Structuring Music Collections by
Exploiting Peers’ Processing

Michael Wurst, Ingo Mierswa, Katharina Morik
Artificial Intelligence Unit, University of Dortmund
{wurst,mierswa,morik } @ls8.cs.uni-dortmund.de

Abstract

Music collections are structured in very different ways by different
users. There is not one general taxonomy, but individual, user-specific
structures exist. Most users appreciate some support in structuring
their collection. A large variety of methods has been developed for
textual collections. However, audio data are completely different. In
this paper, we present a peer to peer scenario where a music collection
is enhanced by exploiting peers’ processing. Collaborative clustering
structures a set of audio data in a node of the user’s taxonomy by
retrieving (partial) taxonomies of peers. In order to classify audio
data into a taxonomy features need to be extracted. Adopting feature
extraction to a particular set of classes is effective but not efficient.
Hence, we propose again to exploit what has already been done. Well-
suited feature extraction for one classification task is transferred to
similar tasks using a new distance measure.

1 Introduction

Since the World Wide Web has become a personal source of documents,
music plays, and videos, the need for structuring all these data has become
demanding not only for companies but also for private persons. Huge archives
like, e.g., iTunes offer music for download together with meta-data. This
allows users to easily retrieve a certain music play from the archive and
navigate within it. The downloaded music then forms the user’s collection.

Creating the collection’s structure and manually inserting the files into it
is up to the single user. Where to some extent creating an own taxonomy
for music is fun, it can become a burden if it is to be completed. Why not
taking advantage of well developed parts of others? In a peer-to-peer or
ad-hoc network users can share not only their songs but also the structure
of their collections with other users. Imagine, one user has developed a
taxonomy. He now recognizes that one of its nodes has become so large that
it would be nice to split it. He may then broadcast the songs of this node
to the neighbor peers, asking how they would structure this set of songs. He
may receive different proposals from different peers. He selects the best and
merges it with his own taxonomy. This bootstrapping approach works as
long as different users have worked out different taxonomies, which is very
likely. It would only fail, if all users focused on exactly the same structure
and ask for structuring exactly the same remaining music plays, which is
unlikely.

1.1 The scenario

This distributed approach is currently implemented by a student group at
our university!. Figure 1 illustrates the exchange of songs and (partial)
taxonomies among users in a peer-to-peer network. Fach user owns a music
collection (drawn as a cylinder) organized in some taxonomies (drawn as a
box). The user at the left side of the figure broadcasts a set of unstructured
songs, X,, to his peers (at the right side of the figure). The peers look for
parts of their own taxonomies which best fit the query. If a peer finds a
good match, she returns into the response set the structure together with
the music stored within it. The querying user selects the best taxonomy
from the response set and integrates X, into it. The result is merged into
the user’s collection.

In this scenario each peer’s collection is enriched by the following services:

e Find a taxonomy which fits best a set of music plays.

e Combine taxonomies and integrate a set of music plays in the resulting
structure.

!The Nemoz system can be visited under http://nemoz.sourceforge.net.

- %

e

result f i

=
=

response %

Figure 1: Collaborative structuring scenario where user usr sends an un-
structured collection X, of songs to the other peers and receives a structure
for it.

A

1.2 The difficulty of the task

In principle, collections can be structured automatically using clustering al-
gorithms. The advantage is that no taxonomy needs to be given. Hierarchical
clustering builds-up a taxonomy for a given set of items based on a global
similarity measure. However, if we look more closely into music collections,
we encounter some problems.

First, music collections are organized in very different ways by different
persons. A user study reports several organization principles found in music
collections [17], among them the time of day or the situations in which the
music is best listened to, the year in which a song has been the favorite,
the recency of acquiring the music play. We asked our students to build-up
taxonomies for the Garage Band collection of music which is now available as
a benchmark dataset [15]. We received 39 taxonomies which vary a lot. Time
of day, situations, mood, instruments, taste, and individually designed genres
were used to structure the collection. There is not one general taxonomy,
but individual, user-specific structures, which can hardly be predicted. This
means, that standard clustering does not meet the users’ requirements. There

is no global similarity measure. A clustering which is perfect according to
a particular similarity measure might be considered inacceptable by another
user. Hence, we cannot prepare our learning algorithm for a certain general
task, but have to flexibly solve unforeseen tasks. The problem of diverse
ad hoc clusterings becomes even more demanding because of the real-time
requirement in a peer to peer network. There is to our best knowledge no
standard algorithm which is capable of structuring audio data in real-time.

The first problem could show up in several domains, but audio data pose
additional challenges. Our second problem is crucial for all music collections
which are structured not only on the basis of the meta-data or song texts: it
is hard to find a feature set which is valid for the overall collection. Using the
raw audio data does not allow to cluster or classify music. Several features
for different aspects have been manually designed [22, 43, 13, 40]. It has
been shown, however, that no set of extracted features is well-suited for all
classification tasks. For instance, clustering rock music requires completely
different features than does clustering music according to the mood [30]. If
there would exist one complete set of features, from which each learning
task selects its proper part, the feature problem could be reduced to feature
selection. However, there is no tractable feature set to select from. The
number of possible feature extractions is so large - virtually infinite - that
it would be intractable to enumerate it. Learning feature extraction for a
particular classification task delivers good results [24, 44]. However, training
the feature extraction is time-consuming and demands a sufficient set of
examples.

We look for solutions to the difficult problem of structuring music collec-
tions following a bootstrapping approach. Some users manually structured
part of their collection. We want to use this for enhancing the own structuring
and have developed a new collaborative clustering algorithm. This clustering
goes beyond the co-occurrence of favorite songs as employed by Amazon, in
that it delivers a structure together with music plays integrated to it, instead
of just returning a set of correlated songs as does the collaborative filtering
of Amazon.

In the same spirit we try to approach the feature problem. Some audio
data have already been used for learning. We want to transfer the feature
extraction to similar learning tasks. We have developed a new similarity
measure of learning tasks from audio data which is based on already learned
feature weights.

The paper is organized as follows. First we introduce our notation for

4

music plays and taxonomies. In Section 3, we describe our approach to en-
hance the structure of the own collection by taxonomies of peers, the collab-
orative clustering. Experiments show that, indeed, collaborative clustering
outperforms standard clustering methods. Section 4 describes our approach
to exploit already performed learning in order to find a well-suited feature
set for a certain learning task. Experiments show that this approach almost
achieves the performance of learning feature extraction for a certain learning
task. Furthermore, they show also, that the approach is fast and its results
are better than merely using a fixed set of (weighted) features.

