’ "ThePredictingAttributes’ "ThelnputConcept’
IN’ "TheOutputAttribute’ "ThelnputConcept’
'SAME_TYPE’ "TheTarget Attribute’ "TheOutputAttribute’
"TYPE’ "ThePredictingAttributes’ 'SCALAR’
"TYPE’ ’SampleSize’ 'NUMERIC’
"TYPE’ C 'NUMERIC’
"TYPE’ "Epsilon’ 'NUMERIC’
'GE’ ’SampleSize’ 0
'GE’ '’ 0
'GE’ "Epsilon’ 0
'ONE_OF’ "Kernel Type’ ’dot polynomial neural radial anova’
IN’ "TheKey’ "ThelnputConcept’
Operator Conditions
‘ Type ‘ Objectl ‘ Object2 ‘
"HAS _NULLS’ "TheTargetAttribute’ NULL
"HAS_VALUES’ "TheTarget Attribute’ NULL
'NOT_NULL’ | 'ThePredictingAttributes’ | NULL
Operator Assertions
‘ Type ‘ Objectl ‘ Object2 ‘
'NOTNULL’ "TheQutputAttribute’ NULL
'NOT_NULL’ | "ThePredictingAttributes’ | NULL

A.38 GenericFeatureConstruction

General

Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

'YES’ |

NO’ ‘ YES’ ‘
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ParameterConstraints
| MINARG | MAXARG |

Parameter Name | In/Out | Type |

1 1 "ThelnputConcept’ IN’ "CON’
1 1 "TheTarget Attribute’ "IN’ 'BA’
1 1 'SQL_String’ IN? A
1 1 "TheOutputAttribute’ | "OUT’ | 'BA’
Further Operator Constraints
‘ Type ‘ Objectl ‘ Object2 ‘
IN’ "TheTargetAttribute’ "ThelnputConcept’
IN "TheOutputAttribute’ | ’ThelnputConcept’
'SAME_TYPE’ | "TheOutputAttribute’ | "TheTarget Attribute’
IS_.LOOPED’ | ’TheTargetAttribute’ NULL
'IS_LOOPED’ 'SQL_String’ NULL
'IS.LOOPED’ | 'TheOutputAttribute’ NULL
"TYPE’ 'SQL_String’ 'NOMINAL’

A.39 UnionByKey

General Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

| NO* |

’NO,

| 'YES' |

ParameterConstraints

| MINARG | MAXARG |

Parameter Name

‘In/Out ‘ Type ‘

2 NULL "TheConcepts’ TN’ "CON’
2 NULL "TheKeys’ TN’ 'BA’
0 1 "MapInput’ N’ 'FEA’
0 1 "MapOutput’ 'OUT’ | 'FEA’
1 1 "TheOutputConcept’ | ’OUT’ | "CON’
Further Operator Constraints
‘ Type ‘ Objectl ‘ Object2 ‘
IS_.LOOPED’ | ’MaplInput’ NULL
IS LOOPED’ | "MapOutput’ NULL
IN "TheKeys’ "TheConcepts’
TN’ "MapInput’ "TheConcepts’
IN’ "MapOutput’ | "TheOutputConcept’
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A.40 TimelntervalManualDiscretization

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

| YES' |  'NO' | YES |

ParameterConstraints
| MINARG | MAXARG | Parameter Name | In/Out | Type |

1 1 "ThelnputConcept’ N "CON’
1 1 "TheTarget Attribute’ IN’ 'BA’
1 NULL "IntervalStart’ IN’ Vv’

1 NULL IntervalEnd’ IN’ Vv’

1 NULL "MapTo’ IN’ V

1 NULL "StartIncExc’ IN’ Vv’

1 NULL "EndIncExc’ IN’ vV’

1 1 "DefaultValue’ TN’ NULL
1 1 "TimeFormat’ IN’ VvV’

1 1 "TheOutputAttribute’ | "OUT’ | 'BA’
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Further Operator Constraints

‘ Type ‘ Object1 ‘ Object2 ‘
IS LOOPED’ | ’TheTarget Attribute’ NULL
IS_.LOOPED’ | "TheOutputAttribute’ NULL
IS _.LOOPED’ 'IntervalStart’ NULL
IS .LOOPED’ "StartIncExc’ NULL
IS _.LOOPED’ 'IntervalEnd’ NULL
IS _.LOOPED’ "EndIncExc’ NULL
IS _.LOOPED’ "MapTo’ NULL
IS . LOOPED’ "DefaultValue’ NULL
IS _.LOOPED’ "TimeFormat’ NULL

IN’ "TheTargetAttribute’ | "ThelnputConcept’
IN’ "TheOutputAttribute’ | "ThelnputConcept’
"TYPE’ "TheTarget Attribute’ "TIME’
"TYPE’ "IntervalStart’ "TIME’
"TYPE’ 'IntervalEnd’ "TIME’
"TYPE’ "MapTo’ 'NOMINAL’
"TYPE’ "StartIncExc’ "CATEGORIAL’
"TYPE’ "EndIncExc’ "CATEGORIAL’
"TYPE’ "DefaultValue’ 'NOMINAL’
"TYPE’ "TimeFormat’ 'NOMINAL’
"TYPE’ "TheOutputAttribute’ | 'CATEGORIAL’
"ONE_OF’ "StartIncExc’ TE
"ONE_OF’ "EndIncExc’ TE

A.41 NumericallntervalManualDiscretization

General Properties

‘ Loopable ‘ Multistepable ‘ Manual ‘

[ YES' ]

'NO’ | 'YES® |

ParameterConstraints

| MINARG | MAXARG |

Parameter Name

‘ In/Out ‘ Type

1 1 "ThelnputConcept’ IN’ "CON’
1 1 "TheTarget Attribute’ "IN’ 'BA’
1 NULL IntervalStart’ TN’ V’

1 NULL IntervalEnd’ IN’ Vv

1 NULL "MapTo’ IN’ A

1 NULL "StartIncExc’ IN’ A

1 NULL "EndIncExc’ IN’ Vv

1 1 "DefaultValue’ IN’ NULL
1 1 "TheOutputAttribute’ | ’OUT’ | 'BA’
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Further Operator Constraints

