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Abstract. This paper proposes a boosting-like method to train a classi-
fier ensemble from data streams. It naturally adapts to concept drift and
allows to quantify the drift in terms of its base learners. The algorithm
is empirically shown to outperform learning algorithms that ignore con-
cept drift. It performs no worse than advanced adaptive time window
and example selection strategies that store all the data and are thus not
suited for mining massive streams.

1 Introduction

Machine learning methods are often applied to problems, where data is collected
over an extended period of time. In many real-world applications this introduces
the problem that the distribution underlying the data is likely to change over
time. Knowledge discovery and data mining from (time-changing) data streams
and concept drift handling on data streams have become important topics in
the machine learning community and have gained increased attention recently
as illustrated by numerous conference tracks and workshops on these topics as
well as specially dedicated journal issues (see e.g. [1] and [2]).

For example, companies collect an increasing amount of data like sales figures
and customer data to find patterns in the customer behavior and to predict future
sales. As the customer behavior tends to change over time, the model underlying
successful predictions should be adapted accordingly. The same problem occurs
in information filtering, i.e. the adaptive classification of documents with respect
to a particular user interest. With the amount of online information and commu-
nication growing rapidly, there is an increasing need for automatic information
filtering. Information filtering techniques are used e.g. to build personalized news
filters, which learn about the news-reading preferences of a user [3]. The interest
of the user, i.e. the concept underlying the classification of the texts, changes
over time. A filtering system should be able to adapt to such concept changes.
Machine learning approaches handling this type of concept drift have been shown
to outperform more static approaches ignoring it [4].

After formalizing the concept drift problem in Sec. 2.1, previous approaches
handling it are reviewed in Sec. 2.2. Sec. 3 discusses related work on ensemble
methods for data streams and introduces a boosting-like algorithm for data
streams that naturally adapts to concept drift. In Sec. 4 the approach is evaluated
on two real-world datasets with different simulated concept drift scenarios, and
on one economic dataset exhibiting real concept drift.



2 Concept Drift

2.1 Problem Definition

Throughout this paper, we study the problem of concept drift for the pattern
recognition problem in the following framework [4, 5]. Each example z = (x, y)
consists of a feature vector x ∈ X and a label y ∈ {−1, +1} indicating its
classification. Data arrives over time in batches. Without loss of generality these
batches are assumed to be of equal size, each containing m examples.

z(1,1), ..., z(1,m)︸ ︷︷ ︸
batch 1

, z(2,1), ..., z(2,m)︸ ︷︷ ︸
batch 2

, · · · , z(t,1), ..., z(t,m)︸ ︷︷ ︸
batch t

, z(t+1,1), ..., z(t+1,m)︸ ︷︷ ︸
batch t+1

z(i,j) denotes the j-th example of batch i. For each batch i the data is indepen-
dently identically distributed with respect to a distribution Pi(x, y). Depending
on the amount and type of concept drift, the example distribution Pi(x, y) and
Pi+1(x, y) between batches will differ. The learner aims to sequentially predict
the labels of the next batch and to minimize the cumulated number of prediction
errors. E.g., after batch t the learner can use any subset of the training examples
from batches 1 to t to predict the labels of batch t + 1.

2.2 Related Work on Concept Drift

In machine learning, changing concepts are often handled by time windows of
fixed or adaptive size on the training data [6–9] or by weighting data or parts of
the hypothesis according to their age and/or utility for the classification task [10].
The latter approach of weighting examples has already been used for information
filtering in the incremental relevance feedback approaches of [11] and [12].

For windows of fixed size, the choice of a “good” window size is a compro-
mise between fast adaptivity (small window) and good generalization in phases
without concept change (large window). A fixed window size makes strong as-
sumptions about how quickly the concept changes. While heuristics can adapt
to different speed and amount of drift, they involve many parameters that are
difficult to tune. The basic idea of adaptive window management is to adjust the
window size to the current extent of concept drift.

Drifting concepts can also be learned effectively and efficiently with little
parameterization by an error minimization framework for adaptive time windows
[4] and example weighting or selection [13, 14]. This framework makes use of
support vector machines (SVMs) and their special properties, which allow an
efficient and reliable error estimation after a single training run [15].