2 The notation

Before we can explain our methods, we introduce our notation.
Definition 1. A TaAxoNoMY C is a tree given by the tuple
(ID,top, Successors(C'))
where
e the ID is the label of the node,
e top are the music plays stored at the root node, and

e the Successors of C' are defined by recursively calling the function
dirSuccessors(C;) which is {} if C; is a node without successor

(leaf node). Otherwise
dirSuccessors(C;) = {C}|C; = C;, ACS 5. t. C} = C;,C; = Cf}
using some partial ordering ».

Hence, each successor of a taxonomy is again a taxonomy and possibly
stores objects. Note, that due to this definition objects are not only stored
at the leaf nodes, but can be collected at intermediate nodes, as well. We

myMusic

time of day mood
morning noon evening all time never happy regular aggressive else
Denny Parker
Where to begin

Figure 2: A taxonomy with just one song stored under the node “happy”.

restrict taxonomies to trees. An example of a taxonomy is:
(myMusic, {},
(timeofday, {},
(morning, {},{})
(noon, {},{})
(evening, {},{})
(alltime, {},{})

(never, {},{}))
{mood, {},

(happy, { Denny_Porter W hereToBegin}, {})
(regular, {},{})

(aggressive, {},{})

(else, {3, {1)))

Obviously, this taxonomy combines two different aspects under which music
is organized, namely the time when to listen and the mood of the listener.
It is an almost empty taxonomy, i.e., there is only one song stored within it.
Figure 2 shows the same taxonomy.

Definition 2. The EXTENSION OF A TAXONOMY is a mapping from the
universe of taxonomies to the universe of music. ext(C;) = top if C; has no
successors, otherwise ext(C;) = top U | ext(Successors(C;)).

Due to this definition, the extension of a sub-tree is entailed in the exten-

sion of the overall tree so that the regular meaning of subsumption is valid:
If C; > Cj, then ext(C;) C ext(C;).

Figure 3: C; is extended (dotted circle) and its structure (dotted lines with
nodes) is enhanced. This leads to Cyesu-

A music play z is a vector of feature values.

Further on (Section 4), we need access to the feature itself and not to its
value. We define Fj; as the j—th feature of taxonomy Cj. Since a feature is
the set of all its possible values, it is considered a random variable. We define
a weighting function w : Fg — R which assigns a weight to each feature from
the set Fg. This gives us the vector w; of feature weights at taxonomy Cj.
The taxonomy is enriched by the features and their weights:

Definition 3. The ENRICHED MUSIC TAXONOMY 1is defined by the tuple

C = (ID,top, F,w, Successors(C)).

3 Collaborative clustering

Before presenting the Nemoz approach to collaborative clustering, let us first
define the general task. We consider a taxonomy a hierarchical cluster model.
The typical cluster conditions are assumed to hold: all items within a taxon-
omy node (cluster) are more similar to each other than to items in another
node (cluster). In addition to a similarity measure, collaborative clustering
uses taxonomies of others in order to enhance a cluster model, either by
covering more objects (here: songs) or by introducing new nodes. In other
words, the enhancement either introduces more music plays into the taxon-
omy, or more structure. In both cases, the user benefits from the collections
of others. Figure 3 illustrates the effect of collaborative clustering. The dot-
ted node is one which contains more items, the dotted structure refines the
top node’s structure.

More formally, collaborative clustering is defined as clustering with given
hierarchical cluster models (taxonomies) as background knowledge.

7

Definition 4. Given a set of tazonomies CM = {Cy,C4,...,Cy}, where
X = Ui ext(Ci), and a set of items X, C X, COLLABORATIVE CLUS-
TERING delivers a small number of taxonomies {Cresuity, ---Cresut, } such that
the clustering conditions hold and there is some C; € CM and a Cresuy; with

o cxt(C;) C ext(Cresuir;) OT

o ext(C;) = ext(Cresur;) but the number of nodes in Creguy, is larger than
the number of nodes in C;.

In contrast, hierarchical clustering returns some Cj..4,;; on the basis of X,
alone, and collaborative filtering returns one cluster node ¢ of maximal simi-
larity for X, together with its extension X, C ext(c). We have placed collab-
orative clustering into our distributed scenario (see section 1.1). This means,
that one user with the current taxonomy C; is seeking for enhancements with
respect to a set of songs X, and makes use of {Cy,C1, ...,Ci_1, Cit1, ..., Ci }.
At the side of the peers, the process of finding taxonomies which best fit the
query has to be implemented (Section 3.1). At the side of the user invok-
ing the query, the received taxonomies have to be assessed and the best one
incorporated into the user’s own (Section 3.2).

3.1 Finding taxonomies with best fit

The fit of a taxonomy C with respect to a set of items X, can be measured
by precision and recall, known from Information Retrieval. There, two sets
of items, namely the retrieval result and the intended result, are compared.
In analogy, precision here means the fraction of items in the tree C' that are
contained in the set of query items X, as well:

t(CYN X
precision(ext(C), X,) = %
Recall here means the fraction of items in X, contained in the tree C"
t(C)N X,
recall(ext(C), X,) = %
q

The straight-forward definition of the fit is the F-measure between preci-
sion and recall.

However, using the possibly very large extension of C' makes the compari-
son slow. Hence, we select a set of items Z¢ for representing C. Zq = ext(C)

8

would be, again, the representation as used in the basic agglomerative clus-
tering methods. It is inefficient and sensitive to outliers. |Z¢| = 1 represents
every (sub-)tree by exactly one point, not necessarily a member of ext(C).
This representation of clusters is chosen, e.g., for k-means clustering. It is
very efficient, but decreases the result’s accuracy. We follow the idea of using
a set of “well scattered points” to represent a cluster: 1 < |Zq| < |ext(C)|
represents a tree by a set of points as used in the clustering method CURE
[12]. Tt is efficient and accurate. The selection of the points is easy in our
case, because the items in the extension of C' are already clustered (otherwise
this taxonomy would not qualify for collaborative clustering). We choose the
scattered points by sampling items from each node of the taxonomy locally.
The straight-forward definition has an additional disadvantage: the strict
intersection in precision and recall constrains the fit too much. Hence, we
replace the intersection of Z¢ and X, by a standard similarity measure. We
define the generalized precision prec as a function that compares every item
in Z¢ with all items in X, and selects z; € X, with the highest similarity:

1
prec(Ze, X,) = 7] Z mazx {sim(z, z)|x € X,}.