7

Type ‘ Object1 ‘ Object2
IS LOOPED’ | ’TheTarget Attribute’ NULL
IS_.LOOPED’ | "TheOutputAttribute’ NULL
IS _.LOOPED’ 'IntervalStart’ NULL
'IS_.LOOPED’ ’StartIncExc’ NULL
IS _.LOOPED’ IntervalEnd’ NULL
IS _.LOOPED’ "EndIncExc’ NULL
IS _.LOOPED’ "MapTo’ NULL
IS . LOOPED’ "DefaultValue’ NULL
IN’ "TheTargetAttribute’ | "ThelnputConcept’
IN’ "TheOutputAttribute’ | "ThelnputConcept’
"TYPE’ "TheTarget Attribute’ 'NUMERIC’
"TYPE’ 'IntervalStart’ "TIME’
"TYPE’ 'IntervalEnd’ "TIME’
"TYPE’ "MapTo’ 'NOMINAL’
"TYPE’ "StartIncExc’ "CATEGORIAL’
"TYPE’ "EndIncExc’ "CATEGORIAL’
"TYPE’ "DefaultValue’ 'NOMINAL’
"TYPE’ "TheOutputAttribute’ | 'CATEGORIAL’
"ONE_OF’ "StartIncExc’ TE
"ONE_OF’ "EndIncExc’ TE’

A.42 SubgroupMining

General Properties
‘ Loopable ‘ Multistepable ‘ Manual ‘

| NO" | 'NO° | NO |

ParameterConstraints
‘ MINARG ‘ MAXARG ‘ Parameter Name

‘ In/Out ‘ Type ‘

1 1 "TheInputConcept’ N "CON’
1 1 "TheTarget Attribute’ N’ 'BA’
1 1 "TheKey’ N 'BA’
1 NULL "ThePredictingAttributes’ N 'BA’
1 1 "Target Value’ N’ vV’

1 1 "SearchDepth’ TN’ VvV’

1 1 "MinSupport’ N vV’

1 1 "MinConfidence’ IN? A

1 1 "NumHypotheses’ N '

1 1 "RuleClusters’ IN? A
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Further Operator Constraints

‘ Type ‘ Objectl ‘ Object2
IN’ "Target’ 'InputConcept’
TN’ 'Key’ 'InputConcept’
IN’ ’AttributeSpace’ | 'InputConcept’
’"ONE_OF’ | ’RuleClusters’ "YES NO’

78



Appendix B

B.1 What this appendix is about

This appendix explains two things in detail: Firstly, section B.2 describes
some details about how the MiningMart compiler expects the metadata for
a case description to be set up. Secondly, section B.3 describes the current
operators and their parameters.

B.2 Compiler constraints on metadata

This section explains in detail some issues in describing a case in such a way
that it is operational for the MiningMart compiler.

B.2.1 Naming conventions
Operator names

The name of an operator (entry op_name in M4 table Operator_T) corre-
sponds exactly (respecting case!) to the Java class that implements this
operator in the compiler. This is only important to know if you want to im-
plement additional operators. What is more generally important is that the
names of the parameters of an operator are also fixed, because the compiler
recognizes the type of a parameter by its name. This is described in more
detail in section B.3.1.

BaseAttribute names

Some operators have as their output on the conceptual level a Concept rather
than a BaseAttribute (see section B.3.1). This output Concept will generally
be similar to the input Concept, in the sense that it copies some of the input
BaseAttributes without changing them. To find out which BaseAttribute
in the output Concept corresponds to which BaseAttribute in the input
concept, their names are used. They must match exactly, ignoring case.
This also means that it is necessary to give the output BaseAttribute in a
feature construction operator (see section B.3.1) a name which is different
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from all BaseAttribute names in the input Concept, so that no names are
mixed up. If the output of the operator is a Concept, and a BaseAttribute
in this output concept has no corresponding BaseAttribute in the input
concept, it will be ignored by the compiler, because it may be needed for
later steps. Ignoring means that no Column is created for it.

A similar mechanism is applied when Relations are used (see following
section B.2.2).

B.2.2 Relations

Relations are defined by the user between the initial Concepts of a case. In
a case, the Concepts may then be modified. If later in the chain an operator
is applied that makes use of relations, it must be able to find the Columns
that realize the keys. To this end, again the names of the BaseAttributes
are used. Currently only MultiRelationalFeatureConstruction (MRFC)
uses relations. This means that in the Concepts used by MRFC, the BaseAt-
tributes that correspond to the key BaseAttributes in the initial Concepts
must have the same name (ignoring case).

Example: Suppose there are initial Concepts Customer and Product linked
by a relation buys which is realized by a foreign link from the Customer
to the Product table. The foreign key Column in the Customer table is
named fk_prod and its BaseAttribute is named CustomerBuys. The Con-
cept Customer may be the input to a chain which results in a new Concept
PrivateCustomer. This new Concept must still have a BaseAttribute named
CustomerBuys, which must not be the result of a feature construction, but
must be copied from Concept to Concept in the chain'®. Then the com-
piler can find the Column fk prod by comparing the BaseAttributes of the
current input concept PrivateCustomer and of the Concept which is linked
to the relation buys (this relation is an input to the MRFC operator). The
Column can be used to join the two Concepts PrivateCustomer and Product,
although the first is a subconcept of Customer.

B.3 Operators and their parameters

This section explains the current MiningMart operators and the exact way
of setting their parameters.
B.3.1 General issues

There are two kinds of operators, distinguished by their output on the con-
ceptual level: those that have an output Concept (Concept Operators, listed

5Copying is done by simply having a BaseAttribute of this name in every output
Concept in the chain.
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in section B.3.2), and those that have an output BaseAttribute (Feature
Construction Operators, listed in section B.3.4).

All operators have parameters, such as input Concept or output BaseAt-
tribute. The name of such a parameter is fixed, for instance ThelnputCon-
cept is used for the input Concept for all operators. This means that the
entry for this parameter in par name in the M4 table Parameter_T must
be ThelnputConcept, respecting case. The parameter specification for each
operator is stored in the M4 table OP_PARAMS_T (see chapter 3).

