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1 | Introduction

1.1 | Motivation

Experiments in high-energy astroparticle physics like MAGIC or FACT [26, 2] produce a

continuous stream of high-volume data. The processing steps from raw data recorded by

the telescope to high-level prediction tasks can be realized using the fact-tools library.

Machine Learning algorithms are employed for solving these high level prediction tasks

based on preprocessing steps and features which have been hand-designed by human

experts, while the original raw data is no longer considered for classification.

Due to the efficient computation on Graphical Processing Units (GPU) it is possible to

learn Deep Neural Networks with millions of weights on massive datasets of raw data

resulting in breakthrough performance on a couple of benchmark datasets, e.g. [19].

Therefore the time has come to evaluate the potential benefits that Deep Learning could

bring to processing the data recorded by the FACT telescope.

Deep Convolutional Neural Networks (CNNs) excel at classifying image data which

closely resembles the video-like data produced by the telescope. Representation learning

may provide an efficient alternative to the features manually designed by human experts

and a compressed representation may even help with regard to memory requirements

and network transfer costs which are the main constraints on processing the data. While

training of neural networks is computationally expensive, prediction is fast and can be

performed online favoring real-time processing.

Applying CNNs to FACT data has to meet three main challenges: The high dimensional-

ity of observed events, organization of the camera as hexagonal grid opposed to existing

convolution operations for square grids and the additional time dimension.

CNNs answer the challenge of high dimensional inputs by parameter sharing. A num-
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1 Introduction

ber of simpler learning tasks can be identified by treating the spatial, temporal and

spatio-temporal aspect of the data separately.
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2 | The First G-APD Cherenkov

Telescope (FACT)

Modern astronomy studies celestial objects by observing high-energy beams emitted by

these sources, e.g the energy plotted over time results in a light curve that can be used

to classify the source. High-energy beams can not be observed directly, but particles

interact with elements in the atmosphere inducing cascading air showers which emit

Cherenkov light that can be measured by the FACT telescope. To classify a source the

energy of a gamma particle needs to be reconstructed from these camera measurements.

The camera consists of 1440 hexagonal pixels which are sampled at a rate of 2GHz. If a

hardware trigger detects an event, a series of 300 camera samples (the region of interest)

is written out. Raw data has dimension 1440× 300 and the 1440 pixels can be arranged

in two dimensions according to their spatial position in the camera.

Obviously, the vast amount of events detected by the telescope is unlabeled. To solve the

different tasks using supervised machine learning methods labeled data is required for

training. The interaction of particles with elements in the atmosphere is well understood

and monte carlo simulation of the probabilistic collisions together with simulation of the

FACT camera can be used to simulate labeled raw data. The simulation is computa-

tionally expensive and therefore the amount of labeled examples available for training is

limited.

2.1 | Processing Pipeline of fact-tools

The following processing steps are applied to the raw data in order to obtain the final

energy estimate (see Figure 2.1):
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2 The First G-APD Cherenkov Telescope (FACT)
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Figure 2.1: Data processing steps from raw data acquisition to energy estimation

in fact-tools adapted from [6]

1. DRS-Calibration: The pixel values are adapted in order to correct for environment

parameters like temperature or small differences in the physical properties of the

hardware used to trigger each pixel.

2. Image Cleaning : Not all the photons reaching the camera stem from the observed

shower. To remove the noisy influence of background light the image cleaning

step explicitly determines the pixels that belong to the shower. The implemented

cleaning methods estimate the number of photons per pixel and the arrival time

(indicated by a rising edge in the 300 value time series of the event) from raw data

and use thresholds on the number of photons for each pixel and its neighboring

pixels to determine the shower pixels[34].

3. Feature Extraction: A number of hand-designed features is extracted based on the

shower pixels. The most important parameters are the geometric Hillas-parameters[14]

that are based on fitting an ellipse to the shower pixels. Figure 2.2 visualizes the

detected shower pixels and the fitted ellipse.

4. Signal Separation: The telescope triggers not only for the desired gamma events

but also for background noise produced from hadronic rays. These hadron events

outnumber the gamma events by a factor of 1000 to 10.000 and as a conclusion a

lot of unnecessary data will be collected to measure a single gamma event. Therefor

it is an important step to separate the signal from noise. The underlying binary

classification task is typically addressed by random forests operating on Hillas-

parameters.

5. Energy Estimation: The final step is to estimate the energy of the gamma particle

from a number of energy-related features, which can be interpreted as a regression

task from a machine-learning perspective.
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2.2 Preview on learning tasks

2.2 | Preview on learning tasks

A visualization of one time slice of a single event can be seen in Figure 2.2. The color of

a camera pixel gives the voltages measured by the telescope which should correspond to

the amount of photons that hit that pixel. The brighter pixels form a photon shower.

The final prediction task we are interested in is to perform a binary classification of the

event class from a sequence of these images (i.e three dimensional data).

In addition to the real three dimensional data we have access to the information whether a

pixel is actually part of the shower induced by the observed event. From this information

we can derive a supervised image cleaning tasks, that will try to answer for each pixel if

it actually is a shower pixel.

Image Cleaning can be realized as a supervised learning task by extracting the ground

truth information whether a pixel is a shower pixel or not from meta attributes of the

Monte Carlo Simulation (see Figure 2.2).

Figure 2.2: Comparison of the shower pixels derived from meta attributes of the

simulation (pink) in comparison to the shower pixels derived using Two Level

Time Neighbor Cleaning (gray) together with the fitted ellipses from which the

Hillas-parameters are extracted. The intersecting pixels are displayed in yellow.

Note that the ellipses differ not only in size but also in the angle of the main

axis.
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2 The First G-APD Cherenkov Telescope (FACT)

Image cleaning performance can be evaluated with the typical classification performance

measures based on a contingency table for counting the true and false detection of shower

pixels.

A basic supervised pixel cleaning task can be performed as binary classification task that

decides for each pixel given its values over the complete region of interest, whether the

pixel belongs to the shower or not. A more advanced setting tries to predict a cleaned

image from the raw data as a whole.

Throughout this thesis problems that operate on inputs of different dimensionality and

therefore tackle either temporal, spatial or spatio-temporal aspects of the data are dis-

tinguished as tasks which can be applied to different data sets, e.g. real data vs. ground

truth photon charges.
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3 | Deep Learning

3.1 | Overview

The buzzword Deep Learning is used to describe a trending topic in machine learning

which has also gained a lot of public attention due to its role in solving a number of

spectacular tasks, e.g. AlphaGO [28] beating the human GO champion in 2016. Deep

Learning refers to the training of Artificial Neural Networks(ANN) with many hidden

layers. Multi-layer ANNs have been developed in the 1970s and theoretical works im-

ply that a universal function approximator can be realized with only one hidden layer.

However, more layers allow to learn more complex functions and therefore often help to

improve performance. The increasing amount of available data helps to prevent models

with a huge number of weights from over-fitting and processing on modern Graphical

Processing Units (GPU) allows to train models with many parameters efficiently.

Prior to explaining the mathematics behind Neural Networks and Convolutional Neural

Networks, this section presents an overview of some of the other aspects of Deep Learning

and explains how they relate to the processing steps of the fact-tools pipeline.