2EZ 0

For generalized recall, we compare every item in X, with all items in Z¢,
again choosing the maximal similarity:

1 .
rec(Zc, Xy) = — Z maz {sim(z, z)|z € Zc}.

Xl 5

Please note that using a similarity function which maps identical items to 1
and 0 otherwise leads to the usual definition of precision and recall. The fit
between a taxonomy and a set of items now becomes:

(8% + Vrec(Ze, X,)prec(Ze, X)))
p*rec(Zeo, X,) + prec(Ze, X,) (1)

fit(C, Xq) =

So far, we have ignored the hierarchical structure of C'. We can make use
of the structure to find the best fit in a more efficient bottom-up manner.
The fitness values of all C'; which are direct successors of C; are combined
with the fitness of the top node of C; to become the fitness of C; w.r.t. X,.
Remember, that ext(C;) was defined as the objects top at the root node,

plus all the objects covered by its successors. The fitness is weighted by the
cardinality of a (sub-)tree’s extension.

|Zt0p|
| Zc|

prec(Ze, Xq) = prec(Zigp, Xq)+

Ze
Z | G |prec(ch,Xq).

. |Zcl
CjedirSuccessors(C')

Note, that the bottom-up procedure allows for pruning. We normalize
the precision of Successors(C;) by the cardinality of the overall taxonomy’s
extension, |ext(C)|, and the not yet considered items above. This gives us
an estimation of how far we have got. If this estimate is below our current
best precision value, we stop the bottom-up procedure.

A user at site v starts a query by broadcasting it to the neighborhood.
Each site in this neighborhood performs the matching procedure locally and
sends the result back to querying site. The answers form the response set.

The time complexity for answering a query is constituted by the amount
of time used for finding the best matches and the message delay. Using the
extensional representation, time is linear in the number of query items and
in the number of taxonomy nodes at a site v. Representing each concept
by a fixed number of points in feature space, finding the best matches is
linear in the number of query items, taxonomy nodes, and features F' used
for similarity calculation.

3.2 Sequential covering

The neighbor users have sent taxonomies which best fit the query X,. Re-
garding Figure 1, we now want to produce the result from the response. The
response set can be ordered with respect to the fitness (equation 3.1). The
user selects the best one. However, even for the top ranked taxonomy we
cannot expect a perfect recall. Hence, several items in X, remain uncovered.
How to incorporate these into the taxonomy?

A simple and fast method is a hierarchical version of the nearest neigh-
bor algorithm. However, there are two problems with this approach. First,
it requires well-suited features. We set aside this problem until Section 4.
Assuming that we can apply the same set of features to all taxonomies, we
are still left with the second disadvantage. Classifying the remaining items of

10

X, into the taxonomies of the response set does not change the taxonomies’
structure. The user has to select just one and insert it into his own taxonomy.

We can do better by combining taxonomies. There might be some tax-
onomies fitting X, equally well but due to high performance on different
subsets of X,. In such a situation, the user would want to have these tax-
onomies combined. Moreover, a certain subset of items could possibly be
not well covered by any taxonomy in the response. In this case, the user
might want to broadcast this certain subset and receive k taxonomies for
it. The results of the two queries will then be combined. In both cases, the
combination becomes a new taxonomy which the user incorporates into his.
Combinations have the long-term advantage that the number of structurally
distinct taxonomies in the overall peer to peer network increases. There-
fore, we have implemented the sequential covering algorithm which combines
taxonomies and covers X, by the result.

Sequential covering consists of the processes

e sortIn(X,,C), which puts the items in X, at those nodes C; in C
where the similarity between item and the current well chosen points
Zc; exceeds a user-given threshold.

e merge(C, C') combines two taxonomies by creating a merge node whose
successors C' and C' become.

If X, can be completely sorted into a taxonomy C — be it the own, already
existing one, or one of the taxonomies received from the peers — there is no
need for further processing. The user’s taxonomy is enriched by an enhanced
extension at the nodes, or it is enhanced by adding the received taxonomy
as a successor of the node whose extension had been X, (see Figure 3).

If X, can only partially be covered by any of the received taxonomies,
it is split into Xiopered and Xypcovered- FOr Xeoperea there exists already a
taxonomy, say C. Xyncoverea 1S broadcasted to the peers, new taxonomies C;
are received and tentatively merged with C'. The best combination according
to the fit (equation 3.1) is added as a successor of the node, which had X,.
Figure 4 illustrates this. The user has received two taxonomies, C'; and Cj,
from his peers. X, is partially covered by C; and the user incorporates C
into his own taxonomy, classifying the covered items in X, into C; nodes
by sortIn. The uncovered items form a new query to the peers. The user
receives C] and CY, selects the latter and merges it with Cy, so that the
combined taxonomies replace the node with X, as extension.

11

C,

call 1 @ égg)\ ﬁﬁ%gg

response

4 BA
Cs, ﬁ -

call 2 & ;i;zred @mcovered m %] %
; response*

usr

result

Figure 4: The neighbor users have sent taxonomies which best fit the query
X, Sequential Covering sorts items of X, into C; according to a similarity
threshold. The remaining items form a second query set X, covereq leading
to a new response set. The user selects another taxonomy C) which is added
together with C) under a new merge node (black).

The user’s taxonomy now can become different from all already exist-
ing taxonomies, thus enhancing the pool of taxonomies in the peer to peer
network.

3.3 Experiments

The evaluation of collaborative clustering is performed on a real world bench-
mark dataset gathered in a student project on distributed audio classifica-
tion based on peer-to-peer networks (Nemoz). The data set contains 39
taxonomies and overall 1886 songs [15]?. All experiments described in this

2 Available at http://www-ai.cs.uni-dortmund.de/audio.html.

12

paper were performed with the machine learning environment, YALE [11]3.