Some operators have an unspecified number of parameters of the same
type. For example, the learning operators take as input a number of BaseAt-
tributes of the same concept and use them to construct their training ex-
amples. All these BaseAttributes use the same prefix for their parameter
name (here ThePredictingAttributes) in Parameter_T. Since all parameters
for one step are expected to have different names (for HCI use), number suf-
fixes are added to these prefixes (ThePredictingAttributesl, ThePredictin-
gAttributes2, etc). The compiler uses ORDER BY par_nr when reading them.
Such parameters, which may contain a list, are marked with the word List
in the operator descriptions in sections B.3.2 and B.3.4.

Special attention is needed if an operator is applied in a loop. All
feature construction operators are loopable; further, the concept operator
RowSelectionByQuery is loopable. Feature construction operators are ap-
plied to one target attribute of an input concept and produce an output
attribute. Looping means that the operator is applied to several target at-
tributes (one after the other) and produces the respective number of output
attributes, but the input concept is the same in all loops.

To decide whether an operator must be applied in a loop, the compiler
checks the field st_loopnr in the M4 table Step_T, which gives the number
of loops to be executed. If 0 or NULL is entered here, the operator is still
executed once! If a number z (greater than 0) is entered here, the compiler
looks for x sets of parameters for this operator in Parameter_ T, excluding
the parameters that are the same for all loops, which need to be entered only
once. Thus, the parameter ThelnputConcept must be declared only once,
with the field par_stloopnr in the table Parameter.T set to 0, while the
other parameters are given for every loop, with the respective loop number
set in the field par_stloopnr, starting with 1. If no looping is intended,
this field must be left NULL or 0. Note: Again, all parameters that are
given for more than one loop must have a number suffix to their name, like
the List parameters, to ensure that parameter names are unique within one
step.

For the concept operator RowSelectionByQuery, looping means that
several query conditions are formulated using the parameters of this operator
(one set of parameters for each condition), and that they are connected with
AND. See the description of this operator.

In the following sections, all current operators are listed with their exact
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name (see section B.2.1), a short description and the names of their param-
eters. In general, all input BaseAttributes belong to the input Concept, and
all output BaseAttributes belong to the output Concept.

B.3.2 Concept operators

All Concept operators take an input Concept and create at least one new
ColumnSet which they attach to the output Concept. The output Concept
must have all its Features attached to it before the operator is compiled.
All Concept operators have the two parameters ThelnputConcept and The-
OutputConcept, which are marked as inherited in the following parameter
descriptions.

MultiRelationalFeatureConstruction

Takes a list of concepts which are linked by relations, and selects specified
Features from them which are collected in the output Concept, via a join on
the concepts of the chain. To be more precise: Recall (section B.2.2) that
Relations are only defined by the user between initial Concepts of a Case.
Suppose there is a chain of initial Concepts C1,...,C, such that between
all C; and Cj11,1 < i < n, C; is the FromConcept of the i-th Relation
and Cj41 is its ToConcept. These Concepts may be modified in the Case
being modelled, to result in new Concepts CY, ..., C,,, where some C! may
be equal to C;. However, as explained in section B.2.2, the BaseAttributes
that correspond to the Relation keys are still present in the new Concepts
C!. By using their names, this operator can find the key Columns and join
the new Concepts Cj.

The parameter table below refers to this explanation. Note that all input
Concepts are the new Concepts Cj, but all input Relations link the original
Concepts C;.

ParameterName ObjectType Type | Remarks
ThelnputConcept CON IN | Concept C] (inherited)
TheConcepts CON List IN | Concepts C5,...,C}
TheRelations REL List IN | they link C4,...,C,
TheChainedFeatures | BA or MCF List | IN | from Cf,...,C),
TheOutputConcept CON OUT | inherited

JoinByKey

Takes a list of concepts, plus attributes indicating their primary keys, and
joins the concepts. In TheOQutputConcept, only one of the keys must be
present. Each BaseAttribute specified in TheKeys must be a primary key
of one of TheConcepts; thus, the number of entries in TheConcepts and
TheKeys must be equal.
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If several of the input concepts contain a BaseAttribute (or a MultiColumn-
Feature) with the same name, a special mapping mechanism is needed to
relate them to different features in TheOQutputConcept. For this, the param-
eters MapInput and MapQOuiput exist. Use MapInput to specify any feature
in one of TheConcepts, and use MapQutput to specify the corresponding
feature in TheOutputConcept. To make sure that for each MapInput the
right MapQutput is found by this operator, it uses the looping mechanism.
Although the parameter is not looped, the loop numbers in the parame-
ter table in M4 are used to ensure the correspondence between MapInput
and MapQutput. However, these two parameters only need to be specified
for every pair of equally-named features in TheConcepts. So there are not
necessarily as many “loops” as there are features in TheQutputConcept.

The field par_stloopnr in the M4 parameter table must be set to the
number of pairs of MapInput/ MapQutput parameters (may be 0). Each of
these pairs gets a different loop number while all the other parameters get
loop number 0.

ParameterName ObjectType | Type | Remarks
TheConcepts CON List IN | no ThelnputConcept!
TheKeys BA List IN

MaplInput BA or MCF | IN | “looped”!
MapOutput BA or MCF | OUT | “looped”!
TheOutputConcept CON OUT | inherited

UnionByKey

Takes a list of concepts, plus attributes indicating their primary keys, and
unifies the concepts. In contrast to the operator JoinByKey (section B.3.2),
the output columnset is a union of the input columnsets rather than a join.
For each value occuring in one of the key attributes of an input columnset a
tuple in the output columnset is created. If a value is not present in all key
attributes of the input columnsets, the corresponding (non-key) attributes
of the output columnset are filled by NULL values.

In TheOQutputConcept, only one of the keys must be present. Each Base-
Attribute specified in TheKeys must be a primary key of one of TheCon-
cepts; thus, the number of entries in TheConcepts and TheKeys must be
equal.

If several of the input concepts contain a BaseAttribute (or a MultiColumn-
Feature) with the same name, a special mapping mechanism is needed to
relate them to different features in TheQutputConcept. For this, the param-
eters MapInput and MapOutput exist. Use MapInput to specify any feature
in one of TheConcepts, and use MapQutput to specify the corresponding
feature in TheOutputConcept. To make sure that for each MapInput the
right MapQutput is found by this operator, it uses the looping mechanism.
Although the parameter is not looped, the loop numbers in the parame-
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ter table in M4 are used to ensure the correspondence between MapInput
and MapOutput. However, these two parameters only need to be specified
for every pair of equally-named features in TheConcepts. So there are not
necessarily as many “loops” as there are features in TheOutputConcept.