Representation Learning The idea of representation learning is to automatically find a

representation that captures the internal structure of the data and is well suited

for classification [4]. Usually the last layer of a neural net corresponds to very high

level features that can be used for solving a specific prediction task, while the first

layers capture basic properties of the underlying data distribution, e.g. edges or

colors for image data. The activations of a hidden layer can therefore be inter-

preted as a learned representation of the data that is well suited for prediction.

An Autoencoder is a special form of neural network for unsupervised learning of

a compressed representation. The Autoencoder tries to reconstruct its input using

one ore more hidden layers. If the number of neurons at the hidden layer is much
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3 Deep Learning

smaller than the number of input neurons this corresponds to a representation of

reduced dimension.

Applied to FACT data a learned representation can provide an alternative (to the

hand designed features which are extracted using fact-tools) that possibly improves

prediction performance or speeds up the feature extraction. A compressed repre-

sentation might help with regard to memory requirements and network transfer

costs. Sometimes the Autoencoder is set up to predict not its exact input but a

version of the input that is cleaned from noise (Denoised Autoencoder). Such a

Denoised Autoencoder could be used to address the image cleaning task in the

FACT pipeline.

Transfer Learning Transfer learning aims at incorporating an existing model in order

to improve a prediction task that operates on the same input domain but with

a different target variable. Applied to neural networks one could reuse the lower

layers of the existing model (that are supposed to capture the underlying structure

of the available data) and replace the top layer in order lo learn high level features

that are more suited for predicting the new target [36]. Often it is useful to fine-

tune the existing weights to better match the new task.

As we have seen in the previous section, a number of different learning tasks has

to be solved based on the raw telescope data. Obviously it would be nice to reuse

some of the extracted features for the remaining learning tasks.

Unsupervised Pretraining In many cases only a small set of labeled data but a huge

amount of unlabeled data is available. In this case it can be beneficial to use

representation learning on the unlabeled data and apply transfer learning to solve

the supervised learning task. During pretraining the weights can be efficiently

computed in a greedy layer-wise fashion [5]. Unsupervised pretraining perfectly

matches the situation of vast amounts of real but unlabeled data measured by the

telescope in comparison to computation intensive simulation of labeled data.

Recurrent Neural Networks Recurrent Neural Networks maintain an internal state by

feeding some activations as input to neurons of lower layers at the next time step.

This form of internal memory allows RNNs to operate efficiently on sequences or

time series. The region of interest for a single camera pixel typically consists of 300

time slices and can therefore be interpreted as a time series.
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3.2 Artificial Neural Networks

3.2 | Artificial Neural Networks

Machine Learning can be divided into the three subfields Supervised Learning, Unsuper-

vised Learning and Reinforcement Learning. Supervised Learning deals with problems

in which a target variable y ∈ Y is assigned to an observation ~x ∈ X using a function

f∗ : X → Y. The central idea is to use a model fθ(~x) and determine the trainable

parameter vector θ ∈ Θ 1 in a way that fθ ≈ f∗.

Gamma-hadron separation and image cleaning are instances of binary classification in

which a binary class value is assigned to a vector of real-valued photon charges, i.e

X = Rd and Y = {0, 1}.

One possible model choice is a linear function fθ(~x) = f(~w,b)(~x) = ~wT ·~x+b. For example

the Perceptron[21, 27, 23] is a linear model for binary classification:

f̂θ(~x) =

1 if ~wT · ~x ≥ b

0 else

The perceptron will only provide good predictions if the data is indeed linear separable

(see figure 3.1).

Figure 3.1: Perceptron on data that is linear separable (left), not linear separable

(middle) and linear separable after transformation (right).

Otherwise a non linear transformation Φ : Rd → Rd′ of the inputs into a linear separable

representation is required to formulate a model that is capable of predicting the data

f̂ ′θ(~x) = ~wT · Φ(~x).

The transformation can be explicitly designed by human experts, e.g the processing

steps in the fact-tools pipeline prior to the actual classification using Random Forests

corresponds to hand designed feature transformations. The alternative approach is to

1The vector arrow is discarded for better readability
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3 Deep Learning

learn a suitable representation from the raw data over the course of training. Assuming

the feature transformation in turn to be a linear model

Φ′θ(~x) =


φ1(~x)

φ2(~x)
...

φn(~x)

 =


φ1( ~w1

T · ~x+ b1)

φ2( ~w2
T · ~x+ b2)

...

φn( ~wn
T · ~x+ bn)

 (3.1)

defines a hierarchy of linear models, e.g.

f̂ ′′θ (~x) = ~wT · Φ1
θ(Φ

2
θ(~x)) + b

whose combined parameters θ can be learned during training.

Obiously the hierarchical model can be realized as combination of multiple perceptron

models, where the inputs ~x are fed into different perceptrons whose outputs in turn

are fed into another perceptron. However a linear combination of linear models is nec-

essarily a linear model and the expressive power of the resulting model still limited.

The thresholding after each neuron is not differentiable which can be a problem with

regard to gradient based optimization during parameter learning. Both problems can

be addressed by exchanging the thresholding for a differentiable non-linear activation

function h : R→ R, e.g the sigmoid function h(z) = σ(z) = 1
1+exp(−z) .

A computation unit that computes

f̃(w,b)(~x) = h(~wT · ~x+ b)) (1)

is called a neuron and is the fundamental building block of a Multi-Layer-Perceptron

(MLP). A MLP is build from multiple neurons that are organized in fully-connected

layers and can be visualized as an acyclic graph (see figure 3.2). The first layer is called

input layer and represents the raw input values ~x where each neuron of the layer corre-

sponds to one entry of ~x. Neurons in the input layer perform no mathematical operation

but simply provide the input value as output to be processed in the next layer. The last

layer is named output layer and typically has one neuron per class, that will output the

final score for this class. However the perceptron example shows that one output neuron

can be enough for binary classification. In between any number of layers containing any

number of neurons is possible. Fully-connected means that the output of each neuron of

a layer is fed as an input to each neuron of the next layer. We can enumerate the layers

from left to right and use M l for the number of neurons in layer l and assign the weight

10



3.2 Artificial Neural Networks
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Figure 3.2: Multi-Layer Perceptron.

wli,j to the edge connecting neuron i of layer l−1 to neuron j of layer l. Formally neuron

j in layer l computes its output value using equation (1) to

f lj = h(
M(l−1)∑
i=1

wli,j · f l−1
i + blj) (2)

The computation can be realized in two steps:

ylj =
M(l−1)∑
i=1

wli,j · f l−1
i + blj (3)

f lj = h(ylj) (4)

Theoretical work proves that one hidden layer is enough to realize an universal func-

tion approximator [15]. However practice shows that increasing the number of layers

can drastically improve the approximation quality [33]. Networks with more than three

hidden layers are referred to as Deep Neural Networks [3].