Evaluation is performed by leave one taxonomy out and then use it for
evaluation. The extension is the same for the left-out and the learned tax-
onomy. Hence, we evaluate structural similarity. We construct a matrix for
each taxonomy, where the tree distance between all items is entered. The
difference between the tree distance in the left-out and the one in the learned
taxonomy for each pair of items is summed up for all item pairs. The sum of
the differences divided by the number of items gives us the evaluation crite-
rion absolute distance. A second criterion is the correlation between the tree
distance in the left-out with the one in the learned taxonomy. Finally, for
each cluster in the left-out taxonomy we search for the best corresponding
cluster in the learned taxonomy. The average performance over all user-given
clusters is then used as evaluation measure (FScore).

One major problem of using FScore on hierarchical cluster models is,
that it is not normalized with respect to the number of created clusters.
Finer grained structures therefore always lead to equal or better performance
than their coarse grained variants. This however does often not reflect the
similarity to the user-given cluster model.

We compare our approach with single-link agglomerative clustering using
cosine measure, top down divisive clustering based on recursively applying
kernel k-means [8] (TD), and with random clustering.

Collaborative clustering was applied using cosine similarity as inner simi-
larity measure. The parameters for all algorithms were chosen globally opti-
mal. TD and random clustering were started five times with different random
initializations. We use a set of 20 features which where shown to work well in
a wide range of applications [27] as underlying audio features. For single-link
agglomerative clustering and top down divisive clustering based on kernel
k-means, we use an additional feature set (audio/co). This set contains the
audio features plus a set of ’collaborative features’, which are constructed by
adding a feature for each taxonomy node in the training set. A feature has
a value of one for an item, if the corresponding item is covered by this node,
zero otherwise. In this way we incorporate co-occurrence information, which
is a straightforward possibility to make use of the existing cluster models
[37, 39].

Table 1 shows the results. As can be seen, the collaborative clustering
approach performs best. Note however, that absolute distance does not lead

3 Available at http://yale.cs.uni-dortmund.de.

13

Method Correlation Absolute distance FScore

Collaborative Clustering 0.44 0.68 0.63
TD audio 0.19 2.2 0.51
TD audio/co 0.23 2.5 0.55
single-link audio 0.11 9.7 0.52
single-link audio/co 0.17 9.9 0.60
random 0.09 1.8 0.5

Table 1: The results for different evaluation measures.

Representation Correlation Absolute distance FScore

all points 0.44 0.68 0.63
| Z0p| = 10 0.44 0.68 0.63
| Ziop| =5 0.41 0.69 0.63
| Ziopl = 3 0.40 0.69 0.62
centroid 0.19 1.1 0.42

Table 2: The influence of concept representation and the number |Zy,,| of
representative points.

to results that are representative for agglomerative clustering, because the
corresponding taxonomies are usually quite deep, while the user constructed
taxonomies were rather shallow. Applying user defined taxonomies as the
basis for a collaborative similarity measure (audio/co) does indeed improve
the correlation for both, TD and single-link clustering. However, absolute
distance is not improved. We found the resulting taxonomies were relatively
unbalanced. This increases absolute distance while correlation is barely af-
fected.

A second experiment inspects the influence of the representation on the
accuracy. The results of collaborative clustering with different numbers of
instances at a node are shown in Table 2. Representing clusters (taxonomy
nodes) by all points performs best. Using a single centroid for representing
a subtree leads to inferior results, as we already expected. Well scattered
points performed well. We obtain good results even for a very small number
of representative items at each node of the cluster model.

We also evaluated how the number of taxonomies in the response set

14

Alternatives Correlation Absolute distance FScore

5 0.44 0.68 0.63
3 0.38 0.73 0.60
1 0.34 0.85 0.56

Table 3: The influence of response set cardinality.

influences the quality of the result. The result should be clearly inferior with
a decreasing number of alternatives. Table 3 shows the result. On one hand,
we observe that even with just one model returned, collaborative clustering
still outperforms the other methods with respect to tree distance. We can
conclude that our approach can be applied even in domains where only one
taxonomy can be received. On the other hand, the results are, indeed, getting
worse with less alternatives. Providing alternative solutions seems to be
essential for improving the quality of results at least in heterogeneous settings
as the one discussed here. This approves our general hypothesis.

4 Feature transfer for learning from
audio data

The distributed collaborative clustering approach introduced in the last sec-
tion can be used for the retrieval of taxonomies. The user can select the
most suitable taxonomy C for a query set X,. The task now is to classify the
items of the query set according to the classification labels induced be the
successors of C'. In many cases the classifier for this taxonomy can simply
make use of the extracted features F' delivered with the taxonomy structure
(see section 2). This feature set was created on purpose to support the classi-
fication task associated with the taxonomy at hand. However, in some cases
these feature sets cannot be used for classification:

e Users might create own taxonomies and sort their music into these
taxonomies themselves. However, new songs should be automatically
sorted and hence a tailored feature set is required.

e During sequential covering (section 3.2) new nodes were created to
merge different taxonomies. Initially, no optimal feature set exists for
these nodes.

15

It was already stated in the introduction that no generic feature set ex-
ists for all audio classification tasks which are posed by the different tax-
onomies. Learning the feature extraction for a particular classification task
delivers good results [24, 44]. However, training the feature extraction is
time-consuming and demands a sufficient set of examples. We again try
to tackle our problem by exploiting the work of other users. Some audio
data have already been used for learning. We want to transfer the feature
extraction to similar learning tasks. We have developed a new similarity
measure of learning tasks from audio data which is based on already learned
feature weights. The idea is to transfer extracted features between similar
taxonomies. This transfer should speed up the search for the best extrac-
tion method in such cases in which a successful feature set has already been
generated by another user.

In general, many inductive learning problems cannot be solved accurately
by using the original feature space. This is due to the fact that standard
learning algorithms cannot represent complex relationships as induced, e.g.,
by trigonometric functions. For example, if only base features F; and F,
are given but the target function depends highly on F, = sin(F} - F}), the
construction of the feature F, would ease learning — or is even necessary for
any reasonable prediction at all [4, 7, 20].

In this work, we propose a case-based approach to feature extraction.
Taxonomies are stored together with a corresponding set of extracted fea-
tures. These features are delivered together with the taxonomies. The
essential part of our method is a new representation model for taxonomy
classification tasks and a corresponding distance measure. This allows the
transfer in the cases described above where no extension based similarity can
be calculated.