The field par_stloopnr in the M4 parameter table must be set to the
number of pairs of MapInput/ MapOutput parameters (may be 0). Each of
these pairs gets a different loop number while all the other parameters get
loop number 0.

ParameterName ObjectType | Type | Remarks
TheConcepts CON List IN | no ThelnputConcept!
TheKeys BA List IN

MaplInput BA or MCF | IN | “looped”!
MapOutput BA or MCF | OUT | “looped”!
TheOutputConcept CON OUT | inherited

SpecifiedStatistics

An operator which computes certain statistical values for the ThelnputCon-
cept. The computed values appear in a ColumnSet which contains exactly
one row with the statistical values, and which belongs to The QutputConcept.

The sum of all values in an attribute can be computed by specifying
a BaseAttribute with the parameter AttributesComputeSum. There can
be more such attributes; the sum is computed for each. TheQutputConcept
must contain a BaseAttribute for each sum which is computed; their names
must be those of the input attributes, followed by the suffix “_SUM”.

The total number of entries in an attribute can be computed by specify-
ing a BaseAttribute with the parameter AtiributesComputeCount. There
can be more such attributes; the number of entries is computed for each.
TheOutputConcept must contain a BaseAttribute for each count which is
computed; their names must be those of the input attributes, followed by
the suffix “_COUNT”.

The number of unique values in an attribute can be computed by specify-
ing a BaseAttribute with the parameter AttributesCompute Unique. There
can be more such attributes; the number of unique values is computed for
each. TheOutputConcept must contain a BaseAttribute for each number
of unique values which is computed; their names must be those of the input
attributes, followed by the suffix “ UNIQUE”.

Further, for a BaseAttribute specified with AttributesComputeDistrib,
the distribution of its values is computed. For example, if a BaseAttribute
contains the values 2, 4 and 6, three output BaseAttributes will contain
the number of entries in the input where the value was 2, 4 and 6, respec-
tively. For each BaseAttribute whose value distribution is to be computed,
the possible values must be given with the parameter DistribValues. One
entry in this parameter is a comma-separated string containing the different
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values; in the example, the string would be “2,4,6”. Thus, the number of
entries in AttributesComputeDistrib and Distrib Values must be equal. The-
OutputConcept must contain the corresponding number of BaseAttributes
(three in the example); their names must be those of the input attributes,
followed by the suffix “ <value>”. In the example, TheQutputConcept
would contain the BaseAttributes “inputBaName 2’ ’, “inputBaName 4”
and “inputBaName 6”.

ParameterName ObjectType | Type | Remarks
ThelnputConcept CON IN | inherited
AttributesComputeSum BA List IN | numeric

AttributesComputeCount BA List IN (see
AttributesComputeUnique BA List IN
AttributesComputeDistrib BA List IN text)

DistribValues V List IN
TheOutputConcept CON OUT | inherited
UnSegment

This operator is the inverse to any segmentation operator (see B.3.2, B.3.2,
B.3.2). While a segmentation operator segments its input concept’s ColumnSet
into several ColumnSets, UnSegment joins several ColumnSets into one. This
operator makes sense only if a segmentation operator was applied previously
in the chain, because it exactly reverses the function of that operator. To
do so, the parameter UnsegmentAtiribute specifies indirectly which of the
three segmentation operators is reversed:

If a SegmentationStratified operator is reversed (section B.3.2), this pa-
rameter gives the name of the BaseAttribute that was used for stratified
segmentation. Note that this BaseAttribute must belong to TheOQutput-
Concept of this operator, because the re-unified ColumnSet contains different
values for this attribute (whereas before the execution of this operator, the
different ColumnSets did not contain this attribute, but each represented
one of its values).

If a SegmentationByPartitioning operator is reversed (section B.3.2), this
parameter must have the value “(Random)”.

If a SegmentationWithKMean operator is reversed (section B.3.2), this
parameter must have the value “(KMeans)”.

Note that the segmentation to be reversed by this operator can be any
segmentation in the chain before this operator.

ParameterName ObjectType | Type | Remarks
ThelnputConcept CON IN | inherited
UnsegmentAttribute BA OUT | see text

TheOutputConcept CON OUT | inherited
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RowSelectionByQuery

The output Concept contains only records that fulfill the SQL condition
formulated by the parameters of this operator. This operator is loopable!
If applied in a loop, the conditions from the different loops are connected by
AND. Every condition consists of a left-hand side, an SQL operator and a
right-hand side. Together, these three must form a valid SQL condition. For
example, to specify that only records (rows) whose value of attribute sale
is either 50 or 60 should be selected, the left condition is the BaseAttribute
for sale, the operator is IN, and the right condition is (50, 60).

If this operator is applied in a loop, only the three parameters modelling
the condition change from loop to loop, while input and output Concept
remain the same.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited (same in all loops)
TheLeftCondition BA IN | any BA of input concept
TheConditionOperator A% IN | an SQL operator: <, =, ...
TheRightCondition A% IN

TheOutputConcept CON OUT | inherited (same in all loops)

RowSelectionByRandomSampling

Puts atmost as many rows into the output Concept as are specified in the
parameter HowMany. Selects the rows randomly.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
HowMany \% IN | max. no. of rows
TheOutputConcept CON OUT | inherited

DeleteRecordsWithMissingValues

Puts only those rows into the output Concept that have an entry which is
NOT NULL in the Column for the specified TheTargetAttribute.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | may have NULL entries
TheOutputConcept CON OUT | inherited

SegmentationStratified

A MultiStep operator (creates several ColumnSets for the output Concept).
The input Concept is segmented according to the values of the specified
attribute, so that each resulting Columnset corresponds to one value of the
attribute. For numeric attributes, intervals are built automatically (this
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makes use of the statistics tables and the functions that compute the statis-
tics).