For learning the parameters of the model a loss function is used to define how much a

prediction for an example differs from its actual class:

l : Θ→ R, e.g. Epθ (~x, y, θ) =
1

2
(fθ(~x)− f∗(~x))2

The averaged loss over the complete training data D = {(~x1, y1), . . . , (~xN , yN )}

E =
1

N

N∑
i=1

Epθ (~xi, yi, θ)

is minimized to determine the optimal model parameters:

θ = arg min
θ∈Θ

1

N

N∑
i=1

Ep(~xi, yi, θ)

11



3 Deep Learning

The actual learning is realized using gradient descent, an iterative method in which the

weights are adapted in negative gradient direction (i.e. the direction of steepest descent)

by a small step size α ∈ R:

θi+1 = θi − α ·
∂E

∂θ

Computing the loss and update step over the entire training set is referred to as batch

training. In praxis Stochastic Gradient Descent [7] yields better learning speed by com-

puting an update step for each example, where the example is randomly drawn from

the training dataset. Today most Deep Learning models are trained using mini-batches

of the data. The gradient for each update step is averaged over small batch of samples,

which can result in more robust gradient estimates. With traditional stochastic gradient

descent the learning rate is chosen to be large in the beginning and decreased during

training. However there exist a number of optimization techniques for automatic learning

rate adaptation (see section 5.3.2).

Using the two step processing for each neuron described in equations (3) and (4) we can

compute the required gradients in a straightforward way - if the gradient ∂Ep

∂f lj
is known

- using the chain rule:

∂Ep

∂ylj
=
∂Ep

∂f lj
h′(ylj) (5)

∂Ep

∂wli,j
=
∂Ep

∂ylj

∂ylj

∂wli,j
=
∂Ep

∂ylj
· f (l−1)
i (6)

∂Ep

∂f
(l−1)
i

=
∂Ep

∂ylj

∂ylj

∂f
(l−1)
i

=
∂Ep

∂ylj
·
M l∑
j=1

wli,j (7)

Note that the gradient computation in equation (7) is not computed for a parameter

update but rather to ensure that the required gradient will be available during gra-

dient computation of the previous layer if computation starts from the highest layer

downwards. This leads immediately to the dynamic programming based recursion of the

famous backpropagation algorithm. The principal that each unit computes the gradients

and passes the gradient with regard to its inputs to previous neurons is used in mod-

ern deep learning frameworks like Tensorflow by creating a computational graph from

building blocks that are designed this way to realize automatic differentiation.
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3.3 Convolutional Neural Networks

3.3 | Convolutional Neural Networks

CNNs make use of symmetries in the data by using local connectivity and weight sharing

to reduce the number of parameters and connections in comparison to fully-connected

MLPs described in the previous section. Therefore two new layer types - the convolution

and the pooling layer - are introduced.

The first successful application of convolutional neural networks [20] stems from the

1990s, while the first application of deep convolutional neural networks in 2012 [19]

achieved breakthrough performance in the ImageNet challenge. Many adaptations to

the net architecture have led to further improvements in recent years [38, 32, 31, 29, 13].

Detailed descriptions of the convolution operation and efficient training of CNNs can be

found in [12, 17].

The name is inspired by the mathematical convolution operation which describes the

convolution of two continuous functions s(t) =
∫
x(a)w(t−a)da. However representations

that can be stored in memory consist of measurements from discrete points in time and

are of limited size. In addition the indices are oftentimes flipped for easier computation

on arrays. Therefore the operation actually realized by convolutional neural networks is

rather a cross-correlation than a convolution [12]. The formulation for the default use

case of image processing, i.e. two dimensional data, the operation is:

S(i, j) = (I ∗K)(i, j) =
M∑
m=1

N∑
n=1

I(i+m, j + n)K(m,n)

A filter KM×N is convoluted with input I. Intuitively the filter of little spatial extension

compared to the original input is moved across the input and for each position a dot

product of values covered by the filter and the filter weights is computed (see Figure

3.3).

Compared to fully-connected MLPs the neurons of each layer are ordered in multiple

dimensions. In case of 2D-Convolution the neurons are organized in 3D-shape (width,

height, channels). The channel axis corresponds to multiple features that exist for each

spatial position, e.g. image processing on RGB images has channel size 3 on the input

layer (see Figure 3.4).

The convolution operations always involves the full depth at each spatial location (see

Figure 3.5). For filter size 3 × 3 and 4 input channels at each filter position the dot

product of 36 input values and 36 weights is calculated in order to obtain a single output

13



3 Deep Learning

Figure 3.3: Example of 2D-Convolution-Operation for a single 3× 3-Kernel with

only one channel of input data. The filter is moved across the window, producing

an output of reduced spatial extend. [12]

Figure 3.4: A 2D-Convolutional Neural Network processes three dimensional vol-

umes of decreasing spatial extend. [17]

value. The spatial extension of the outputs therefore corresponds to the number of input

positions at which a filter is applied. Each convolution layer applies not only a single

filter but multiple filters whose two dimensional outputs are stacked resulting in one

output channel per applied filter.

The hyper parameters of a convolution layer are the number of filters K, kernel size F ,

stride S and padding P . The stride describes how far the kernel is moved after each

application. The number of positions for filter applications depends on stride and kernel

size. Often the positions defined by stride and kernel size do not fit the input shape

perfectly and adding zeros around the borders (padding with zeros) can help to cover the

border of the input with filter positions. Restricting the output to positions for which

the filter is entirely inside the input dimension and discarding possible border elements

is often referred to as valid padding. Choosing the hyper parameters in a meaningful way

14



3.3 Convolutional Neural Networks

Figure 3.5: Example of 2D-Convolution-Operation for 3× 3 convolution on true

3D tensors, i.e. multiple input channel and multiple filters. [17]

can be challenging. For input shape W1 ×H1 ×D1 the output shape W2 ×H2 ×D2 can

be derived from the hyper parameters using the following relationships [17]:

W2 = (W1 − F + 2P )/S + 1

H2 = (H1 − F + 2P )/S + 1

D2 = K

Each filter is defined using one weight per entry plus one bias weight resulting in a total

of (F · F ·D1) ·K +K weights for the entire layer.

In other words each output neuron corresponds to one combination of filter and filter

position and depends only on the input values covered by the filter at this position. In

terms of the network representation as acyclic graph, each neuron is only connected to a

few input neurons. Compared to the fully-connected MLP, CNNs are locally connected.

Further the weights of each filter are shared across all filter positions. Fully connected

layers with m inputs and n outputs require m× n parameters, while convolution layers

with a total of k entries per filter rely on only k×n parameters. Accordingly calculating

the dot products for fully-connected layers requires O(m × n) computations while the

calculation of dot products for a convolution layer requires only O(n× k) computations.

Weight sharing and local connectivity therefore help to reduce the runtime for high di-

mensional inputs. More important parameter sharing reduces the number of parameters,

while each parameter is presented with more data (filter positions × number of exam-

ples) resulting in robuster statistical estimates of the true gradient and allowing to fit

networks with a large number of parameters on comparably few training examples.

Sharing parameters across applications to different input regions requires a certain sym-

metry in the data in a way that specific local features can be observed at any position.