4.1 Basic definitions for feature transfers

As stated in section 2 the taxonomy is enriched by the features and their
weights, becoming the tuple: C' = (I D, top, F,w, Successors(C)).

Before we state the conditions which must be met by any method which
compares the classification tasks induced by a taxonomy using feature weights
only, we first introduce some basic definitions. Let F; be the feature set for
taxonomy C;. The taxonomy C; also induces the classification labels, i.e.
the target variable. The items of F; are called features Fj;. The objective of
every taxonomy classification task is to describe the probability Pr(C;|F;).

16

We assume that each set of features Fj is partitioned into a set of base features
Fg which are common to all taxonomies C; and a set of extracted features
F;\ Fp.

We now introduce a simple model of feature relevance and interaction.
The feature Fj is assumed to be irrelevant for a taxonomy C; if it does not
improve the classification accuracy:

Definition 5. A feature Fj is called IRRELEVANT for a tazonomy C; iff Fy
is not correlated to the target variable of C;, i. e. if Pr(C;|Fy) = Pr(C;).
The set of all irrelevant features for a learning task C; is denoted by IF;.

Two features Fj; and Fj are alternative for a taxonomy C;, denoted
by Fi ~ Fj if they can be replaced by each other without affecting the
classification accuracy. For linear learning schemes this leads to the linear
correlation of two features:

Definition 6. Two features Fj, and Fj are called ALTERNATIVE for a taz-
onomy C; (written as Fy, ~ Fy) iff Fy = a+b- Fy, with b > 0.

This is a very limited definition of alternative features. However, we will
show that most weighting algorithms are already ruled out by conditions
based on this simple definition.

4.2 Efficient comparison of classification tasks

The objective of our work is to speed up feature extraction and improve
prediction accuracy by exploiting the extracted features of other users. To
this end, a taxonomy C}; is completely represented by a feature weight vector
w;. The vector w; is calculated from the base features Fz only. The ideal
features, extracted especially for this learning task, usually are not present in
the base features. Our concern here is to compare or index extracted features
by their approximation through weights of the basic features. The idea is
that a given learning scheme approximates similar extracted features by a
set, of base features using similar weights. Hence, the weight vector indicates
the similarity of the extracted features. This motivation is derived from the
field of feature construction from non-series data but our experiments show
that it holds for audio data, too.

Our approach works as follows: for a taxonomy task C; we first calcu-
late the relevance of all base features Fg. We then use a distance function

17

F1_F2 F3 F4
l0.1101]02]02] F1 F2 F3 F4

l01] 0.7]0.2]0.1]
Generated features:
sin(F1*F3)

F1_F2 F3 F4

0.4 0.1/0.3]02]
Generated features:
In(F2)

=
h

sin(F1*F3)
In(F2)

Figure 5: Overview of the distributed feature extraction process. The user
usr sends a query consisting of feature weights only and retrieves a small set
of descriptions how to extract additional features.

d (C;,C;) to find the k£ most similar taxonomies. Please note that this dis-
tance measure does not use any extensional description of the taxonomies
and works in all cases, even if no items are the same for two taxonomies. Fi-
nally, we create a set of extracted features as union of the extracted features
associated with the retrieved taxonomies. See Figure 5 for an overview.

While feature weighting and feature extraction are well studied tasks,
the core of our algorithm is the calculation of d using only the relevance
values of the base features F'z. In a first step, we define a set of conditions
which must be met by feature weighting schemes. In a second step, a set
of conditions for learning a task distance is defined which makes use of the
weighting conditions.

Weighting Conditions. Let w be a WEIGHTING FUNCTION w : Fg — R.
Then the following must hold:

(W1) w(Fy) =0 if Fy, € Fg is irrelevant

(W2) F; C Fg is a set of alternative features. Then

VSCF,S#0: Y wFy)= > w(Fy) =i

F;L€eS F;LeF;
(W3) w(Fip) = w(Fy) if Fig ~ Fy
(W4) Let AF be a set of features where
VEkEAFZ(EkEIEVHEl EFB:EkNEZ)-

18

Then
VF; € Fp:BFy, € AF : Fy ~ Fy ANw'(Fy) = w(Fy)
where w' is a weighting function for F, = Fg U AF.

These conditions state that irrelevant features have weight 0 and that the
sum of weights of alternative features must be constant independently of the
actual number of alternative features used. Together with the last conditions
this guarantees that a set of alternative features is not more important than a
single feature of this set. Obviously, this is a desired property of a weighting
function for the comparison of classification tasks. In the following we assume
that for a modified space of base features F the function w’ denotes the
weighting function for Fj; according to the definition in (W4).

Additionally, we can define a set of conditions which must be met by
distance measures for classification tasks which are based on feature weights
only:

Distance Conditions. A DISTANCE MEASURE d for classification tasks is a
mapping d : T x T — R* which should fulfill at least the following conditions:

(D1) d(ti,t;) =0 &t =t
(D2) d(ty,ts) = d(ta, 1)
(D3) d(ty,t3) < d(tq,t2) + d(ta, t3)
(D4) d(ty,t2) = d(t},15)

(D5) d(t1,t) = d(ty,t5) if
Fp=FpUAF andVF, € AF : 3F, € Fp: F, ~ F

) if Fly=Fg UIF and IF C IFy N IF,

(D1)-(D3) represent the conditions for a metric. These conditions are
required for efficient case retrieval and indexing, using e.g. M-Trees [5].
(D4) states that irrelevant features should not have an influence on the dis-
tance. Finally, (D5) states that adding alternative features should not have
an influence on distance.

19

4.3 Applicability of weighting schemes and distance
measures for classification task comparisons

In this section we will state that many feature weighting approaches do not
fulfill the conditions (W1)-(W4). Furthermore, one of the most popular
distance measures, the Euclidian distance, cannot be used as a classification
task distance measure introduced above. Proofs for all theorems in this
section can be found in [25].

Lemma 1. No feature selection method does fulfill the conditions (W1)-
(W4).

Lemma 2. Any feature weighting method for which w(Fy,) is calculated in-
dependently of Fg \ Fix does not fulfill the conditions (W1)-(Wj).

Lemma 2 essentially covers all feature weighting methods that treat fea-
tures independently such as information gain [31] or Relief [18]. The next
theorem states that the Euclidian distance cannot be used as a distance
measure based on feature weights.