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttribute BA IN

TheOutputConcept CON OUT | inherited

SegmentationByPartitioning

A MultiStep operator (creates several ColumnSets for the output Concept).
The input Concept is segmented randomly into as many Columnsets as are
specified by the parameter HowManyPartitions.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
HowManyPartitions \% IN | positive integer
TheOutputConcept CON OUT | inherited

SegmentationWithKMean

A MultiStep operator (creates several ColumnSets for the output Concept).
The input Concept is segmented according to the clustering method KMeans
(an external learning algorithm). The number of ColumnSets in the out-
put concept is therefore not known before the application of this operator.
However, the parameter HowManyPartitions specifies a maximum for this
number. The parameter OptimizePartitionNum is a boolean that specifies if
this number should be optimized by the learning algorithm (but it will not
exceed the maximum). The parameter SampleSize gives a maximum number
of learning examples for the external algorithm. The algorithm (KMeans)
uses ThePredictingAttributes for clustering; these attributes must belong to
ThelnputConcept.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
HowManyPartitions \% IN | positive integer
OptimizePartitionNum \Y% IN | true or false
ThePredictingAttributes | BA List | IN
SampleSize A% IN | positive integer
TheOutputConcept CON OUT | inherited
Windowing

Windowing is applicable to time series data. It takes two BaseAttributes
from the input Concept; one of contains time stamps, the other values. In
the output Concept each row gives a time window; there will be two time
stamp BaseAttributes which give the beginning and the end of each time
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window. Further, there will be as many value attributes as specified by the
WindowSize; they contain the values for each window. Distance gives the
distance between windows in terms of number of time stamps.

While TimeBaseAttrib and ValueBaseAttrib are BaseAttributes that
belong to ThelnputConcept, OutputTimeStartBA, OutputTimeEndBA and
the Windowed ValuesBAs belong to TheOutputConcept.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TimeBaseAttrib BA IN | time stamps
ValueBaseAttrib BA IN | values
WindowSize \% IN | positive integer
Distance v IN | positive integer
OutputTimeStartBA BA OUT | start time of window
OutputTimeEndBA BA OUT | end time of window
WindowedValuesBA | BA List | OUT | as many as WindowSize
TheOutputConcept CON OUT | inherited
SimpleMovingFunction

This operator combines windowing with the computation of the average
value in each window. There is only one QutputValueBA which contains
the average of the values in a window of the given WindowSize; windows
are computed with the given Distance between each window. See also the
description of the Windowing operator in section B.3.2.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
InputTimeBA BA IN
InputValueBA BA IN

WindowSize A% IN

Distance A% IN
OutputTimeStartBA BA ouT
OutputTimeEndBA BA ouT
OutputValueBA BA ouT
TheOutputConcept CON OUT | inherited

WeightedMovingFunction

This operator works like SimpleMovingFunction (section B.3.2), but the
weighted average is computed. The window size is not given explicitly, but
is determined from the number of Weights given. The sum of all Weights
must be 1.
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ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
InputTimeBA BA IN

InputValueBA BA IN

Weights V List IN | sum must be 1
Distance \% IN | positive integer
OutputTimeStartBA BA ouT
OutputTimeEndBA BA ouT

OutputValueBA BA ouT
TheOutputConcept CON OUT | inherited

ExponentialMovingFunction

A time series smoothing operator. For two values with the given Distance,
the first one is multiplied with Tail Weight and the second one with Head-
Weight. The resulting average is written into OutputValueBA and becomes
the new tail value. Head Weight and Tail Weight must sum to 1.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
InputTimeBA BA IN

InputValueBA BA IN

HeadWeight A% IN

TailWeight A% IN

Distance \% IN | positive integer
OutputTimeBA BA ouT
OutputValueBA BA ouT
TheOutputConcept CON OUT | inherited

SignalToSymbolProcessing

A time series abstraction operator. Creates intervals, their bounds are given
in QutputTimeStartBA and OutputTimeEndBA. The average value of every
interval will be in Average ValueBA. The average increase in that interval is in
Increase ValueBA. Tolerance determines when an interval is closed and a new
one is opened: if the average increase, interpolated from the last interval,
deviates from a value by more than Tolerance, a new interval begins.
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ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

InputTimeBA BA IN

InputValueBA BA IN

Tolerance A% IN | non-negative real number
AverageValueBA BA ouT

IncreaseValueBA BA ouT

OutputTimeStartBA BA ouT

OutputTimeEndBA BA ouT

TheOutputConcept CON OUT | inherited

Apriori

An implementation of the well known Apriori algorithm for the data mining
step. It works on a sample read from the database. The sample size is given
by the parameter SampleSize.

The input format is fixed. There is one input concept (ThelnputCon-
cept) having a BaseAttribute for the customer ID (parameter: CustID), one
for the transaction ID (TransID), and one for an item part of this cus-
tomer/transaction’s itemset (Item). The algorithm expects all entries of
these BaseAttributes to be integers. No null values are allowed.

It then finds all frequent (parameter: MinSupport) rules with at least
the specified confidence (parameter: MinConfidence). Please keep in mind
that these settings (especially the minimal support) are applied to a sample!

The output is specified by three parameters. TheQutputConcept is the

concept the output table is attached to. It has two BaseAttributes, PremiseBA

for the premises of rules and ConclusionBA for the conclusions. Each entry
for one of these attributes contains a set of whitespace-separated item IDs
(integers).

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

CustID BA IN | customer id (integer, not NULL)
TransID BA IN | transaction id (integer, not NULL)
Item BA IN | item id (integer, not NULL)
MinSupport \Y% IN | minimal support (integer)
MinConfidence \4 IN | minimal confidence (in [0, 1])
SampleSize A% IN | the size of the sample to be used
PremiseBA BA OUT | premises of rules

ConclusionBA BA OUT | conclusions of rules
TheOutputConcept CON OUT | inherited




Mining Mart IST-1999-11993, Deliverable No. D18 91

B.3.3 Feature selection operators

Feature selection operators are also concept operators in that their output is
a Concept, but they are listed in their own section since they have some com-
mon special properties. All of them (except FeatureSelectionByAttributes,
see B.3.3) use external algorithms to determine which features are taken
over to the output concept. This means that at the time of designing an
operating chain, it is not known which features will be selected. How can
a complete, valid chain be designed then, since the input of later operators
may depend on the output of a feature selection operator, which is only
determined at compile time?

The answer is that conceptually, all possible features are present in the
output concept of a feature selection operator, while the compiler creates
Columns for only some of them (the selected ones). This means that in
later steps, some of the features that are used for the input of an operator
may not have a Column. If the operator depends on a certain feature, the
compiler checks whether a Column is present, and shows an error message if
no Column is found. If the operator is executable without that Column, no
€rror OCCurs.