The important property of CNNs realized by translating the filter across the input is

equivariance to translation, i.e. the translating the input prior to convolution yields the

15



3 Deep Learning

same result as applying the same translation on the output. Formally function f is equiv-

ariant to function g if f(g(x)) = g(f(x)). It is important to check whether this property

holds for a specific data set prior to using CNNs [12].

The second operation introduced by CNNs is pooling. Pooling layers are added for down-

sampling the data and have no trainable parameters. Pooling windows similar to the

filters of convolution layers are translated across the input. The output for each applica-

tion is a simple aggregation of input values covered by the pooling window. Commonly

used aggregation functions are average and max.

A CNN architectures typically consists of alternating convolution and pooling layers

followed by two or three fully connected layers. Pooling layers require no activation

function either and oftentimes the activation function is represented as an actual layer

in between th convolution and pooling layers.

For an intuitive understanding of CNNs filters can be visualized and interpreted. For

image recognition problems the filters of lower layer represent simple concepts like lines

with a certain orientation or colors. Filters in higher layers represent complex features

that are obtained as a combination of different simple feature from lower layers.

The raw data produced by the telescope closely resembles standard image data and the

detected showers differ in angle and size but the final prediction is invariant to the actual

position of the shower on the camera. The handcrafted image cleaning explicitly inspects

the neighbor pixels. This perfectly fits the properties of CNNs described above.

Due to the hexagonal structure of the camera a transformation is necessary in order

to realize the convolution layer as an efficient matrix multiplication and to keep the

symmetries required for weight sharing.
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4 | Convolution on Hexagonal Grids

CNNs have originally been developed in the context of image processing and generally

operate on arrays, that are indexed by a square grid. A number of popular deep learning

frameworks and libraries provide efficient implementations of the convolution operation

by utilizing the GPU. However these implementations operate on data that is sampled

on a square grid.

Due to the hexagonal shape of the individual camera pixels the camera surface of FACT

is sampled on a hexagonal grid. Therefore it is important to verify if and how the

convolution operation can be implemented or existing frameworks can be utilized. The

first possibility is to find a representation of the hexagonal grid as two dimensional array

in order to apply standard convolution operations designed for square grids. The second

possibility is to define a custom convolution operation and implement it from scratch

using efficient GPU computations.

4.1 | Using Square Grid Implementa-

tions

A formal introduction of indexing schemes and computations on hexagonal grids can be

found in [22], while [25] provides an implementation focused view on hexagonal grids in

combination with animated visualizations.

For a square grid on the one hand the obvious way of indexing is to use the two axes of

translational symmetry. Hexagonal grids on the other hand have three axes of symmetry

that could be used for indexing.
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4 Convolution on Hexagonal Grids

Cube coordinates take into account all three axis and index each pixel using a triple

(x, y, z). In order to prevent redundancy the constraint x + y + z = 0 must hold. Cube

coordinates are a popular choice for the implementation of algorithms on hexagonal

grids, but provide little help in mapping values to a square grid.

Axial coordinates are obtained by using only two of the translational symmetry axes for

indexing. The axes are skewed (i.e. their inner angle is 60◦ or 120◦ depending on the

choice of axes) resulting in a diagonal indexing structure and consequently usually sparse

arrays.

Offset coordinates are obtained by offsetting every second column (or row) (see figure

4.1). Offset coordinates are the straightforward way to represent hexagonal grids using

square arrays and will be used in this thesis.

Figure 4.1: Offset coordinates for indexing a hexagonal grid [25]

While offset coordinates provide efficient storage of almost rectangular panes, the camera

surface of FACT is of approximately circular or hexagonal shape. As a consequence a

partly sparse array of dimension 45× 40 is required for representing the surface in offset

coordinates (the same applies for axial coordinates). In total 1800 values compared to the

1440 real camera pixels need to be stored and finally processed by the first convolution

layer.
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4.1 Using Square Grid Implementations

Figure 4.2: The form of the camera surface represented in offset coordinates

does not perfectly fit a two dimensional array. Therefore the red pixels in the

corners are missing camera measurements and are filled with zeros.

In order to capture a pixel and its six neighboring pixels in an offset coordinate array,

at least filter size 3 × 3 is required and therefore two additional pixels are captured.

Due to neighboring columns being offset the relative location of the original neighbors is

mirrored for even and uneven columns (see figure 4.3). The property of equivariance to

Figure 4.3: Three pixels (green) together with their neighboring pixels in the

hexagonal grid (red) projected into and offset coordinate array.

translation of which CNNs make use is therefore not fulfilled. It will hold though if the

image is translated by an even number of pixels. Accordingly even stride in horizontal

direction has to be used to preserve the translational equivariance for the trained filters.

In order to understand how large neighborhoods are arranged in an offset coordinate

array figure 4.4 shows the second order neighborhood of a pixel (i.e the neighbors and

their neighbors).
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4 Convolution on Hexagonal Grids

Figure 4.4: One pixel (green), its neighbors (red), and its second order neighbors

(blue) in an offset coordinate array.

4.2 | True Hexagonal Convolution

Applying true hexagonal convolution requires the efficient selection of a pixel and its

neighbors. The neighbors in offset coordinates can be easily computed by adding specific

offsets to the pixel index. Again the offsets are different for even and uneven rows.

Efficient neighborhood computation is possible for most hexagonal indexing schemes

and storage as two dimensional array is no longer required. Efficient computation can

be realized by copying the the relevant patches of the input data into a matrix of shape

filter positions × number of neurons per filter and the weights accordingly into a matrix

of shape number of neuron per filter × number filters and computing all filter application

in parallel using a single matrix product. The result matrix needs to be converted to the

correct spatial arrangement.

Different possibilities for selecting the filter positions and applying stride to the hexag-

onal grid need to be defined. Figure 4.5 shows an example of overlapping convolution

were a filter of 7 pixels covering exactly the neighbors is applied to every pixel of the

input. The hexagonal shape of the input is similar to the actual camera surface and can

be viewed as central hexagon surrounded by a number of rings of hexagons. If the filter

is applied with valid padding, the output shape will be of the same hexagonal shape

missing the outer ring. Therefore the the same convolution operation can be applied on

the output shape.
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4.2 True Hexagonal Convolution

Figure 4.5: Overlapping convolution.

Figure 4.6 shows an example of non-overlapping hexagonal convolution. The input shape

corresponds to an hierarchical representation of a hexagonal grid which can be defined

recursively. Starting with a simple hexagon in level 0, each layer is constructed by using

the area represented by the level below and adds 6 identical areas as neighbors (see Fig-

ure 4.6 from right to left). The HIP Framework [22] indexes this structure by assigning

the numbers 0 to 6 the central and neighboring positions of each level in clockwise order.

The complete address can be obtained by concatenating the index used to describe the

relevant substructure at each layer. The result is a base 7 number. Using this indexing

scheme structures can be stored as one dimensional array in a form that allows to con-

volute over true hexagonal neighborhoods using 1D-Convolution with filter size 7 and

stride 7. Note that this works only for non-overlapping convolution.

Figure 4.6: Non-overlapping convolution.
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5 | Experiment Design

Prior to diving into the actual gamma-hadron separation and image cleaning tasks on

telescope data in chapter 6, this chapter aims at providing some insight on the technical

realization of the experiments. Further it guides through the careful preparation of a

hierarchical data file that is suitable for deep learning and allows to realize different

learning tasks on different datasets efficiently from a singe file.