The methods of the framework either maintain an adaptive time window
on the training data [4], select representative training examples, or weight the
training examples [13, 14]. The key idea is to automatically adjust the window
size, the example selection, and the example weighting, respectively, so that
the estimated generalization error is minimized. The approaches do not require
complicated parameterization and are both, theoretically well-founded as well
as effective and efficient in practice.



3 Adapting Ensemble Methods to Drifting Streams

3.1 Ensemble Methods for Data Stream Mining

In the recent years many algorithms specifically tailored towards mining from
data streams have been proposed. Apart from being able to cope with concept
drift, scalability is one of the most important issues. For very large datasets,
the induction of classifiers like decision trees is very efficiently possible: Using a
sampling strategy based on Hoeffding bounds, the VFDT algorithm efficiently
induces a decision tree in constant time [16]. By combining several trees to
an ensemble of classifiers, techniques like bagging [17] and boosting [18] have
been shown to significantly increase the predictive accuracy for many datasets.
Corresponding variants for data streams have e.g. been suggested in [19, 20].

The SEA algorithm [21] induces an ensemble of decision trees from data
streams and explicitly addresses concept drift. It splits the data into batches and
fits one decision tree per batch. To predict a label, the base models are combined
by an unweighted majority-vote, similar to bagging. Models are discarded by a
heuristic. The authors do not report an increase in classification performance
compared to a single decision tree learner, but state that the ensemble recovers
from concept drifts. The recovery time of this approach seems unnecessarily long,
as it only exchanges one model in each iteration and uses no confidence weights.

A more recent theoretical analysis suggests, that weighted base learners are a
preferable alternative in domains with concept drift [22]. The analyzed AddExp

algorithm steadily updates the weights of experts (base models in an ensemble),
and adds a new expert each time the ensemble misclassifies an example. The new
experts start to learn from scratch, using a weight that reflects the loss suffered
by the ensemble for the current example.

Sec. 3.3 extends the efficient boosting procedure presented in Sec. 3.2 to
streams. It trades off predictive performance versus scalability. To this end, the
online algorithm reads examples aggregated to batches and decides for each
batch, whether to add a new expert to the ensemble or not. Unlike in SEA,
the base models of the ensemble are combined by a weighted majority vote.
Subsequent models are trained after reweighting the examples of the new batch,
and each new base classifier model is assigned a weight that depends on both, its
own performance and the performance of the remaining ensemble. A continuous
re-estimation adapts the weights of all ensemble members to concept drift.

3.2 Ensemble Generation by Knowledge-Based Sampling

The algorithm introduced in this paper is based on the sampling strategy sug-
gested in [23]. Patterns are discovered iteratively. A pattern that is found in one
iteration extends the user’s prior knowledge in the next one. In each iteration
the sampling procedure produces training sets that are “orthogonal” to the com-
bined probability estimate corresponding to the prior knowledge. This aspect is
very close to boosting classifiers. The idea of removing prior knowledge by biased
sampling is formulated in terms of constraints. Formally, this step defines a new



distribution, as close to the original function as possible, but orthogonal to the
estimates produced by available prior knowledge. All that is accounted for in the
next iteration is the unexpected component of each model. Technically this step
can be realized by introducing example weights. In this paper the only kind of
“prior” knowledge are the base models yielded by preceding iterations.

For a given instance space X and nominal class attribute Y examples are
expected to be sampled i.i.d. from an initial distribution D : X ,Y → IR+. Let
h : X → Y denote a base model from hypothesis space H, predicting a class.

As a first constraint, the new distribution D′ to be constructed should no
longer support the knowledge encoded in the hypothesis h, so the predictions
h(x) and the true label should be independent considering D′:

(∀y′, y∗ ∈ Y) : Px,y∼D′ [y = y′ | h(x) = y∗] = Px,y∼D′ [y = y′] (1)

If eq. (1) did not hold, then the same hypothesis would allow to derive further
information about the true label’s conditional distribution given the prediction.

As a second constraint, the probability of observing a specific class y′ ∈ Y
and the probability of a specific prediction y∗ ∈ Y should not change from D to
D′; it is sufficient and possible to remove only the correlation between the true
label and the predicted label:

(∀y′ ∈ Y) : Px,y∼D′ [y = y′] = Px,y∼D [y = y′] (2)
(∀y∗ ∈ Y) : Px,y∼D′ [h(x) = y∗] = Px,y∼D [h(x) = y∗] (3)

Eq. (2) ensures that the class skew does not change, which would result in an
implicitly altered cost model for misclassifying examples [24]. Eq. (3) avoids to
skew the marginal distribution unnecessarily.