All feature selection operators have a parameter TheAttributes which
specifies the set of features from which some are to be selected. (Again this
is not true for FeatureSelectionByAttributes, see B.3.3.) The parameter is
needed because not all of the features of ThelnputConcept can be used, as
they may include a key attribute or the target attribute for a data mining
step, which should not be deselected.

FeatureSelectionByAttributes

This operator can be used for manual feature selection, which means that
the user specifies all features to be selected. This is done by providing all
and only the features that are to be selected in TheQutputConcept. The
operator then simply copies those features from ThelnputConcept to The-
OutputConcept which are present in TheQutputConcept. It can be used to
get rid of features that are not needed in later parts of the operator chain.
All features in TheOutputConcept must have a corresponding feature (with
the same name) in ThelInputConcept.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheOutputConcept CON OUT | inherited

StatisticalFeatureSelection

A Feature Selection operator. This operator uses the stochastic correlation
measure to select a subset of TheAttributes. All of TheAttributes must be
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present in TheQutputConcept. The parameter Threshold is a real number
between 0 and 1 (default is 0.7). SampleSize specifies a maximum number
of examples that are fed into the external algorithm.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN | see section B.3.3
SampleSize \Y IN | positive integer
Threshold \% IN | real between 0 and 1
TheOutputConcept CON OUT | inherited

GeneticFeatureSelection

A Feature Selection operator.Learner. This operator uses a genetic algo-
rithm to select a subset of TheAttributes. It calls C4.5 to evaluate the
individuals of the genetic population. TheTargetAttribute specifies which
attribute is the target attribute for the learning algorithm whose perfor-
mance is used to select the best feature subset. PopDim gives the size of
the population for the genetic algorithm. StepNum gives the number of
generations. The probabilities of mutation and crossover are specified with
ProbMut and ProbCross.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheAttributes BA list IN | see section B.3.3

SampleSize \Y IN | positive integer

PopDim A% IN | positive integer; try 30
StepNum A% IN | positive integer; try 20
ProbMut A% IN | real between 0 and 1; try 0.001
ProbCross A% IN | real between 0 and 1; try 0.9
TheOutputConcept CON OUT | inherited

SGFeatureSelection

A Feature Selection operator. This operator is a combination of Stochas-
ticFeatureSelection (see B.3.3), which is applied first, and GeneticFeatureS-
election (see B.3.3), applied afterwards. The parameter descriptions can be
found in the sections about these operators (B.3.3 and B.3.3).
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ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheAttributes BA list IN | see section B.3.3
SampleSize A% IN
PopDim A% IN
StepNum A% IN
ProbMut A% IN
ProbCross A% IN
Threshold A% IN | real, between 0 and 1
TheOutputConcept CON OUT | inherited

B.3.4 Feature construction operators

All operators in this section are loopable. For loops, ThelnputConcept re-
mains the same (par_stloopnr = 0) while TheTargetAttribute, TheOutpu-
tAttribute and further operator-specific parameters change from loop to loop
(loop numbers start with 1).

AssignAverageValue

A MissingValue operator. Each missing value in TheTargetAtiribute is re-
placed by the average value of that Column. The operator computes the
column statistics if they are not computed yet, which may take some time.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | must be numeric
TheOutputAttribute BA OUT | inherited

AssignModalValue

A MissingValue operator. Each missing value in TheTargetAttribute is re-
placed by the modal value of that Column. The operator computes the
column statistics if they are not computed yet, which may take some time.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN

TheOutputAttribute BA OUT | inherited
AssignMedianValue

A MissingValue operator. Each missing value in TheTargetAttribute is re-
placed by the median of that Column. The operator computes the column
statistics if they are not computed yet, which may take some time.
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ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN

TheOutputAttribute BA OUT | inherited
AssignDefaultValue

A MissingValue operator. Each missing value in TheTargetAttribute is re-

placed by the DefaultValue.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
DefaultValue A% IN

TheOutputAttribute BA OUT | inherited

AssignStochasticValue

A MissingValue operator. Each missing value in TheTargetAttribute is re-
placed by a value which is randomly selected according to the distribution
of present values in this attribute. For example, if half of the entries in
TheTargetAttribute have a specific value, this value is chosen with a prob-
ability of 0.5. The operator computes the column statistics if they are not
computed yet, which may take some time.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
TheOutputAttribute BA OUT | inherited

MissingValuesWithRegressionSVM

A MissingValue operator. Each missing value in TheTargetAttribute is re-
placed by a predicted value. For prediction, a Support Vector Machine
(SVM) is trained in regression mode from ThePredictingAttributes (taking
TheTargetAttribute values that are not missing as target function values).
All ThePredictingAttributes must belong to ThelnputConcept. TheOutpu-
tAttribute contains the original values, plus the predicted values where the
original ones were missing.

There are some SVM-specific parameters; the table gives reasonable val-
ues to choose if nothing is known about the data or SVMs. For the Ker-
nelType, only the following values (Strings) are possible: dot, polynomial,
neural, radial, anova. Dot is the linear kernel and can be taken as default.

This operator can use two different versions of the Support Vector Ma-
chine algorithm. One runs in main memory; it needs the parameter Sample-
Size to determine a maximum number of training examples. The other runs
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in the database; it is used if the optional parameter UseDB_SVM is set to
the String true. When this version is used, an additional parameter TheKey
is needed which gives the BaseAttribute whose column is the primary key
of ThelnputConcept. (TheKey can be left out only if the ColumnSet that
belongs to ThelnputConcept represents a table rather than a view.) The
database algorithm restricts the possible kernel types to dot and radial. It
can also use the parameter SampleSize.

