Enabling End-User Datawarehouse Mining
Contract No. IST-1999-11993
Deliverable No. D7a

Description of the M4-Relational Metadata-Schema
within the Database

Regina Ziicker!

Swiss Life, CC/ITRD
Information Technology Research & Development
CH-8022 Ziirich, Switzerland
regina.zuecker@swisslife.ch
http://research.swisslife.ch

June 22, 2001

Abstract

In this part a of the deliverable, the relational dataschema for storing all
persistent data of the M4-MetaModel is described. At this milestone a first
version of the user interface and the MD-Compiler (MetaData-Compiler)
and the statistics use this dataschema.

Not the full functionality is implemented, like it is described in Deliver-
able 8&9. Following is missing: (1) loopable and multistepable operators,
(2) execution of a whole operator chain and therefore also parallel execution
of operators, (3) underlying ontology of concepts, especially sorting output
concepts into the ontology. The necessary tables or attributes for this miss-
ing functionality are marked with (not used in this version). That means
that some implementation ideas already exist and will be realized in the
next workpackage WP7+.

For a better understanding of which attribute of the here described data
schema stores which information of the M4-MetaModel of Deliverable 8&9
we have put a reference behind every attribute in brackets. The first refer-

ence is the class name, the second the attribute name or association name
of M4.

Chapter 1

Relational Metadata-Schema

All tables described in this chapter are active used, so far by the user inter-
face, the MD-Compiler and the statistics. These software components use
the tables for reading and writing.

1.1 Common

Every table has an ID-attribute. To fill this attribute a sequence has to be
used. Only one sequence (ALL_SQ) is available for all tables. That ensures
an unique object-id over the whole metadata-schema. The sequence has to
be used with ALL_SQ.NEXTVAL.

In the M4-MetaModel a reference exists from the conceptual to the im-
plementational level and vice versa. In this M4-Relational Metadata-Schema
only the reference from the conceptual to the implementational level exist,
e.g. only from a Concept to the corresponding ColumnSet.

1.2 Table CASE_T

e CAID
Unique table-id

e CANAME (Case - name)
Name of the case.

e CA_MODE (Case - case mode)
A case can have several application modes. Depending on the mode,
the compiler will have different functionality. Following modes are
allowed: DESIGN, TEST, FINAL.

During DESIGN-mode the compiler will always recompile all opera-
tor steps until the next learning operator occurs. After applying this
learning operator, the compiler will write the results as metadata into

Mining Mart IST-1999-11993, Deliverable No. D7a 2

1.3

the metadata-schema and then stop applying the next operator. So
the case designer can check the result after every operator. Also dur-
ing DESIGN-mode the compiler will always start a learning operator
with a data sample.

During TEST-mode the compiler will... (its not clear yet, if this mode
is needed.)

During FINAL-mode the compiler will recompile the whole prepro-
cessing chain without stop. So the case user has no possibility to
interact with the system during this mode. If the preprocessing chain
has a learning operator in between, the compiler will first start this
learning operator with a data sample, write the results as metadata in
the schema and then compile the according manual operator without
stop.

CA_POPULATION (Case - population)
Is the object for the actual mining task. It must be an element of the
objects defined as case input. (Not used in this version.)

CA_OUTPUT (Case - caseOutput)
Is an object of type CONCEPT which is the result of the actual mining
task. (Not used in this version.)

Table CASEINPUT_T

(Not used in this version.)

CAIID
Unique table-id.

CAI_CAID
Id-reference to table CASE_T. Defines to which case this input at-
tribute belongs to. Several input attributes can be defined.

CAI.OBJID (Case - caselnput)

Id-reference to any object of type CONCEPT, RELATION, BASEAT-
TRIBUTE, MULTICOLUMNFEATURE or VALUE which defines the
case input.

CAI_.OBJTYPE (Case - caselnput)

Defines the actual type of the object of CAI_.OBJID. Allowed values
are CON (for Concept), REL (for Relation), BA (for BaseAttribute),
MCF (for MultiColumnFeature) and V (for Value).