Finally, within each partition sharing the same predicted label y∗ and true
class y′, the new distribution is defined proportionally to the initial one; having
a hypothesis h as prior knowledge, all instances within such a partition are
indistinguishable. Changes to the conditional probabilities within one partition
prefer some instance over the others, despite their equivalence with respect to
the available prior knowledge. This translates into the following constraint:

(∀x, x′ ∈ X )(∀y′, y∗ ∈ Y) :
Px,y∼D′(x = x′ | h(x) = y∗, y = y′) = Px,y∼D(x = x′ | h(x) = y∗, y = y′) (4)

Constraints (1)-(4) induce a unique target distribution. The following definition
eases notation.

Definition 1. The Lift for a given hypothesis h : X → Y, predicted class
y∗ ∈ Y, and true class label y′ ∈ Y is defined as

Lift
(h)
D (y∗ → y′) :=

Px,y∼D [h(x) = y∗, y = y′]
Px,y∼D [h(x) = y∗] · Px,y∼D [y = y′]

Similar to precision, Lift measures the correlation between a specific prediction
and a specified true label. A value larger than 1 indicates a positive correlation.



1. Let D1 denote the uniform distribution over example set E = 〈x1, y1〉, . . . , 〈xm, ym〉.
2. For i = 1 to n do // n: user given number of iterations

(a) Call BaseLearner(Di, E) to find an accurate model hi : X → Y.

(b) Compute Lift
(hi)
Di

(y∗ → y′) applying definition 1.

(c) Di+1(xj , yj)← Di(xj , yj) ·
“
Lift

(hi)
Di

(h(xj)→ yj)
”−1

for all 〈xj , yj〉 ∈ E .
3. Output {h1, . . . , hn} and the Lift values. Predict P (y | x) with eq. (5).

Fig. 1. Algorithm KBS (Knowledge-Based Sampling)

Theorem 1. For any initial distribution D and hypothesis h ∈ H constraints
(1)-(4) are equivalent to

∀〈x, y〉 ∈ X × Y : PD′(x, y) = PD(x, y) ·
(
Lift

(h)
D (h(x) → y)

)−1

.

A proof is given in [23]. Theorem 1 defines a new distribution to sample from,
given a hypothesis h as prior knowledge. Assuming a single hypothesis is not very
restrictive, since it is possible to directly incorporate each new base model into
a single ensemble classifier. The theorem can be applied iteratively [25, 26]: Base
model hi is selected based on distribution Di. Distribution Di+1 is defined by
applying theorem 1 to Di and hi. A corresponding algorithm (KBS) is depicted
in Fig. 1. It boosts weak base learners and has empirically been shown to be
competitive to AdaBoost.M1 and LogitBoost [26].

The inverse of the reweighting strategy allows to approximately reconstruct
the original distribution D1 as a combination of the single hypotheses. The
following formula estimates the odds β(x) based on {h1, . . . , hn}, a sequence of
n hypotheses, each of which is the result of a separate iteration of learning:

β(x) :=
P (y = +1)
P (y = −1)

·
n∏

i=1

Lift
(hi)
Di

(hi(x) → y = +1)

Lift
(hi)
Di

(hi(x) → y = −1)
(5)

This allows to compute estimates of the conditional probabilities as

P (y = +1 | x) ≈ β(x)
1 + β(x)

.

The reweighting scheme used by KBS makes base classifiers rank models ac-
cording to their contribution to the overall accuracy: After KBS “samples out” a
model h, the accuracy of all overlapping (correlated) models with respect to the
new distribution is reduced according to the degree of overlap. Because of con-
straint (1), the Lift of the subset with a common prediction h(x) is 1. Predictive
accuracy is a linear combination of the corresponding Lift values. Using exam-
ples that were reweighted with respect to a given h, the base classifier favors
models according to their independent contributions [24, 25]. Similar to other
boosting approaches, the example weights anticipate the expectation given the
previously trained models. This is especially useful for handling smooth concept



Initialize empty ensemble M := ∅.
While not end of stream, do

1. Read next batch Ek in iteration k.
2. Predict P (y | x) for all x ∈ Ek with current ensemble M (eq. (5)).
3. Read true labels of Ek.
4. If alternative ensemble M∗ exists:

(a) Compare accuracy of M and M∗ wrt. Ek.
(b) M← better ensemble, discard worse ensemble.
(c) If M∗ is discarded: E∗ ← Ek−1 (shrink cache).

