Bibtype | Article |
---|---|

Bibkey | Piatkowski/etal/2016a |

Author | Nico Piatkowski and Sangkyun Lee and Katharina Morik |

Ls8autor |
Lee, Sangkyun
Morik, Katharina Piatkowski, Nico |

Title | Integer undirected graphical models for resource-constrained systems |

Journal | Neurocomputing |

Volume | 173 |

Number | 1 |

Pages | 9--23 |

Publisher | Elsevier |

Abstract | Machine learning on resource-constrained ubiquitous devices suffers from high energy consumption and slow execution. The number of clock cycles that is consumed by arithmetic instructions has an immediate impact on both. In computer systems, the number of consumed cycles depends on particular operations and the types of their operands. We propose a new class of probabilistic graphical models that approximates the full joint probability distribution of discrete multivariate random variables by relying only on integer addition/multiplication and binary bit shift operations. This allows us to sample from high-dimensional generative models and to use structured discriminative classifiers even on computational devices with slow floating point units or in situations where energy has to be saved. While theory and experiments on random synthetic data suggest that hard instances (leading to a large approximation error) exist, experiments on benchmark and real-world data show that the integer models achieve qualitatively the same results as their double-precision counterparts. Moreover, clock cycle consumption on two hardware platforms is regarded, where our results show that resource savings due to integer approximation is even larger on low-end hardware. The integer models consume half of the clock cycles and a small fraction of memory compared to ordinary undirected graphical models. |

Month | January |

Year | 2016 |

Projekt | SFB876-A1,SFB876-C1 |

Url | http://www.sciencedirect.com/science/article/pii/S0925231215010449 |
---|