Mining Mart IST-1999-11993, Deliverable No. D7a 3

1.4 Table CASEATTRIB_T

(Not used in this version.)

e CAAID
Unique table-id.

e CAA_CAID
Id-reference to table CASE_T. Defines to which case this case attribute
belongs to. Several case attributes can be defined.

e CAA_OBJID (Case - targetAttributes)
Id-reference to any object of type BASEATTRIBUTE which belongs
to the defined output concept in CA_OUTPUT and defines a target
attribute of the actual mining task.

e CAA_OBJTYPE (Case - targetAttributes)
Defines the actual type of the object of CAA_OBJID. Allowed value
in this version is only BA (for BaseAttribute).

1.5 Table STEP_T

e ST_ID
Unique table-id.

e ST_CAID (Case - listOfSteps, Step - belongsToCase)
Id-reference to table CASE_T. Defines to which case this step belongs
to. Several steps can be defined.

e ST NR
Defines the application order of a case during sequentiell execution.
During parallel execution this order together with the STEPSEQUENCE
will give the actual application order.

e ST_OPID (Step - embedsOperator)
Id-reference to table OPERATOR._T. Defines the operator which be-
longs to this step. Only one operator is possible for one step.

e ST LOOPNR (Step - iterationSet (only indirect reference))
If the step is applied as loop, this attribute defines the order of the
loop-sequence. During a loop the same operator is applied several
times on different input sets (which are defined in PARAMETER_T).
This order must match with the order of PAR_STLOOPNR.

e ST MULTISTEPCOND (MultiStep - iterationCondition)
If the step is applied as multistep, this attribute defines the condition.

Mining Mart IST-1999-11993, Deliverable No. D7a 4

1.6

During a multistep the same operator is applied on the several output-
concepts of the previous operator. The condition defines, how and
which attributes of these output concepts have to be transformed.

Table STEPSEQUENCE_T

(Not used in this version.)

1.7

STS_ID
Unique table-id.

STS_STID

Id-reference to table STEP_T. Defines to which step this sequence-
definition belongs to. Several definitions can exist. Inserts within this
table are only relevant during parallel execution. Then the application
order is defined by predecessors and sucessors of a step.

STS_PREDECESSOR (Step - predecessor)
Id-reference to table STEP_T. Defines one predecessor of a step.

STS_SUCESSOR (Step - successor)

Id-reference to table STEP_T. Defines one sucessor of a step.

Table OPERATOR_T

OP_ID
Unique table-id.

OP_NAME

Name of the operator. In case of a feature-construction-operator, the
actual name of the transformation function (existing database func-
tion!) must be written here.

OP_OPNID (reference to all subclasses of Operator)
Id-reference to table OP_NAME_T. Defines the name of the actual
operator, which has to be applied.

OP_LOOP (Operator - loopable)
Flag, if the operator is loopable. Allowed values are YES, NO.

OP_MULTI (Operator - loopable)
Flag, if the operator is multistepable. Allowed values are YES, NO.

OP_MANUAL (Operator - manual)
Flag, if the operator is a manual or learning operator. Allowed values
are YES (for manual), NO (for learning).

Mining Mart IST-1999-11993, Deliverable No. D7a 5

1.8

OP_REALIZE (Operator - realizes)
Attribute for execution information. (Not used in this version.)

Table OPCONSTRAINT_T

(Not used in this version.)

1.9

OPCON_D
Unique table-id.

OPCON_OPID
Id-reference to table OPERATOR_T. Defines one or more constraints
for an operator.

OPCON_TYPE (indirect reference to associations of Operator)
Defines the type of the operator constraint. Allowed values are ASS
(for assertion), COND (for condition), CONSTR (for constraint).

OPCON_VALUE (indirect reference to associations of Operator)
Defines the actual value for the condition or constraint or assertion.

Table PARAMETER_T

PAR_ID
Unique table-id.

PAR_NAME
Name of the parameter.

PAR_OBJID (Operator - input, Operator - output (indirect reference))
Id-reference to any object of type CONCEPT, RELATION, BASEAT-
TRIBUTE, MULTICOLUMNFEATURE or VALUE which defines a
parameter for an operator or loopable operator. Several parameters
can be defined.