5. Initialize D1: Uniform distribution over Ek.
6. For i ∈ {1, . . . , |M|}, do:

(a) Apply hi to make predictions for Ek.

(b) Recompute Lift
(hi)
Di

(y∗ → y′) based on Ek (def. 1).
(c) Update the Lifts of hi in M.

(d) Di+1(xj , yj)← Di(xj , yj) ·
“
Lift

(hi)
Di

(h(xj)→ yj)
”−1

for all 〈xj , yj〉 ∈ Ek.

7. Call BaseLearner(D|M|+1, Ek), get new model h|M|+1 : X → Y.

8. Compute Lift

(h|M|+1)

D|M|+1
(y∗ → y′) (def. 1).

9. Add model h|M|+1 (and its Lifts) to ensemble M.
10. If this is the first batch, then E∗ = Ek (no alternative ensemble).
11. Else

(a) E∗ ← E∗ ∪ Ek, (extend last batch)
(b) M∗ ← clone(M)
(c) discard last base model of M∗

(d) repeat steps 5-9 for E∗ and M∗ instead of for Ek and M

Fig. 2. Algorithm KBS-Stream

drifts: While sudden drifts require a quick detection and a way to rapidly ad-
just the working hypothesis, for smooth drifts it is better to collect information
on the new target concept over a period of time. Especially if the preceeding
concept has been identified accurately at the point in time when a drift starts,
removing the knowledge about the current concept from the data makes the
learner already focus on the new concept.

3.3 A KBS-strategy to learn drifting concepts from data streams

The original KBS-algorithm (Fig. 1) assumes that the complete training set is
available in main memory. The first step to adopt to data streams is to read
and classify examples iteratively. For subsequent learning steps the reweighting
strategy of KBS allows to compute example weights very efficiently. The data
is assumed to arrive in batches large enough to train base classifiers.

The sizes of training sets that are effectively used for each model are deter-
mined dynamically by the algorithm. Processing a new batch yields two ensemble
variants. The first variant appends the current batch to the batch that was used
for training in the last iteration, and it refines the latest base model accordingly.
The second variant adds a new model, which is trained using the latest batch,



only. Only the ensemble variant performing better on the next batch is kept. The
strategy serves two purposes. First, for stationary distributions a new model is
trained only, if there is empirical evidence that this increases the accuracy of the
resulting ensemble. This will generally happen if the learning curve of the latest
model has leveled off, see e.g. [27], and the data set is well suited for boosting.
Second, if sudden concept drift (concept shift) occurs, the same estimation pro-
cedure instantly suggests to add a new model, which will help to overcome the
drift.

The second step of adopting KBS to data streams is to foresee a re-computa-
tion phase in which base model performances are updated with respect to the
current distribution. In fact, we believe that this is a main advantage of using
weighted ensembles in a concept drift scenario. For stationary distributions the
weights vary marginally, while for smoothly drifting scenarios they are system-
atically shifted and even allow to quantify and interpret the drift in terms of
previously found patterns or models. Even sudden drifts do not pose a problem,
as they automatically result in radically reduced weights of previously trained
models, and in high weights of subsequently trained models, if these parameters
are re-estimated from new data. The response time to drifts is very short. Since
the streaming variant of KBS is closely coupled to the accurate KBS boosting
algorithm, the predictive performance is expected to outperform those of single
base models for many datasets. Pruning of ensembles can efficiently be addressed
during weight re-computation; whenever a model does not reach a fixed mini-
mum advantage over random guessing on the latest batch, it is discarded.

The algorithm is depicted in Fig. 2. It loops until the stream ends. Lines 1-2
apply the current ensemble to the new batch without knowing the correct labels.
Lines 3-4 check whether continuing the training of the latest model with the
latest batch outperforms adding a new model trained on that batch1. Only the
better of these ensembles is kept. Lines 5 and 6 recompute the Lift parameters
of all base models. To this end, the models are iteratively applied to the new
batch, and the weights are adjusted similarly to the learning phase. Finally, lines
8-11 train two variants of the ensemble again, M∗ being the one extending the
last batch and updating the newest model appropriately, and M being the one
that adds a new model, which is trained using only the newest data.