5.1 | Choice of Framework

In order to efficiently evaluate different learning tasks and different approaches of meeting

these tasks implementing every operation from scratch is a tedious exercise. Luckily

several frameworks providing efficient implementations are available which make use of

GPGPU computations. In context of the number of possible learning tasks it is important

that the different building blocks can be combined in a flexible way.

The existing fact-tools pipeline is realized in java and there exist a few java libraries

for deep learning e.g. H2O1 and DeepLearning4J2. These frameworks can be viable for

integrating deep learning in the existing processing pipeline in production mode but

provide little support for the rapid prototyping required for investigation of the best

suitable approach for each of the learning tasks at hand.

Caffee3 provides excellent support for efficient training of Convolutional Neural Net-

works but lacks support of recurrent neural networks, which might be investigated in

the future with regard to the time dimension of the data.

1https://www.h2o.ai
2https://deeplearning4j.org
3http://caffe.berkeleyvision.org
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5.2 Data Preparation

Suitable choices are therefore Theano4, Tensorflow [1] and Torch5 of which Theano and

Tensorflow come with the common frontend Keras [8], i.e. experiments defined in Keras

can be executed in both frameworks. The experiments in this thesis are conducted with

Keras using the Tensorflow backend. Keras is written in python and Tensorflow provides

a python layer of abstraction to handle core functionalities implemented in C or CUDA.

5.2 | Data Preparation

The data formats currently used to store real and simulated data for processing with

the java based fact-tools pipeline are far from ideal for training deep neural networks

using python based frameworks like Keras or Tensorflow. When transforming data into

a more suitable format it is important to consider aspects like sampling, shuffling, train-

test-split, normalization and efficient feeding capabilities (into the training routines of

the applied framework).

This chapter describes the data format used for the experiments in this thesis alongside

the data transformations to convert from the existing data format into one favoring deep

learning.

5.2.1 | Data Formats

The original FACT data is stored according to the Flexible Image Transport System

(FITS) [35] and calibrated against external calibration files in the first processing step

within fact-tools. The data is stored in a one dimensional array and ordered in a way that

neighborhoods are not preserved, and therefore can not be used for spatial convolution

using out of the box convolution operators. As a solution the data will be rearranged

into an offset coordinate array with an additional time dimension.

For simulated data the event class (label) can be retrieved from meta parameters of

the simulation. From the meta parameter photon weights we can infer the information

whether a pixel was actually hit by a photon that originated from the observed shower

during simulation (e.g. to use as label in the pixel cleaning process).

4http://deeplearning.net/software/theano/
5http://torch.ch
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5 Experiment Design

The necessary fields are serialized into a binary format using Protobuf6. Protobuf is

developed by Google and requires the definition of a data format from which wrappers

for reading and writing the binary format from within different programming languages

can be compiled. The generated python wrappers allows to read the data into python

but require a very intensive parsing step that proved impractical for feeding the data

during experimentation.

The final solution is to write the data into a hierarchically organized HDF-file. The file is

split into groups for training, validation and testing which each contain the same datasets

real data, photon weights, labels, binary photon weights, a pixel based time series dataset

and subsampled versions of the the pixel and real data. The order of examples within

these datasets is the same and datasets for different learning task can be created in a

flexible manner by feeding different (data,label) pairs to the training methods of Keras.

E.g. (real data, labels) realizes the gamma-hadron separation, while (real data, photon

weights) corresponds to the learning task of image cleaning.

Each dataset is organized in chunks of 100 examples. The chunks are attempted to be

stored on disk as continuous block, which promises little I/O overhead during feeding if

the data is read chunk by chunk (due to reduced reading head movement).

5.2.2 | Sampling and Data Splitting

Training of neural networks using stochastic gradient descent relies on random sampling

from the training data. Keras provides methods for shuffling the data (or at least batches

of data for HDF files). However due to the long training times of large networks cross

validation is not feasible and therefore the data needs to be split into fixed datasets for

training, validation and testing.

The data is stored in the binary Protobuf format in the order determined from sequen-

tially reading the different FITS files. It is not clear if the evaluation on holdout data is

more meaningful if the data stems from completely unseen FITS files or is drawn from

the entirety of available examples. For the experiments in this thesis the latter approach

is taken and a memory external shuffling is conducted by distributing the binary data

randomly on different files (without parsing) and concatenating the files again.

6https://developers.google.com/protocol-buffers/
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5.2 Data Preparation

Right from the beginning the gamma and proton events are stored in two different files

and during creation of the HDF file the data is combined from these files in a way that

ensures equal label proportions for each chunk of data.

5.2.3 | Final Data

The resulting HDF file is suitable for feeding to experiments addressing different learning

tasks in a flexible manner by combining different datasets. It is already shuffled and

organized according to a train-test-validation split. The values of the real data have

already been normalized to have zero mean and unit variance favoring deep learning.

The data contains 214.000 examples in the training sets, and 25.000 examples for vali-

dation and another 25.000 examples for testing. The ratio of hadron to gamma events is

1 : 1.2885, the ratio of shower-pixels to non-shower pixels in the pixel based datasets is

1 : 24.43.

5.2.4 | Model Builder

In order to systematically evaluate hyper parameters and design choices a model builder

has been implemented which allows to run the same model multiple times while setting all

the relevant hyper parameters to different values in (possibly nested) loops. With regard

to interpreting the experiments in subsequent sections it is important to understand how

the network architecture is parameterized within the model builder. A convolution layer

is defined by the number of filters, kernel size, stride and padding. A pooling layer is

characterized by the pooling operation (e.g max, average or none) and pool size. Fully

connected layers are characterized by the number of neurons in each layer. A complete

network architecture can be characterized using lists of values for each of these hyper

parameters where the ith entry in the list is used for the ith layer in the network. If only

one value is provided instead of a list, the value will be used for all layers. For symmetrical

kernels, strides or pool sizes a single number can be given, e.g kernel size = 2 corresponds

to a 2× 2 convolution for two dimensional models.
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If default values for each parameter are implied a 2D-CNN architecture M can be defined

as:

M = {kernel size = [2, 3, (1, 2)]

strides = 3

neuron numbers = [64, 32]

pooling = none

}

M has three convolution layers with stride 3× 3 each and no pooling layers. The convo-

lution layers are followed by two fully connected layers (with 64 and 32 neurons). The

first convolution layer has kernel size 2 × 2, the third 1 × 2. For an example of model

definition and matching architecture visualization see model M6 in section 6.2.
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5.3 Training Convolutional Neural Networks

5.3 | Training Convolutional Neural Net-

works

Training deep neural networks in general and CNNs in specific involves a lot of design

choices and hyper parameter optimization methods. This chapter explains the general

process of model training but also introduces techniques for improved learning and design

choices that have not been addressed in the theory sections. If possible the specific

hyperparameter is presented together with empirical evidence based on example plots

from the actual hyperparameter optimization process for model M6 from 6.2.