PAR_OBJTYPE (Operator - input, Operator - output (indirect refer-
ence))

Defines the actual type of the object of PAR_OBJID. Allowed values
are CON (for Concept), REL (for Relation), BA (for BaseAttribute),
MCEF (for MultiColumnFeature) and V (for Value).

PAR_OPID
Id-reference to OPERATOR._T. Defines the operator to which this
parameter belongs to.

Mining Mart IST-1999-11993, Deliverable No. D7a 6

e PAR_TYPE (Operator - input, Operator - output (indirect reference))
Defines if the parameter is of type input or output. Allowed values are
IN (for input) and OUT (for output).

e PAR NR
Defines the order for this parameter within all parameters. In case
of a feature-construction-operator the first parameter for the transfor-
mation function start with PAR_NR 3. All following input parameters
also have to be input parameters of this transformation function.

e PAR_STID (Operator - loopable)
Id-reference to STEP_T. Defines to which step this parameter belongs
to. This attribute can only be filled, if a loop-step is defined. Then
the attribute PAR_OPID has no relevance.

e PAR_STLOOPNR (Step - iterationSet)
Number of input-set of a loop-step to which this parameter belongs
to. This number must correspond with ST_LOOPNR.

1.10 Table VALUE.T

e V_ID
Unique table-id.

e V_.CONDTID (Value - domainDataType)
Id-reference to table CON_DATATYPE_T. Defines the datatype on
the conceptual level.

e V.VALUE
Defines the value of this datatype. In case of a row-selection-operator
the condition can be defined by the case designer as value. Then the

case designer must use conceptual names instead of implementational
names (e.g. 'PARTNER_AGE = 50’ instead of 'PART = 50’). The
compiler replaces these names by the implementational names.

1.11 Table CONCEPT_T

e CONID
Unique table-id.

e CON_NAME (Concept - name)
Name of the concept.

e CON_TYPE
Type of the concept when considering the underlying concept-ontology.

Mining Mart IST-1999-11993, Deliverable No. D7a 7

Allowed values are BASE (for base level), DB (for database level),
MINING (for mining level).

All concepts of type BASE have no corresponding column set (no insert
in CON_CSID). During a case-transfer, all concepts of this type have
to be transferred.

All concepts of type DB correspond to a column set which is a basic
datatable, e.g. of a data warehouse. The connection between concept
and column set has to be done by the case administrator. During a
case-transfer, all concepts of this type have to be transferred.

All concepts of type MINING also have a corresponding column set.
But this column set is generated by the MD-Compiler during case
mode DESIGN or FINAL. During case-transfer concepts of this type
won’t be transferred but re-generated at the new location.

e CON_CSID (Concept - correspondsToColumnSet)
Id-reference to COLUMNSET_T. Defines the corresponding column
set at implementation level.

e CON_SUBCONRESTR (Concept - subConceptRestriction)
Defines a sub-concept-restriction. (Not used in this version.)

1.12 Table CONCEPTISA_T

(Not used in this version.) Only operators of type row selection need an
insert here.

e CISAID
Unique table-id.

e CISA_SUPERCONID (Concept - isA)
Id-reference to CONCEPT_T. Defines the super-concept of a concept.
Only all super-concepts have to be defined.

e CISA_SUBCONID (Concept - isA)
Id-reference to CONCEPT_T. Defines the actual concept (output con-
cept of row selection) for which the super-concept has to be defined.

1.13 Table PROJECTION_T

(Not used in this version.) Only operators of type feature construction and
multi-relational feature construction need an insert here.

¢ PRO_ID
Unique table-id.

Mining Mart IST-1999-11993, Deliverable No. D7a 8

e PRO_FROMCONID (Concept - fromConcept)
Id-reference to CONCEPT_T. Defines the from-concept-relation of a
concept of type projection.

e PRO_TOCONID (Concept - toConcept)
Id-reference to CONCEPT_T. Defines the actual concept or projection
concept (output concept of feature construction or multi-relational
feature construction) for which the from-concept has to be defined.