Theorem 3. Euclidean distance does not fulfill the conditions (D1)-(D5).

The next theorem, Theorem 4, states that the feature weights delivered
by a linear Support Vector Machine (SVM) obey the proposed weighting
conditions. Support Vector Machines are based on the work of Vapnik in
statistical learning theory [41]. They aim to minimize the regularized risk
Ryeq[f] of a learned function f which is the weighted sum of the empirical
risk Repmp[f] and a complexity term ||w]|*:

Rreg[f] = Remp[f] +)\||’LU||2

The result is a linear decision function y = sgn ((w,) + b) with a minimal
length of w. The vector w is the normal vector of an optimal hyperplane
with a maximal margin to both classes. One of the strengths of SVMs is the
use of kernel functions to extend the feature space and allow linear decision
boundaries after efficient nonlinear transformations of the input [35]. Since
our goal is the extraction of features during preprocessing we can just use
the most simple kernel function which is the dot product. In this case the
components of the vector w can be interpreted as weights for the features.

Theorem 4. The feature weight calculation of SVMs with linear kernel func-
tion meets the conditions (W1)-(W}).

20

In order to calculate the distance of classification tasks based only on a
set of base feature weights we still need a distance measure that meets the
conditions (D1)—(D5).

Theorem 5. Manhattan distance does fulfill the conditions (D1)-(D5).

We conclude that SVM feature weights in combination with Manhat-
tan distance fulfill the necessary constraints for a classification task distance
measure based on feature weights.

4.4 Experiments

In this section we evaluate the ability of our approach to speed up the ex-
traction of essential features, while the accuracy is preserved. As mentioned
before, finding the optimal feature set is a very demanding task which must
be performed for each unknown learning task anew. For our experiments,
we can tackle this problem in a simpler way. Since we know all training tax-
onomies in advance we can extract a large feature set for several prototypical
training taxonomies. We then perform a feature selection to determine the
best feature set for each learning task. Using only a small subset of base fea-
tures Fg we regard the additionally selected features as the set of specially
extracted features F'\ Fj for each learning task. Additional experiments for
synthetic data can be found in [26].

Again, we used the benchmark dataset containing 39 user made tax-
onomies. The taxonomies were split into a training set of 28 taxonomies
and a test set of 11 taxonomies. For both, a set of flat binary classification
tasks was generated by splitting the items at each inner node according to
subconcepts. As stated before we selected the set of optimal features for
each of the learning tasks using a wrapper approach (forward selection) in
combination with a nearest neighbor learner evaluated by 10-fold cross val-
idation. We used classification accuracy as the optimization criterion. The
underlying feature set contained 20 ‘allround’ features [27] and 123 special-
ized features created by the approach described in [24]. We selected 10 base
features which performed well on a wide range of learning tasks in order to
allow for an efficient comparison. We then generated base feature weights
for each learning task in the training set and test set using a SVM [32]. The
average accuracy was measured for all learning tasks in the test set. We
used the base feature set only, the selected set of optimal features for each
learning task, and features recommended by case-based feature construction

21

Accuracy Time Optimization cycles
base features 0.79 - -
optimal features 0.92 42s 3970

cbfc (k = 1) 0.85 35 257
cbfc (k = 3) 0.88 5s 389
cbfc (k = 9) 0.89 8 678

Table 4: Average accuracy and effort for learning using base features, opti-
mized features and feature transfer (cbfc).

with a varying number of predictors. We also measured the effort of finding
a good subset of features in terms of run-time and the number of times the
inner evaluation operator for feature selection approach was invoked.

The result is shown in table 4. As expected, using the base features only,
leads to the lowest accuracy. Choosing an optimal set of features for each
task separately leads to the highest accuracy. Using the features of the k
most similar taxonomies with respect to the similarity measure described in
this section performs in between. However, this feature transfer efficiently
achieves an accuracy close to the optimal one. This empirically supports our
hypothesis, that our approach can combine the best of both worlds: very
fast learning while a high accuracy is preserved. In real-world applications
the described approach performs even better. Applying an automatic fea-
ture extraction method instead of merely applying a feature selection is very
demanding and might take up to several days while the run-time of our ap-
proach basically remains the same.

In addition to the above evaluation, we visualized the notion of related
tasks. Figure 6 shows the base feature vectors of all learning tasks after a
singular value decomposition to transform the data into two dimensions. On
the one hand, we can see the heterogeneity of learning tasks. On the other
hand, several learning tasks form groups of tasks with similar base weights.
This approves our hypothesis: while in general different learning tasks require
different features, some of the learning tasks resemble each other at least to
some extend.

22

0.3

X X
0.2
* X % x
X
0.1 K K ¥
X >§< X X X
* x X
0 ¥ X X%xy * K X X
X Xy K *
X
¥ X
x KX *
0.1 X X
X
K x K
-0.2
X
-0.3 X
-0.25 -0.2 -0.15 -0.1 -0.05 0

Figure 6: The base feature weights of the audio test cases after a dimension-
ality reduction on two dimensions.

5 Related Work

There is a clear demand to support users in exploring and managing (private)
music collections. Several popular audio management systems offer only
limited assistance. Users can usually browse their audio collection using a
vendor defined taxonomy only. Manual structuring of audio files is limited
to creating playlists. Some tools, as iTunes or amaroK, offer the creation of
intelligent playlists. However, these playlists basically are dynamic database
views.

Applying Machine Learning methods to the field of personal music man-
agement offers many new opportunities. Typical applications include the
classification of music items according to predefined schemes like genres
[14, 21], automatic clustering and visualization of music plays [34, 27], rec-
ommendations of songs [36], as well as the automatic creation of playlists
based on audio similarity and user feedback [29, 23].

A key issue in all these approaches is the representation of the underlying
music plays. A large variety of approaches has been proposed for extracting
features from audio data [13, 40]. However, it turns out that optimal audio

23

features strongly depend on the task at hand [30] and the current subset of
items [27]. One possibility to cope with this problem is to learn an adapted
set of features for each learning task separately [24, 44]. These approaches
achieve a high accuracy, but are computationally very demanding and not
well suited for real time processing. Furthermore, it is often important to
capture cultural aspects not inferable from the audio data. Such aspects
have a significant influence on how people structure and perceive their music
[1]. Cultural aspects are usually incorporated by co-occurrences of songs in
playlists [36] or by textual data [19, 33].