5.3.1 | Performance Measures

The standard approach for performance measurement in classification tasks is reporting

error rates or accuracy scores. However in the presence of imbalanced classes accuracy is

oftentimes a weak measurement because always predicting the majority class can provide

better accuracy than really trying to separate the data. Therefore a careful investigation

of precision and recall for each class can help to choose a meaningful model.

One approach to correct for the class imbalance is to use class weighting or equivalently

instance weighting where each instance is assigned a weight based on its class frequency

compared to the majority class. By assigning a bigger weight to rare classes during

backpropagation the model is likely to predict all classes equally well. The same weighting

mechanism of examples during accuracy prediction can approximate the accuracy that

would be achieved on a balanced test set.

By using the binary cross entropy loss function the model is designed to output class

probabilities instead of simple classification decisions. A simple solution is to use thresh-

olding at 0.5 to obtain the final prediction. However especially in the presence of class

imbalance choosing another threshold can be a better choice with regard to recall or

precision. Two methods for choosing a meaningful threshold are Receiver Operation

Characteristic (ROC) and the Prediction-Recall Curve. Every predicted class score on a

validation set can be evaluated as threshold for obtaining the final prediction, resulting

in specific (precision, recall) and (false positive rate, true positive rate) pairs which can

be plotted against each other.
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Figure 5.1: The ROC Curve plots the true positive rate against the false positive

rate in order to obtain an optimal threshold for the decision function. The best

possible performance is represented by the point in the top left corner. The blue

line indicates the minimum performance which can be achieved by guessing.

Figure 5.2: The Prediction-Recall Curve plots the precision against the recall

in order to obtain an optimal threshold for the decision function. The optimal

model performance is represented by the point in the top right corner.

The distribution of the observed particles in the real world is not exactly known and

the simulation process adapted to real world observations from time to time. In praxis

it is not important to label every observed event but more important to have a high

confidence for the selected events. Therefore it is common to apply confidence cuts to

discard examples for which the classifier is unsure. From this perspective it is preferable

to determine the final threshold as late as possible during the training process. A single

value for estimating how well a model can be fine-tuned to the desired specification is

the Area Under The Curve (AUC) for the ROC curve. The Precision-Recall Curve is

not linearly interpolatable, but the Average Precision can be computed as average over

the precision scores weighted by the gain in recall compared to the last threshold [11].
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5.3 Training Convolutional Neural Networks

Average Precision can provide a single value indicating the tradeoff of precision and

recall under different thresholds.

The prediction quality of models can be evaluated and compared in terms of Average

Precision, area under the ROC curve and weighted accuracy.

5.3.2 | Hyper Parameter Optimization

Hyper parameters of neural networks can be divided into design choices of the network

architecture and parameters of the general training process. The different hyper param-

eters depend on each other. However an extensive grid search over the parameter space

in not feasible due to the large number of parameters and long training times of the

networks. In general it is advisable to use random search over the hyper parameter space

and evaluate different choices on a small number of epochs only and then gradually

increase the number of epochs during training for promising parameter combinations.

This section describes hyperparameter related to learning, while different architectures

are evaluated in section 6.2

Regularization

During Optimization we try to minimize the loss function over the training set, i.e. min-

imize the empirical risk which is only an estimate of the prediction quality regarding the

real unknown distribution of the data. Neural networks are very vulnerable to overfitting

the training set. In order to prevent the model from overfitting a number of techniques

exist.

By constantly monitoring the classification performance on a validation set we can de-

tect if the model starts overfitting and either reduce the learning rate or stop training

completely (early stopping). In addition by saving the model in regular intervals or every

time the validation performance improves it is possible to return to a state of training

prior to overfitting.

Techniques like weight regularization, i.e. adding a penalizing term for large or dense

weight vectors to the loss function can in some cases prevent the network from overfitting.

However this effect has been unnoticable in the correspondig experiments on FACT data.

Essential to training deep neural networks is Dropout regularization [30]. By setting

each neuron’s activation to zero with a certain probability during training the network is
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prevented from relying completely on the output of specific neurons. In general redundant

representations can make the model less sensitive to noise. A common choice for the

dropout rate is a value of 0.5. For the FACT data a dropout rate of 0.25 provided the

largest gain in performance. The values in figure 5.3 correspond to different dropout

rates for the convolutional and fully connected layers.

Figure 5.3: Comparison of dropout rates.

Activation Function

In contrast to fully connected MLPs which typically utilize sigmoid activations CNNs

are usually trained using the Rectified Linear Unit (ReLU):

hReLU(y) = max(0, y)

The sigmoid can easily suffer from saturation and vanishing gradients due to the satu-

rating regime at its border. In comparison to sigmoid the ReLU is not differentiable (in

point 0). However in praxis choosing any subgradient works quite well. Apart from zero

the derivatives are 0 and 1 and as a result no computation is required during backpropa-

gation. Figure 5.4 compares the ReLU, sigmoid and other common activation functions

on FACT data.
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5.3 Training Convolutional Neural Networks

Figure 5.4: Comparison of activation functions.

Optimization

In praxis normalizing the inputs to have zero mean and equal variance results in improved

learning [24]. For the FACT data described in thesis the normalization of inputs has

already been performed during data set creation.

With regard to deep neural network batch normalization [16] is applied in order to center

and scale the inputs of hidden layers during training and therefore correct for internal

covariate shift. To this purpose batch normalization layers are added in between hidden

layers which can compute the required shift and scaling based on parameters that are

learned together with the actual model parameters during backpropagation. However in

experiments on FACT the prediction quality decreased when batch normalization was

used.

Chapter 3 already described the common practice of using mini-batches instead of

stochastic gradient descent for the computation of update steps during learning because

of more robust gradient estimates. In addition the time required per epoch was usually

lower for larger batch sizes. On the other hand the high dimensionality of the data in

combination with limited GPU memory prevents large batch sizes for 3D data.
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Figure 5.5 compares the choice of different batch sizes for 2D data. The findings for 3D

data are similar but due to memory requirements the maximum batch size is reached at

32.

Figure 5.5: Comparison of mini-batch sizes. Mini-batch size 1 is actually stochas-

tic gradient descent.

A number of variations for the formulation of the update step (e.g. adding momentum to

gradient computations) and schemes for automatic adaption of the learning rate exist.

Popular choices are AdaGrad [10], RMSprop, Adadelta [37], Adam [18] and Nadam[9].

Some of the optimizers have their own tunable hyper parameters like e.g. the initial

learning rate and momentum initialization. Figure 5.6 compares different optimizers after

a brief individual hyper parameter optimization on FACT data. The best performance

are achieved by Adam and Adadelta. For the final experiments in this thesis Adam is

used with initial learning rates between 0.0001 and 0.00005
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5.3 Training Convolutional Neural Networks

Figure 5.6: Comparison of popular optimization schemes which differ in how the

learning rate is adapted and the gradient value for the update step is computed.
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6 | Experiments and Evaluation

6.1 | Learning Tasks

The final gamma-hadron classification task is a binary classification on video like inputs

of dimension 432, 000 (1440 pixels × 300 time slices). Depending on the transformation

from a hexagonal camera grid to a square grid using offset coordinates the input di-

mension increases further to 540, 000 (45 × 40 pixels × 300 time slices). The number of

available training examples on the other side is only 214, 000. In terms of memory a factor

300 from the two dimensional image data to actual three dimensional data corresponds

to an increase in data size from approximately 3GB to 900GB.