1.14 Table RELATION_T

e REL_ID
Unique table-id.

e REL_NAME (Relationship - name)
Name of the relation.

e REL_FROMCONID (Relationship - fromConcept)
Id-reference to table CONCEPT_T. Defines the from-concept-direction
of this relation. For a n:m relation, REL_FROMCONID and REL_TOCONID
have to be filled. For a 1:m relation only one of these attributes is nec-
essary.

e REL_TOCONID (Relationship - toConcept)
Id-reference to table CONCEPT_T. Defines the to-concept-direction
of this relation.

e REL FROMKID (Relationship - correspondsToForeignKey)

Id-reference to table KEYHEAD _T. Defines the from-key-direction at
implementation level of this relation. For a n:m relation, REL_FROMKID,
REL_TOKID and REL_CSID have to be filled. For a 1:m relation, only
one key-reference is necessary. The defined REL_ FROMCONID and
REL_FROMKID must correspond at implementation level in such a
way that for the corresponding column set of REL_FROMCONID a
primary key is defined to which the defined foreign key of REL_FROMKID
belongs to.

e REL_TOKID (Relationship - correspondsToForeignKey)
Id-reference to table KEYHEAD_T. Defines the to-key-direction of this
relation.

e REL_CSID (Relationship - correspondsToColumnSet)
Id-reference to table COLUMNSET_T. Defines the corresponding col-
umn set at implementation level. It can only be filled for a n:m rela-
tion.

Mining Mart IST-1999-11993, Deliverable No. D7a 9

e REL_SUBRELRESTR (Relationship - subRelationshipRestriction)
Defines a sub-relation-restriction. (Not used in this version.)

1.15 Table MM RELATIONISA T

(Not used in this version.)

e RISA ID
Unique table-id.

e RISA_SUPERRELID (Relationship - isA)
Id-reference to RELATION_T. Defines the super-relation of a relation.
Only all super-relations have to be defined.

e RISA_SUBRELID (Relationship - isA)
Id-reference to RELATION_T. Defines the actual relation for which
the super-relation has to be defined.

1.16 Table MCFEATURE_T

e MCF_D
Unique table-id.

e MCF_NAME (FeatureAttribute - name)
Name of the multi-column feature.

e MCF_CONID
Id-reference to CONCEPT _T. Defines the concept to which this multi-
column feature belongs to.

1.17 Table BASEATTRIB_T

e BAID
Unique table-id.

e BA_NAME (FeatureAttribute - name)
Name of the base attribute.

e BA_COLID (FeatureAttribute - correspondsToColumns)
Id-reference to COLUMN_T. Defines the corresponding column at im-
plementation level.

e BA_CONDTID (BaseAttribute - domainDataType)
Id-reference to table CON_DATATYPE_T. Defines the datatype on
the conceptual level.

Mining Mart IST-1999-11993, Deliverable No. D7a 10

e BA_CONID (FeatureAttribute - belongsToConcept)
Id-reference to table CONCEPT_T. Defines the concept to which this
base attribute belongs to.

e BA RELEVANCE (FeatureAttribute - relevanceForMining)
Flag, if the base attribute is relevant for mining. Allowed values are
YES, NO.

e BA_ATTRIBTYPE (FeatureAttribute - attributeType)
Type information about how the attribute is created. Allowed values
are BASE, DB, MINING.

e BA_MCFID (BaseAttribute - isPartOfMultiColumnFeature)
Id-reference to table MCFEATURE_T. Defines to which multi-column
feature this attribute belongs to. Several definitions for one multi-
column feature can exist.

1.18 Table COLUMNSET_T

e CS_ID
Unique table-id.

e CS_SCHEMA
Database-schema where the column set belongs to.

e CS_.NAME (ColumnSet - name)
Name of the column set. This name is the actual name of an existing
database table, if the column set is of type T, SN or MV. If it is of
type V, the compiler decides, if this object will be an existing view
object or just a sql-string.

e CS_FILE (ColumnSet - file)
External filename for SQL-statement creating this column set. (Not
used in this version.)

e CS_USER (ColumnSet - user)
User-name who created this column set. (Not used in this version.)

e CS_CONNECT (ColumnSet - dbConnectString)
Connect-String to the database. (Not used in this version.)

e CS_TYPE
Type of physical database element for this column set. Allowed values
are T (for table), V (for view), SN (for snapshot), MV (for materialized
view).