While for supervised learning tasks, at least in principle, optimal features
can be evaluated and selected automatically, unsupervised methods are much
more challenging. It is well known, that a correct or optimal clustering
of items depends strongly on intentions and preferences of the user. This
has lead to several approaches that allow for a certain personalization in
clustering and visualizing data. A first possibility is to let users directly
define, which aspects should be used for structuring [28]. Secondly, users can
provide some constraints on the clustering result [6]. These approaches are
usually referred to as constrained or semi-supervised clustering. Supervised
Clustering is a variant of semi-supervised clustering. Users provide a partial
clustering of the items in order to express preferences [10]. Personalization
approaches are complementary to our approach since we provide a small set
of non-predefined alternatives, by exploiting structures created already by
other users.

The latter aspect connects our approach to another area that has recently
found increasing attention: clustering with background knowledge. In gen-
eral, the idea of exploiting (user supplied) background knowledge has shown
advantages, e.g., in text clustering [16] or lane finding in GPS data [42]. The
methods differ in which kind of knowledge they exploit. In our case, we use
a whole set of existing cluster models directly to recommend new clusterings
instead of invoking a feature based clustering algorithm. Thus our approach
preserves a maximum of structure in the users’ taxonomies, which is cru-
cial, as the resulting clusters still contain the original node relation and label
information making them intuitively comprehensible and sound.

Distributed collaborative clustering is also related to approaches of multi-
view learning and clustering [3, 2]. As in multi-view learning, the results
of one learning process (here: a user-made cluster model) is exploited to
turn an unsupervised learning task into a supervised one. Connected to this
approach is the combination of several weak clusterings to obtain an optimal

24

one [39, 37]. However, these approaches assume that all cluster models cover
the whole set of items. Furthermore, they are not directly applicable to
hierarchical structures.

Finally, our approach is loosely related to work in the area of meta learn-
ing [38]. Meta learning focuses on the question how interactions between
similar learning tasks can be exploited to improve the performance of the
individual learners. In this sense our approach can be seen as meta learning
approach to clustering and feature construction for audio data.

6 Conclusion

The use of machine learning for structuring music collections is challenging,
because two conflicting requirements have to be fulfilled at the same time,
namely, real-time processing and local feature extraction. We tackle the prob-
lem by exploiting what peers in a network have already prepared manually.
We have presented a distributed meta learning approach to feature extrac-
tion that compares classification tasks using relevance weights on a common
set of base features only. After stating some very basic conditions for such
a distance measure, we have shown that a SVM as base feature weighting
algorithm and the Manhattan distance fulfill these conditions, while several
other popular feature weighting methods and distance measures do not. We
have presented experimental results indicating that our method can speed
up feature extraction considerably. Hence, our approach is well suited for
fast feature extraction from audio data. Features that have been successful
in classifying a set of music plays into a certain taxonomy, are applied to the
classification into a similar taxonomy.

The local feature extraction is applied in similarity assessments for struc-
turing collections, again, based on peer’s taxonomies. Our collaborative clus-
tering can be seen as constrained clustering or clustering using background
knowledge. We have proposed a method for distributed collaborative clus-
tering. Regarding the user-made cluster models as the target taxonomies,
we could evaluate our results without requiring user studies which are hard
to get. Experiments showed that our method clearly outperforms standard
clustering. This means that if hand-tailored taxonomies are available, clus-
tering becomes more precise and delivers a higher recall. As the experiments
indicate, clustering music data is a particularly hard task. This is due to the
large number of features, where only subsets of them are adequate for local

25

parts of an overall cluster model. Our approach determines the appropriate
part for a particular query set of items by finding the (sub-)tree with the
highest similarity. Hence, it focuses on more local structures from the very
beginning.

All of the clustering approaches mentioned in the last section, are not
local, thus they use the same set of features on all hierarchy levels and over
the whole collection of data. In contrast, our approach generates a special-
ized feature set for each inner node making it very flexible. It can handle
both different kinds of audio plays and structuring aspects. Due to the al-
ternative solutions users can build their taxonomies from different, arbitrary
heterogeneous sources. Thus, we do not rely on a single global similarity
measure.

Our approach to collaborative clustering has some connections with meth-
ods for ontology matching [9]. The task of ontology matching is to find cor-
responding concepts in two ontologies. However in our case we only have a
query set of items that does not necessarily form a closed concept. Further-
more, our approach has the ability to create new concepts from given ones
instead of merely matching them.

The effectiveness of our approach depends on the set of given models.
Sequential covering offers a flexible enhancement of the set of conceptual
models. This justifies our hope that the system becomes better through its
use by several sites.

Acknowledgements
The support of the Deutsche Forschungsgemeinschaft (SFB 475, “Reduction
of Complexity for Multivariate Data Structures”) is gratefully acknowledged.

References

[1] Stephan Baumann and Oliver Hummel. Using cultural metadata for
artist recommendations. In Proceedings of the International Conference
on WEB Delivering of Music, 2003.

[2] Steffen Bickel and Tobias Scheffer. Multi-view clustering. In Proceedings
of the International Conference on Data Mining, 2004.

26

3]

[5]

9]

[10]

[11]

[12]

A. Blum and T. Mitchell. Combining labeled and unlabeled data with
co-training. In Proceedings of the Annual Conference on Computational
Learning Theory, 1998.

Avrim L. Blum and Pat Langley. Selection of relevant features and
examples in machine learning. Artificial Intelligence, pages 245271,
1997.

Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In Proceedings
of International Conference on Very Large Data Bases, pages 426-435.
Morgan Kaufmann, 1997.

David Cohn, Rich Caruana, and Andrew McCallum. Semi-supervised
clustering with user feedback. Technical Report TR2003-1892, Cornell
University, 2000.

M. Dash and H. Liu. Feature selection for classification. International
Journal of Intelligent Data Analysis, 1(3):131-156, 1997.

Inderjit S. Dhillon, Yugiang Guan, and Brian Kulis. Kernel k-means:
spectral clustering and normalized cuts. In Proceedings of the Interna-
tional Conference on Knowledge Discovery and Data Mining, 2004.