The incredibly huge dimension in combination with comparably little data is a gigantic

task and optimization in an end to end manner is difficult. As an end to this a number

of simpler classification tasks aiming for the temporal, spatial or spatio-temporal aspect

of the data can be defined to pave the way towards the final prediction model.

As a simple approach towards reducing the dimensionality of the data is to use only a

subset of the original time slices. When a hardware trigger detects an event a number of

observations prior to the trigger and a specified number of observation after the trigger

are recorded into one event. As a result the beginning and end of the time series usually

represent only random noise, while the actual event can be observed in the middle of the

time series. Sampling every second frame in the range from time slice 30 to 150 results

in a sliced dataset of size 45× 40× 75.

The simulated data provides in addition to the real voltage values and label information

for each pixel the ground truth photon charge, i.e. how many photons hit that pixel which

actually stem from the source. This information is used in fact-tools to evaluate the

hand designed processing step of image cleaning.
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The existing image cleaning methods implemented in fact-tools as well as simple

aggregation methods over the time dimension can be used to reduce the three dimensional

input data to two dimensional data. Alternative reductions can be learned by regarding

the image cleaning as supervised learning problem. Then 2D-CNNs can be applied to

address the task of recognizing event classes from the spatial distribution of their shower

pixels.

In principal 1D-CNNs can be used for time series classification. However the actual pixel

cleaning dataset for FACT data is unbalanced by a factor of approximately 1:24 resulting

in poor classification performance and will not be discussed in this thesis but may be a

viable option if more training data is simulated in the future.

This chapter investigates two approaches to gamma hadron separation. Section 6.2 in-

vestigates the design of 2D-CNNs that can be used to predict the event class from image

like measurements arranged according to the camera surface. On the one hand models

are trained on ground truth data which provides a benchmark for how good gamma

hadron separations could be, if the CNN was plugged into the processing pipeline of

fact-tools after the image cleaning step. On the other hand the models are applied to

aggregated versions of the real data in order to obtain estimates for end to end gamma

hadron separation using 2D-CNNs.

Section 6.3 addresses the approach of convoluting three dimensional filters with three

dimensional real data using CNNs while section 6.4 compares this approach to the ap-

proaches from section 6.2.

Finally section 6.5 investigates the influence of the amount of available training data on

the final prediction quality.
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6.2 | Spatial Aspect of Data (2D)

Two dimensional CNNs can be applied to the results of the image cleaning task in

fact-tools and could be integrated in the tool chain at this position. To determine

how well 2D Convolutional Neural Networks can address the spatial aspect of the data

given perfectly cleaned inputs we train and evaluate the network on the ground truth

photon charges and also on binary ground truth information as it might be provided by

the image cleaning operation.

In addition we reduce the three dimensional data to two dimensions using mean aggre-

gation over the time dimension. A fourth dataset is obtained by using four channels for

each input pixel containing the mean, max, minimum and standard deviation of the the

times series for each pixel.

Based on the representation of the hexagonal camera surface in a square array, we are

required to use stride 2 (at least in one dimension) because of the broken symmetries.

However stride two corresponds to downsampling by a factor of two at each layer. There-

fore even if no pooling layers are added to the architecture the spatial dimension is re-

duced from 40 = 2 · 2 · 2 · 5 to 5 after only three layers. Therefore the deepest possible

architecture that strictly respects the symmetries contains a maximum of 3 or 4 con-

volution layers. Obviously net architectures will be even shallower if non overlapping

convolution is applied.

The best architecture with a maximum of three convolution layers has been empirically

determined to be model M6 (see figure 6.1):

M6 = {kernel size = [3, 3, 7]

strides = 2

neuron numbers = [128, 64]

pooling = none

}

For M6 all convolution layers have filter size 3 and stride 2, which should be the optimal

choice according to chapter 4. As a consequence the convolution layers already realize

the downsampling step and the model therefore has no pooling layers.
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Figure 6.1: Architecture of model M6.
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Figure 6.5 compares the choice of alternative strides for M6. As expected even strides

outperform uneven strides, however only rows are offset against each other and it is

therefore possible to use even stride in horizontal direction only.

Figure 6.2: Comparison of different stride values

Adding pooling layer to an architecture with convolution stride 2, will further decrease

the number of possible layers. Therefore figure 6.3 compares a pooling free model in

which subsampling is achieved by stride 2 to a version of this model with stride 1 and

additional pooling layers for subsamling. Although translational equivariance does not

hold for stride 1. The results for average pooling are similar to those of the pooling free

version.
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Figure 6.3: Comparison of different pooling operations based on a model with

kernel sizes [3, 3, 5]

Experiments with varying kernel sizes yielded the best results if small filters of size 3

were used for the first layers, while performance increased with the use of larger filters

in higher layers (see figure 6.4).
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Figure 6.4: Comparison of different kernel sizes for base model M6.

Varying the number of filters per layer had little impact on the final classification per-

formance. Interestingly the best results were achieved if the same number of filters had

been used in each layer. Filter numbers of 32 or 64 are viable for the 2D task.
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Figure 6.5: Comparison of different numbers of filters per convolutional layer.

While breakthrough performances achieved on image classification tasks rely on a large

number of hidden layers, networks respecting the symmetries induced by the hexagonal

grid are limited to three or four convolution layers. However with regard to a possible

custom convolution operation that can be applied with stride 1 (see section 4.2), deeper

architectures may be realized in the future. A study of the influence of an increasing

number of convolution layers (see figure 6.6) indicates that deeper architectures are

likely to significantly improve classification performance.
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Figure 6.6: Influence of network depth on prediction quality. Comparison of mod-

els with different numbers of convolution layers (with kernel size 3, stride 2 and

no pooling each).

A study of different architectures for the fully connected layers based on a fixed architec-

ture of convolution layers shows that the influence of the fully connected architecture is

much smaller than the influence of different choices for the convolution layers (see figure

6.7). In general the prediction quality depends rather on the number of neurons in the

fully connected layers than the number of fully connected layers. Actually most CNN

architectures in image processing use no more than two layers either.
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Figure 6.7: Comparison of different architectures for the fully connected layers.
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6.3 | Classification of Real Data (3D)

The 3D-task on full or sliced data can be realized using a CNN architecture with three

dimensional filters which capture a few frames of a spatial area at each filter position.

The filters are therefore not only stridden across the camera surface but also along the

time dimension.

Answering the much higher number of inputs in the time dimension the best results

are no longer obtained using symmetrical filters. Due to spatial subsampling with stride

2 the constraint on the maximum depth does still hold. However additional filters of

size 1× 1× d with stride 1 can be added without breaking the spatial symmetries, but

provides no gain in performance.