One degree of freedom is left in line 2: The algorithm may use M or M∗ to
classify the new batch, as the performance of both is unknown at that time. For
the experiments two variants have been implemented. The first one (KBSstream)
always uses ensemble M∗, since models trained from larger batches are generally
more reliable. The second variant (KBShold out) uses a hold out set of 30% from
the last batch to decide which ensemble to use.

If incremental base learners are used, then only the latest batch needs to be
stored. The runtime is dominated by adjusting the most recent model to this
data, and by applying all base models to it. This avoids the memory requirements
and combinatorial explosion of more advanced techniques (see Sec. 4.1).

1 The pseudocode does not assume an incremental base learner, but trains new models
on cached data. For incremental base learners no cache is required.
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Fig. 3. Relevance of the first topic/concept in the concept change scenarios A, B, and
C. The relevance of the second relevant topic/concept is 1.0 - relevance of topic 1.

4 Experiments

4.1 Experimental Setup and Evaluation Scheme

In order to evaluate the KBS learning approach for drifting concepts, it is com-
pared to the adaptive time window approach, to the batch selection strategy,
and to three simple non-adaptive data management approaches.

Full Memory: The learner generates its classification model from all previously
seen examples, i.e. it cannot “forget” old examples.

No Memory: The learner induces its hypothesis only from the most recent
batch. This corresponds to using a window of the fixed size of one batch.

Window of “Fixed Size”: A time window of a fixed size of n = 3 batches is
used on the training data.

Adaptive Window: A window adjustment algorithm adapts the window size
to the current concept drift situation (see Sec. 2.2 and [4]).

Batch Selection: Batches producing an error less than twice the estimated
error of the newest batch, when applied to a model learned on the newest
batch only, receive a weight of one, i.e. are selected for the final training set.
All other examples are deselected by setting their weights to zero [13, 14].

The performance of the classifiers is measured by prediction error. All results
reported in Sec. 4.2 and 4.3 are averaged over four runs. The experiments were
conducted with the machine learning environment Yale [28], the SVM imple-
mentation mySVM [29], and two learners from the Weka toolbox [30].

4.2 Evaluation on Simulated Concept Drift with TREC Data

The first experiments are performed in an information filtering domain, a typical
application area for learning drifting concepts. Text documents are represented



Full No Fixed Adaptive Batch KBS KBS

Memory Memory Size Size Selection stream hold out

Scen. A 21.11% 11.16% 9.03% 6.65% 6.15% 6.89% 5.88%

Scen. B 21.30% 12.64% 9.76% 9.06% 9.33% 8.64% 9.50%

Scen. C 8.60% 12.73% 11.19% 8.56% 7.55% 10.11% 8.27%

Table 1. Error of all time window and example selection methods vs. KBS.

as attribute-value vectors (bag of words model), where each distinct word cor-
responds to a feature whose value is the “ltc”-TF/IDF-weight [31] of that word
in that document. The experiments use a subset of 2608 documents of the data
set of the Text REtrieval Conference (TREC). Each text is assigned to one or
several categories, five of which are considered here.

Three concept change scenarios are simulated. The texts are randomly split
into 20 batches of equal size containing 130 documents each. In all scenarios,
a document is considered relevant at a certain point in time, if it matches the
interest of the simulated user at that time. The user interest changes between two
of the topics, while documents of the remaining three topics are never relevant.
Fig. 3 shows the probability of being relevant for a document of the first category
at each batch for each of the three scenarios; this also implies the probability
of the second (sometimes) relevant topic. Scenario A is a concept shift from the
first to the second topic in batch 10. In Scenario B the user interest changes
slowly from batch 8 to batch 12. Scenario C simulates an abrupt concept shift
in the user interest from the first to the second topic in batch 9 and back to
the first in batch 11. Tab. 1 compares the results of all static and adaptive time
window and batch selection approaches on all scenarios in terms of prediction
error [4, 13, 5] to the two variants of KBS. In all cases the learning algorithm
was a support vector machine with linear kernel.