A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Handbook on
OntologiesOntology matching: A machine learning approach, pages 385—
404. Springer, Berlin, 2004.

T. Finley and T. Joachims. Supervised clustering with support vector
machines. In Proceedings of the International Conference on Machine
Learning, 2005.

Simon Fischer, Ralf Klinkenberg, Ingo Mierswa, and Oliver Ritthoff.
Yale: Yet Another Learning Environment — Tutorial. Technical Report
CI-136/02, Collaborative Research Center 531, University of Dortmund,
Dortmund, Germany, 2002.

Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: an efficient
clustering algorithm for large databases. In Proceedings of International
Conference on Management of Data, pages 73-84, 1998.

27

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

G. Guo and S. Z. Li. Content-Based Audio Classification and Retrieval
by Support Vector Machines. IEEE Transaction on Neural Networks,
14(1):209-215, 2003.

F. Guoyon, S. Dixon, E. Pampalk, and G. Widmer. Evaluating rhyt-
mic descriptors for musical genre classification. In Proceedings of the
International AES Conference, 2004.

Helge Homburg, Ingo Mierswa, Biilent Moller, Katharina Morik, and
Michael Wurst. A benchmark dataset for audio classification and clus-
tering. In Proceedings of the International Conference on Music Infor-
mation Retrieval, 2005.

Andreas Hotho, Steffen Staab, and Gerd Stumme. Ontologies improve
text document clustering. In Proceedings of the International Conference
on Data Mining, pages 541-544, 2003.

S. Jones, S. J. Cunningham, and M. Jones. Organizing digital music for
use: an examination of personal music collections. In Proceedings of the
International Conference on Music Information Retrieval, 2004.

K. Kira and I. A. Rendell. The feature selection problem: Traditional
methods and a new algoirthm. In Proceedings of the National Conference
on Artificial Intelligence, pages 129-134. MIT Press, 1992.

P. Knees, E. Pampalk, and G. Widmer. Artist classification with web-
based data. In Proceedings of the International Conference on Music
Information Retrieval, 2004.

D. Koller and M. Sahami. Toward optimal feature selection. In Pro-

ceedings of the International Conference on Machine Learning, pages
129-134, 1996.

T. Lidy and A. Rauber. Evaluation of feature extractors and psycho-
acoustic transformations for music genre classification. In Proceedings
of the International Conference on Music Information Retrieval, pages
34-41, 2005.

Z. Liu, Y. Wang, and T. Chen. Audio Feature Extraction and Analy-
sis for Scene Segmentation and Classification. Journal of VLSI Signal
Processing System, 1998.

28

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

Beth Logan. Content-based playlist generation: Exploratory experi-
ments. In Proceedings of the International Symposium on Music Infor-
mation Retrieval, 2002.

Ingo Mierswa and Katharina Morik. Automatic feature extraction for
classifying audio data. Machine Learning Journal, 58:127-149, 2005.

Ingo Mierswa and Michael Wurst. Efficient case based feature construc-
tion for heterogeneous learning tasks. In Proceedings of the European
Conference on Machine Learning, pages 641-648. Springer, 2005.

Ingo Mierswa and Michael Wurst. Efficient feature construction by meta
learning — guiding the search in meta hypothesis space. In Proceedings of
the International Conference on Machine Learning Workshop on Meta
Learning, 2005.

F. Morchen, A. Ultsch, M. Thies, I. Lohken, C. Noecker, M.and Stamm,
N. Efthymiou, and M. Kuemmerer. Musicminer: Visualizing perceptual
distances of music as topograpical maps. Technical report, Department
of Mathematics and Computer Science, University of Marburg, Ger-
many, 2004.

E. Pampalk, S. Dixon, and G. Widmer. Exploring music collections by
browsing different views. In Proceedings of the International Symposium
on Music Information Retrieval, 2003.

E. Pampalk, G. Widmer, and A. Chan. A new approach to hierarchical
clustering and structuring of data with self-organizing maps. Intelligent
Data Analysis, 8(2), 2005.

T. Pohle, E. Pampalk, and G. Widmer. Evaluation of frequently used
audio features for classification of music into perceptual categories. In

Proceedings of the International Workshop on Content-Based Multime-
dia Indezxing, 2005.

R.J. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-
106, 1986.

Stefan Riiping. mySVM Manual. University of Dortmund, AT Unit,
2000. http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/.

29

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

M. Schedl, P. Knees, and G. Widmer. Discovering and visualizing pro-
totypical artists by web-based co-occurrence analysis. In Proceedings of
the International Conference on Music Information Retrieval, 2005.

M. Schedl, E. Pampalk, and G. Widmer. Intelligent structuring and
exploration of digital music collections. e é ¢ — Elektrotechnik und In-
formationstechnik, 7/8, 2005.

B. Scholkopf and A. J. Smola. Learning with Kernels — Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.

Richard Stenzel and Thomas Kamps. Improving content-based similar-
ity measures by training a collaborative model. In Proceedings of the
International Conference on Music Information Retrieval, 2005.

Alexander Strehl and Joydeep Ghosh. Cluster ensembles — a knowl-
edge reuse framework for combining partitionings. In Proceedings of the
AAAI 2002.

S. Thrun and J. O’Sullivan. Discovering structure in multiple learning
tasks: The TC algorithm. In Proceedings of the International Conference
on Machine Learning, 1996.

Alexander P. Topchy, Anil K. Jain, and William F. Punch. Combining
multiple weak clusterings. In Proceedings of the International Confer-
ence on Data Mining, pages 331-338, 2003.

G. Tzanetakis. Manipulation, Analysis and Retrieval Systems for Audio
Signals. PhD thesis, Computer Science Department, Princeton Univer-
sity, 2002.

Vladimir N. Vapnik. The Nature of Statistical Learning Theory.
Springer, New York, 1995.

Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schroedl. Con-
strained k-means clustering with background knowledge. In Proceedings
of the International Conference on Machine Learning, 2001.

T. Zhang and C. Kuo. Content-based Classification and Retrieval of
Audio. In SPIE’s 43rd Annual Meeting - Conference on Advanced Signal
Processing Algorithms, Architectures, and Implementations VIII, 1998.

30

[44] A. Zils and F. Pachet. Automatic extraction of music descriptors from
acoustic signals using eds. In Proceedings of the 116th Convention of the
AES, 2004.

31