With the parameters LossFunctionPos and LossFunctionNeg, the loss
function that is used for the regression can be biased such that predicting
too high is more expensive (LossFunctionPos > LossFunctionNeg) or
less expensive (LossFunctionNeg > LossFunctionPos)than predicting too
low. If both values are equal, no bias is used. The parameter C balances
training error against generalisation quality; positive values between 0.01
and 1000 have been used successfully in the literature. Epsilon limits the
allowed error an example may produce; small values under 0.5 should be
used.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List | IN
KernelType \% IN | see explanation above
SampleSize \Y IN | see explanation above
LossFunctionPos \% IN | positive real; try 1.0
LossFunctionNeg A% IN | positive real; try 1.0
C A% IN | positive real; try 1.0
Epsilon A% IN | positive real; try 0.1
UseDB_SVM A% IN | optional; one of true, false
TheKey BA IN | optional
TheOutputAttribute BA OUT | inherited
LinearScaling

A scaling operator. Values in TheTargetAttribute are scaled to lie between
NewRangeMin and NewRangeMaz.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
NewRangeMin A% IN | new min value
NewRangeMax A% IN | new max value
TheOutputAttribute BA OUT | inherited
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LogScaling

A scaling operator. Values in TheTargetAttribute are scaled to their loga-
rithm to the given LogBase.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
LogBase A% IN

TheOutputAttribute BA OUT | inherited

SupportVectorMachineForRegression

A data mining operator. Values in TheTargetAttribute are used as tar-
get function values to train the SVM on examples that are formed with
ThePredictingAttributes. All ThePredictingAttributes must belong to Theln-
putConcept. TheOutputAttribute contains the predicted values.

There are some SVM-specific parameters; the table gives reasonable val-
ues to choose if nothing is known about the data or SVMs. For the Ker-
nelType, only the following values (Strings) are possible: dot, polynomial,
neural, radial, anova. Dot is the linear kernel and can be taken as default.

This operator can use two different versions of the Support Vector Ma-
chine algorithm. One runs in main memory; it needs the parameter Sample-
Size to determine a maximum number of training examples. The other runs
in the database; it is used if the optional parameter UseDB_SVM is set to
the String true. When this version is used, an additional parameter TheKey
is needed which gives the BaseAttribute whose column is the primary key
of ThelnputConcept. (TheKey can be left out only if the ColumnSet that
belongs to ThelnputConcept represents a table rather than a view.) The
database algorithm restricts the possible kernel types to dot and radial. It
can also use the parameter SampleSize.

With the parameters LossFunctionPos and LossFunctionNeg, the loss
function that is used for the regression can be biased such that predicting
too high is more expensive (LossFunctionPos > LossFunctionNeg) or
less expensive (LossFunctionNeg > LossFunctionPos)than predicting too
low. If both values are equal, no bias is used. The parameter C balances
training error against generalisation quality; positive values between 0.01
and 1000 have been used successfully in the literature. Epsilon limits the
allowed error an example may produce; small values under 0.5 should be
used.
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ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List | IN

KernelType A% IN | see explanation above
SampleSize A% IN | see explanation above
LossFunctionPos \% IN | positive real; try 1.0
LossFunctionNeg \% IN | positive real; try 1.0
C A% IN | positive real; try 1.0
Epsilon A% IN | positive real; try 0.1
UseDB_SVM \% IN | optional; one of true, false
TheKey BA IN | optional
TheOutputAttribute BA OUT | inherited

SupportVectorMachineForClassification

A data mining operator. Values in TheTargetAttribute are used as tar-
get function values to train the SVM on examples that are formed with
ThePredictingAttributes. TheTargetAttribute must be binary as Support
Vector Machines can only solve binary classification problems. The param-
eter Positive Target Value specifies the class label of the positive class. All
ThePredictingAttributes must belong to ThelnputConcept. TheOutputAt-
tribute contains the predicted values.

There are some SVM-specific parameters; the table gives reasonable val-
ues to choose if nothing is known about the data or SVMs. For the Ker-
nelType, only the following values (Strings) are possible: dot, polynomial,
neural, radial, anova. Dot is the linear kernel and can be taken as default.

This operator can use two different versions of the Support Vector Ma-
chine algorithm. One runs in main memory; it needs the parameter Sample-
Size to determine a maximum number of training examples. The other runs
in the database; it is used if the optional parameter UseDB_SVM is set to
the String true. When this version is used, an additional parameter TheKey
is needed which gives the BaseAttribute whose column is the primary key
of TheInputConcept. (TheKey can be left out only if the ColumnSet that
belongs to ThelnputConcept represents a table rather than a view.) The
database algorithm restricts the possible kernel types to dot and radial. It
can also use the parameter SampleSize.

The parameter C balances training error against generalisation quality;
positive values between 0.01 and 1000 have been used successfully in the
literature. Epsilon limits the allowed error an example may produce; small
values under 0.5 should be used.
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ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | inherited; must be binary
ThePredictingAttributes | BA List | IN

KernelType A% IN | see explanation above
SampleSize A% IN | see explanation above

C \Y% IN | positive real; try 1.0
Epsilon A% IN | positive real; try 0.1
UseDB_SVM A% IN | optional; one of true, false
TheKey BA IN | optional

PositiveTarget Value \Y IN | the positive class label
TheOutputAttribute BA OUT | inherited

MissingValueWithDecisionRules

A Missing value operator. Each missing value (NULL value) in TheTarge-
tAttribute is replaced by a predicted value. For prediction, a set of Decision
Rules is learned from ThePredictingAttributes, which must belong to Theln-

putConcept.

The pruning confidence level is given in PruningConf as a

percentage.
ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List | IN
SampleSize A% IN | positive integer
PruningConf \Y IN | between 0 and 100
TheOutputAttribute BA OUT | inherited

MissingValueWithDecisionTree

A Missing value operator. Each missing value (NULL value) in TheTarge-
tAttribute is replaced by a predicted value. For prediction, a Decision Tree is
learned from ThePredictingAttributes, which must belong to ThelnputCon-
cept. The pruning confidence level is given in PruningConf as a percentage.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List | IN

SampleSize A% IN | positive integer
PruningConf \Y IN | between 0 and 100
TheOutputAttribute BA OUT | inherited
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PredictionWithDecisionRules

A Feature Construction operator. Decision rules are learned using ThePredicting-
Attributes as learning attributes and TheTargetAttribute as label. TheQut-
putAttribute contains the labels that the decision rules predict. The opera-

tor may be used to compare predicted and actual values, or in combination
with the operator AssignPredictedValueCategorial (see section B.3.4). All
ThePredictingAttributes must belong to TheInputConcept. The pruning con-
fidence level is given in PruningConf as a percentage.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List | IN

SampleSize \Y IN | positive integer
PruningConf A% IN | between 0 and 100
TheOutputAttribute BA OUT | inherited