Mining Mart IST-1999-11993, Deliverable No. D7a 11

e CS_SQL
SQL-Create-String, generated by the MD-Compiler. Defines the create-
statement for this column set.

1.19 Table CSSTATIST_T

e CSSTID
Unique table-id.

e CSST_CSID (ColumnSetStatistics - forColumnSet)
Id-reference to table COLUMNSET_T. Defines to which column set
this statistic information belongs to.

e CSST_ALL (ColumnSetStatistics - allNumber)
Number of rows this column set has.

e CSST_ORD (ColumnSetStatistics - ordinalNumber)
Number of columns of type NUMBER this column set has.

e CSST_NOM (ColumnSetStatistics - nominalNumber)
Number of columns of type STRING this column set has.

e CSST_TIME (ColumnSetStatistics - timeNumber)
Number of columns of type DATE this column set has.

1.20 Table COLUMN._T

e COLID
Unique table-id.

e COL.NAME (Column - name)
Name of the column.

e COL_CSID (Column - belongsToColumnSet)
Id-reference to table COLUMNSET_T. Defines to which column set
this column belongs to.

e COL_COLDTID (Column - dataType)
Id-reference to table COL_DATATYPE_T. Defines the datatype of this
column.

e COL_SQL
SQL-String, generated by MD-Compiler. Defines the select-statement
for this column. This attribute is only filled if it is the output attribute
of an operator of type feature construction or multi-relational feature
construction.

Mining Mart IST-1999-11993, Deliverable No. D7a 12

1.21 Table COLSTATIST1.T

This table contains basic statistic information for a column. Only one insert
exists for one column.

COLST11ID
Unique table-id.

COLST1_COLID (ColumnStatistics - forColumn)
Id-reference to table COLUMN_T. Defines to which column this basic
statistic information belongs to.

COLST1_UNIQUE (ColumnStatistics - unique)
Number of different values of this column within the column set.

COLST1_MISSING (ColumnStatistics - missing)
Number of missing values of this column within the column set.

COLST1_MIN (ColumnStatistics - min)
Minimum-value of this column within the column set.

COLST1 MAX (ColumnStatistics - max)
Maximum-value of this column within the column set.

COLST1_AVG (ColumnStatistics - average)
Average-value of this column within the column set.

COLST1_STDDEV (ColumnStatistics - standardDeviation)
Standard-deviation-value of this column within the column set.

COLST1_VARIANCE
Variance-value of this column within the column set.

1.22 Table COLSTATIST2_T

This table contains distribution information for a column. Several inserts
can exist for one column.

COLST2.1D
Unique table-id.

COLST2_COLID (ColumnStatistics - forColumn)
Id-reference to table COLUMN_T. Defines to which column this dis-
tribution information belongs to.

COLST2 DISTVALUE (ColumnStatistics - distributionValue)
Defines the value of the distribution element. For columns with type
NUMBER, the average value of a distribution range is written here.

Mining Mart IST-1999-11993, Deliverable No. D7a 13

e COLST2_DISTCOUNT (ColumnStatistics - distributionCount)
Number of elements within the column set which belong to this dis-
tribution element or distribution range.

e COLST2_DISTMIN (ColumnStatistics - distributionMin)
Defines the minimum border of a distribution range in case of a column
with type NUMBER.

e COLST2_DISTMAX (ColumnStatistics - distributionMax)
Defines the maximum border of a distribution range in case of a column
with type NUMBER.

1.23 Table KEYHEAD_T

e KH.ID
Unique table-id.

e KH.NAME
Name of the key.

e KH_PKCSID (Key - isAssociatedToColumnSet)
Id-reference to table COLUMNSET_T. Defines the reference to an
existing column set used for the primary key.

e KH_FKCSID (Key - isAssociated ToColumnSet)
Id-reference to table COLUMNSET_T. Defines the reference to an
existing column set used for the foreign key.