The best architecture with again less than 4 layers is given by M2:

M2 = {kernel size = [(3, 3, 5), 3, 3]

strides = [(2, 2, 3), 2, 2]

neuron numbers = [32, 32]

pooling = none

}

M0 = {kernel size = [(3, 3, 10), 3]

strides = [(2, 2, 5), 2]

neuron numbers = [32, 32]

pooling = none

}

M1 = {kernel size = [(3, 3, 10), 3, 2]

strides = [(2, 2, 5), 2, 2]

neuron numbers = [32, 32]

pooling = none

}

and compared to architectures M0 and M1 in figure 6.8. Again a tendency of improved

performance with increasing number of layers can be noticed.
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Figure 6.8: Comparison of architectures M0,M1 and M2 for 3D convolution on

FACT Data.

6.4 | Comparison of Learning Tasks

The previous sections have identified a best architecture for each learning task by scoring

models on the validation data set during training. The best performing architecture for

the 2D task achieves the best test performance on all the available datasets. The final

architectures can be evaluated on the test set and compared in order to relate the utility

of different learning task and datasets with regard to the final prediction quality (see

table 6.1).

Predicting the final class from ground truth cleaned images works well although no time

information is used. The values show how good classification based on optimal image

cleaning can be. Using multiple aggregates results in better prediction than relying on

the mean alone. However the results for prediction based on aggregated time information

are far below the possible results achieved on ground truth data. 3D convolution on real

data clearly outperforms aggregation based approaches indicating that filters can make
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6 Experiments and Evaluation

Average Precision AUC ROC Weighted F1-Score

2D Mean 0.8189 0.7887 0.707

2D Aggregated 0.8493 0.829 0.7521

2D Binary 0.964 0.9653 0.9139

2D Ground Truth 0.9794 0.9788 0.9361

3D Sliced 0.9135 0.9075 0.8373

Table 6.1: Comparison of learning tasks using the best model trained for each

task.

use of the time dimension to some extend. However 3D-CNNs on real data cannot match

the performance achieved on ground truth data.

Figure 6.9 presents the final ROC and Prediction-Recall curves for selected tasks.
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6.5 Influence of Training Set Size on Performance

Figure 6.9: ROC (left) and Precision-Recall (right) curves for tasks 2D-Binary

(top), 2D-mean (middle) and 3D-Sliced (bottom)

6.5 | Influence of Training Set Size on

Performance

As described above the available training data is very limited in relation to the high

dimensionality of data. However throughout the course of this thesis additional events

have been generated. Therefore the same experiments can be conducted on much larger

datasets in the future. In order to estimate how much gain in performance can be achieved
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6 Experiments and Evaluation

through additional data, figure 6.10 shows the performance achieved on subsets of the

currently available data.

Figure 6.10: Influence of training set size on the prediction quality. For smaller

training set sizes the number of epochs is proportionally higher, i.e. for the

last measurement each of the plotted models has processed the same number of

examples.
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7 | Conclusion and Outlook

7.1 | Conclusion

This thesis motivates the realization of the processing pipeline of fact-tools using a

fully automated end-to-end machine learning approach. Neural networks can be used to

learn a representation that is suitable for classification in a supervised fashion. Convolu-

tional Neural Networks control the high dimensionality of the data by utilizing parameter

sharing and local connectivity based on the underlying symmetries of the data.

Application of existing CNNs implementations to FACT data is not straight forward.

This thesis proposes a transformation of the hexagonal camera surface into offset coor-

dinates andt to use deep learning libraries with convolution implementations for square

grids. However the maximum depth is restricted to few convolution layers because even

stride is required for fulfillment of the property of equivariance to translation.

Nevertheless related work and empirical research suggest that deeper architectures would

improve performance. Towards this goal the implementation of a custom hexagonal con-

volution is sketched out. Further experiments indicate that prediction quality will heavily

increase when additional training data is available.

Applying CNNs to the high dimensional raw data is a challenging task in itself. To this

end a careful data preparation workflow and hyper parameter optimization framework

have been implemented. The resulting data can be selected in a flexible manner to realize

different learning tasks and is already preprocessed for efficient learning. Further a great

effort was made to set up a Keras and Tensorflow based deep learning environment on

a computation cluster with multiple GPU nodes using docker and swarm.

Prior to the comparison of models concerning their suitability for the final classifica-

tion task an extensive parameter optimization over possible architectures, design choices
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7 Conclusion and Outlook

and optimization methods has been performed. Deeper models result in better perfor-

mance. Overlapping filters with stride 2 perform better than explicit pooling operations.

The best performances are achieved under training with Adam optimizer and dropout

regularization. The ReLU activation is key to successfully training the models.

2D-CNNs can be integrated into the fact-tools pipeline after the image cleaning step

and replace the explicit feature extraction steps and random forest classification. Promis-

ing results are reported for the classification of optimally cleaned images. 3D-CNNs can

replace the the entire pipeline from raw data to gamma-hadron separation and clearly

outperform the application of 2D-CNNs after aggregation over the temporal aspect of

the data.

7.2 | Outlook

During the progress of the work a huge number of new events has been simulated.

Training the best architecture for each task on the new data will likely improve prediction

performance a lot and may allow training of more complicated models (i.e. more neurons

and layers) in the future.

If the resulting prediction quality is still not sufficient for replacing the existing processing

pipeline, unsupervised pretraining should be investigated. Unsupervised pretraining on

unlabeled real data (opposed to labeled simulation data) can help to bridge the gap

between simulation and real world observations.

In general explicit learning of representations using deep auto-encoders and the realiza-

tion of the the image cleaning step as a Denoised Auto-Encoder are promising.

1D-CNNs for handling the time aspect of the data showed poor results in first exper-

iments but should be revisited with more available training data. Further a Recurrent

Neural Networks (RNN) might be better suited for addressing the time aspect in the

data. RNNs can be evaluated on the pixel cleaning task but also for aggregation of two

dimensional convolutions of each individual time slice.

One great obstacle during the implementation was the efficient feeding of data into

Keras which for example lacks support for protobuf based tfrecords which provide an

efficient way of feeding data into Tensorflow. Therefore skipping the Keras abstraction

and implementing models in Tensorflow from the beginning should be evaluated.
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7.2 Outlook

The most important area of further research is the formal definition and efficient im-

plementation of a true hexagonal convolution operation like the one highlighted in 4.2

in order to enable meaningful filter translation with stride one and therefore paving the

way toward deeper models. If the true hexagonal convolution operation is based on a

sparser representation (1440 pixel array instead of 45×40 = 1800 pixels) this might help

with regard to the data feeding problems as well.

Once the quality of the learned models is satisfying, the application of CNN visualization

techniques to the learned model can be investigated with regard to better understanding

the learned model or even the underlying structures of gamma hadron classification.

Typical visualization techniques for CNNs are the visualization of filter values as images

and the calculation of inputs that achieve maximum activation for each class using

gradient ascent or deconvolution operations.

Another important aspect that should be addressed only after satisfying models exist

is the comparison to the performance of the existing fact-tools pipeline and possi-

ble integration, e.g. Tensorflow provides a very basic and not officially supported java

interface. For the integration pure model application is probably sufficient and a suit-

able hardware solution needs to be identified, e.g distributed processing, processing in

computation cluster or local processing on FPGAs are possible approaches.
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