PredictionWithDecisionTree

A Feature Construction operator. A Decision Tree is learned using ThePredicting-
Attributes as learning attributes and TheTargetAttribute as label. TheQut-
putAttribute contains the labels that the decision tree predicts. The opera-

tor may be used to compare predicted and actual values, or in combination
with the operator AssignPredictedValueCategorial (see section B.3.4). All
ThePredictingAttributes must belong to ThelnputConcept. The pruning con-
fidence level is given in PruningConf as a percentage.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
ThePredictingAttributes | BA List | IN

SampleSize \Y IN | positive integer
PruningConf \Y IN | between 0 and 100
TheOutputAttribute BA OUT | inherited

AssignPredicted ValueCategorial

A Missing Value operator. Any missing value of TheTargetAtiribute is re-
placed by the value of the same row from ThePredictedAttribute. The latter
may have been filled by the operator PredictionWithDecisionRules (B.3.4)
or PredictionWithDecisionTree (B.3.4). It must belong to TheInputConcept.
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ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget Attribute BA IN | inherited
ThePredicted Attribute BA IN

TheOutputAttribute BA OUT | inherited

GenericFeatureConstruction

This operator creates an output attribute on the basis of a given SQL def-
inition (Parameter SQL_String). The definition must be well-formed SQL
defining how values for the output attribute are computed based on one of
the attributes in ThelnputConcept. To refer to the attributes in Thelnput-
Concept, the names of the BaseAttributes are used—and not the names
of any Columns. For example, if there are two BaseAttributes named “IN-
COME” and “TAX” in ThelnputConcept, this operator can compute their
sum if SQL_String is defined as “(INCOME + TAX)”. Since the operator
must resolve names of BaseAttributes, it cannot be used if there are two
or more BaseAttributes in ThelnputConcept with the same name.

TheTargetAttribute is needed to have a blueprint for TheQutputAtiribute.
The operator ignores TheTargetAttribute, except that it uses the relational
datatype of its column to specify the relational datatype for the column of
TheOQutputAttribute.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | inherited; specifies datatype
SQL_String A% IN | see text
TheOutputAttribute BA OUT | inherited

TimelntervalManualDiscretization

This operator can be used to discretize a time attribute manually. The
looped parameters specify a mapping to be performed from TheTargetAt-
tribute, a BaseAttribute of type TIMFE to a set of user specified categories.
As for all FeatureConstruction operators a BaseAttribute TheQutputAt-
tribute is added to the ThelnputConcept.

The mapping is defined by looped parameters. An interval is specified
by its lower bound IntervalStart, its upper bound IntervalEnd and two addi-
tional parameters StartIncExc and EndIncEzc, stating if the interval bounds
are included (value: “I”) or excluded (value: “E”). The value an interval is
mapped to is given by the looped parameter MapTo. If an input value does
not belong to any interval, it is mapped to the value DefaultValue.

To be able to cope with various time formats (e.g. '"HH-MI-SS’) the op-
erator reads the given format from the parameter TimeFormat (ORACLE-
specific).
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ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | inherited, type: TIME
IntervalStart VvV IN “looped”, lower bound of interval
IntervalEnd v IN “looped”, upper bound of interval
MapTo A% IN | value to map time interval to
StartIncExc A% IN | one of “I” and “E”

EndIncExc A% IN | one of “I” and “E”

DefaultValue A% IN | value if no mapping applies
TimeFormat A% IN | ORACLE specific time format
TheOutputAttribute BA OUT | inherited

NumericIntervalManualDiscretization

This operator can be used to discretize a numeric attribute manually. It is
very similar to the operator TimelntervalManualDiscretization described in
B.3.4. The looped parameters IntervalStart, IntervalEnd, StartIncEzc, End-
IncEzc, and MapTo. again specify a mapping to be performed. If an input
value does not belong to any interval, it is mapped to the value Default Value.
TheTargetAttribute needs to be of type ordinal.

ParameterName ObjType | Type | Remarks

ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN | inherited, type: ORDINAL
IntervalStart A% IN “looped”, lower bound of interval
IntervalEnd A% IN “looped”, upper bound of interval
MapTo \Y IN | value to map time interval to
StartIncExc A% IN | one of “I” and “E”

EndIncExc \Y IN | one of “I” and “E”

DefaultValue A% IN | value if no mapping applies
TimeFormat A% IN | ORACLE specific time format
TheOutputAttribute BA OUT | inherited

B.3.5 Other Operators
ComputeSVMError

A special evaluation operator used for obtaining some results for the re-
gression SVM. Values in TheTarget ValueAttribute are compared to those
in ThePredictedValueAttribute. The average loss is determined taking the
asymmetric loss function into account. That is why the SVM parameters
are needed here as well. Note that they must have the same value as for
the operator SupportVectorMachineForRegression, which must have pre-
ceded this evaluation operator in the chain.
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ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited
TheTarget ValueAttribute BA IN | actual values
ThePredictedValueAttribute BA IN | predicted values
LossFunctionPos \Y% IN (same values
LossFunctionNeg A% IN as in SVM-
Epsilon \Y% IN ForRegression)
SubgroupMining

A special operator without output on the conceptual level. The output of
the algorithm is a textual description of discovered subgroups which will be
printed to the compiler output (log file). The operator is only applicable
to a table which is suitable for spatial subgroup discovery. Thus, ThePre-
dictingAttributes must only contain categorial data. Therefore only features
with a finite (and small) number of distinct values should be selected.
TheTargetAttribute and TheKey must belong to ThelnputConcept; TheKey

must refer to the primary key column. ThePredictingAttributes are used to
learn from. TargetValue is one value from TheTargetAttribute. SearchDepth
limits the search for generating hypotheses. MinSupport and MinConfidence
give minimum values between 0 and 1 for support and confidence of the gen-
erated subgroups. NumHypotheses specifies the number of hypotheses to be
generated. RuleClusters is a boolean parameter specifying whether or not
clustering should be performed on the generated rules.

ParameterName ObjType | Type | Remarks
ThelnputConcept CON IN | inherited

TheTarget Attribute BA IN

TheKey BA IN
ThePredictingAttributes | BA List | IN

TargetValue A% IN | from TheTargetAttribute
SearchDepth \Y IN | positive integer
MinSupport A% IN | real between 0 and 1
MinConfidence \Y IN | real between 0 and 1
NumHypotheses A% IN | positive integer
RuleClusters A% IN | one of YES, NO
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