1.24 Table KEYMEMBER T

e KM_ID
Unique table-id.

e KM _KHID
Id-reference to table KEYHEAD T. Defines the keyhead to which this
keymember belongs to.

e KM_PKCOLID (Key - hasColumn)
Id-reference to table COLUMN_T. Defines the primary key column.

e KM_FKCOLID (Key - hasColumn)
Id-reference to table COLUMN_T. Defines the foreign key column.

e KM POS
Defines the position of this keymember within the keyhead.

Mining Mart IST-1999-11993, Deliverable No. D7a 14

1.25 Table DOCU_T

e DOCID
Unique table-id.

e DOC_OBJID
Id-reference to any object of type, e.g CASE, OPERATOR, PARAM-
ETER, CONCEPT to which this documentation belongs to.

e DOC_OBJTYPE
Defines the actual type of the object DOC_OBJID. Allowed are all
prefixes of table-id’s from all metadata tables.

e DOC_TEXT
Actual text description.

15

ble No. D7a

1vera

Mart IST-1999-11993, Del

ining

M

1.26 Picture of the M4-Relational Metadata-Schema

AIL5405530NS 515
Q1154055303044 518

AMOOALSILINN LS
NAOOT LS

AILEH0S5I0NS 5L dldo LS
AILEH0S53030THd ELS i

HLSTH1THENE T3
150 T3
a0l 13y

HLETINODANS NOD
153 NOD|
dALTNOD)

AMNDDANE YEDD
AINODYIdNE YELD
ar vsD

ANGCDANS WSID
AINOTH3dNE ¥slo
a ysD

Chapter 2

System-Tables for the
Metadata-Schema

All tables described in this chapter are only used for reading. They content
static information about system functionality.

2.1

2.2

2.3

Table CON_DATATYPE_T

CONDT D
Unique table-id.

CONDT_NAME

Name of datatype on the conceptual level, e.g. 'CATEGORIAL’,
"KEYATTRIB’ or "TIMEGROUP’. To convert a concept-datatype to a
implementation-datatype the database function COLUMN_DATATYPE
is used.

Table COL_ DATATYPE T

COLDT_ID
Unique table-id.

COLDT_NAME
Name of datatype on the implementational level, NUMBER’, 'STRING’,
'DATE’ and 'KEY'.

Table OP_TYPE.T

OPTID
Unique table-id.

16

Mining Mart IST-1999-11993, Deliverable No. D7a 17

2.4

2.5

2.6

2.7

2.8

2.9

OPT_TYPE
Name of the abstract operator type of the M4-MetaModel, e.g. 'FEA-
TURE_CONSTRUCTION’ or 'FEATURE_SELECTION".

Table OP_ NAME_ T

OPN_ID
Unique table-id.

OPN_TYPE
Name of the concrete operator, for which executable code exists, e.g.
'RANDOM_SAMPLING’ or 'SELECT BY_QUERY".

Table S CASEMODE_T

NAME

Name of the case-mode, e.g. 'DESIGN’, "TEST’ or 'FINAL’.
Table S OBJTYPE_T

NAME

Name of the object type when referencing an object indirectly, for
example at PAR_OBJTYPE. Values of this table are up to now 'CON’,
'REL’, 'BA’, "V’ and 'MCF".

Table S . YESNO_T
NAME
Boolean flag values "YES’ and 'NO.

Table S INOUT_T

NAME
Values 'IN’ and 'OUT".

Table S ONTOLOGY_T

NAME
Name of the ontology level for a concept, e.g. 'BASE’, 'DB’ or "MIN-
ING’.

Mining Mart IST-1999-11993, Deliverable No. D7a 18

2.10 Table S.CSTYPE_T

e NAME
Name of the columnset-type. This information is used by the MD-
Compiler to create the corresponding database object. Values are up
to now "T” (for table), 'SN’ (for snapshot), 'V’ (for view) and "MV’
(for materialized view).