The KBS algorithm manages well to adapt to all three kinds of concept
drift. Tracking the ensembles revealed, that during statitionary distributions the
current model was continuously refined. After a concept shift (scenario A) a
new model was trained, and the old model received a significantly lower weight.
It was not discarded, however, since it still helped to identify the three topics
which are always irrelevant. The hold out set helped to identify the better of the
two ensembles reliably at classification time. In scenario B five or more models
were trained. The ensemble accurately adopted to the drift, but at classification
time the systematic one-batch-delay of the hold out estimate was sometimes
misleading. In scenario C the full memory approach is already competitive to
all but the batch selection scenario. Without the hold out set KBS applies
the depreciated model one iteration too long for each concept shift. This delay
increases the error rate by about 2%. This problem is circumvented by using a
hold out set. In essence the KBS algorithm performed very well on this domain,
and it even outperformed computationally more expensive approaches. Only in
scenario C the batch selection method is clearly superior, probably because it
is the only method able to concatenate the data before the first and after the
second concept shift to a single training set.



J48 J48 AdaBoost+J48 KBS KBS

Fixed Memory Full Memory Full Memory stream hold out

Scen. A 11.06% 21.65% 20.51% 9.50% 9.43%

Scen. B 11.25% 21.22% 19.93% 11.60% 10.92%

Scen. C 12.70% 10.83% 9.50% 11.55% 10.45%

Table 2. Averaged prediction errors for satellite image dataset.

4.3 Experiments with Satellite Image Data

The second set of experiments used the satellite image dataset from the UCI li-
brary [32], a real-world dataset for classification. It contains no (known) drift over
time, so we simulated a drift with the same technique as described in Sec. 4.2:
The data set was split into 20 batches at random (321 examples per batch) and
only two (“grey soil” and “very damp grey soil”) of the six classes were selected
to be relevant. The same drift scenarios A-C as in Sec. 4.2 were simulated, where
the two classes corresponded to the two topics in the TREC experiments.

Since decision trees are a more typical base learner for ensemble methods, we
chose the J48 algorithm from the Weka toolbox. We compared KBS to the non-
adaptive “fixed size” (of 3 batches) and “full memory” strategies. Additionally
to running J48 stand-alone, we tried to run AdaBoost on top of J48. For all
learners the default settings were used. The results are listed in table 2. Unlike for
the last experiment, the results of KBS could always be improved by using a hold
out set. As before, Scenario C can well be tackled by a full memory approach,
which is exploited by AdaBoost. For the other scenarios KBS is better than
the fixed size learner, and much better than the full memory approach.

4.4 Predicting Phases in Business Cycles

The third evaluation domain is a task from economics based on real-world data.
The quarterly data describes the West German business cycles from 1954 to
1994. Each of the 158 examples is described by 13 indicator variables. The task
is to predict the current phase of the business cycle. In accordance to findings
from Theis and Weihs [33] we use two phases instead of four for the description
of the business data, as described in [34]. The following experiments compare the
performance of the KBS data stream algorithm to previously reported results
[5], so the same number of batches (5 and 15) were used. The timely order of the
examples (quarters) was preserved and no artificial concept drift was simulated.

The results of these two evaluations are shown in Tab. 3. The column for the
fixed time window approach lists the results for the fixed size that performed
best. The fact that this approach performs well may be due to the cyclic nature
of the domain. However, the size is generally not known in advance, and as shown
in [5] using other fixed window sizes, leads to significant drops in performance.
The results for 15 batches shows that KBS does not perform well, if each batch
consists of less than a dozen examples. The reason is that it is not possible to
get reliable probability estimates from such small data sets. The algorithm could
cache older data in such cases, but it is more reasonable to choose larger batch



Full No Fixed Adaptive Batch KBS KBS

Memory Memory Size Size Selection stream hold out

5 batches 32.80% 27.20% 24.00% 24.80% 24.80% 24.60% 17.46%

15 batches 28.08% 28.77% 20.55% 24.80% 23.29% 26.03% 28.77%

Table 3. Prediction error for business cycle data.

sizes. Using just 5 batches (31 examples) already improves the situation, so KBS

performs similar to the fixed size, adaptive size, and to the batch selection ap-
proach. The hold out set turns out to be surprisingly effective for larger batches.
This result provides first evidence that KBS is able to adapt classifier ensembles
to different kinds of concept drift found in real-world datasets.

5 Conclusion

This paper presents a new ensemble method for learning from data streams. At
each iteration, base models are induced and reweighted continuously, considering
the latest batch of examples, only. Unlike other ensemble methods, the proposed
strategy adapts very quickly to different kinds of concept drift. The algorithm
has low computational costs. It has empirically been shown to be competitive
to, and often to even outperform more sophisticated adaptive window and batch
selection strategies.
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