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(Statistical) Relational Learning 

Kristian Kersting  

 

§ 1 

A E 

Goals 

§  Why relational learning? 

§  Review of logic programming 

§  Examples for (statistical) relational models 

§  (Vanilla) relational learning approach 

§  nFOIL, Hypergraph Lifting, and Boosting 
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Rorschach Test 
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Etzioni’s Rorschach Test for Computer 
Scientists  
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Moore’s Law?  
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Storage Capacity?  
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Number of Facebook Users? 
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Number of Scientific 
Publications? 
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Number of Web Pages?  
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Number of Actions?  
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Computing 2020: Science in an 
Exponential World 

How to deal with millions of images ? 

How to deal with millions of inter-
related research papers ?  

How to accumulate general knowledge 
automatically from the Web ? 

How to deal with billions of shared 
users’ perceptions stored at massive 
scale ? 

How to realize the vision of social 
search? 

“The amount of scientific data is doubling every year”  
[Szalay,Gray; Nature 440, 413-414 (23 March 2006) ] 
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 Real world is structured in terms of objects and relations 

Relational knowledge can reveal additional correlations 
between variables of interest . Abstraction allows one to 
compactly model general knowledge and to move  to 
complex inference 

Machine Learning in an Exponential World 

Machine Learning = Data + Model ML = Structured Data + Model + Reasoning 

 Most effort has gone into the modeling part  

 How much can the data itself help us to solve a problem?  

[Fergus et al. PAMI 30(11) 2008; Halevy et al., IEEE Intelligent Systems, 24 2009] 
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http://www.cs.washington.edu/research/textrunner/ 

Object Object Relation Uncertainty 

“Programs will consume, combine, and correlate 
everything in the universe of structured 
information and help users reason over it.” [S. 
Parastatidis et al., Communications of the ACM Vol. 52(12):33-37 ] 

[Etzioni et al. ACL08] 
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So, the Real World is Complex and 
Uncertain 

§  Information overload 
§  Incomplete and contradictory  

information 
§  Many sources and modalities 
§  Variable number of objects and relations 

among them  
§  Rapid change 

How can computer systems handle 
these ? 
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AI and ML: State-of-the-Art 

Learning 
Decision trees, Optimization, SVMs, … 

Logic 
 Resolution, WalkSat, Prolog, description logics, … 

Probability 
 Bayesian networks, Markov networks, Gaussian 

Processes… 

Logic + Learning  
Inductive Logic Programming (ILP) 

Learning + Probability 
EM, Dynamic Programming, Active Learning, … 

Logic + Probability 
 Nillson, Halpern, Bacchus, KBMC, ICL, … 
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(First-order) Logic handles Complexity 

atomic propositional first-order/relational 

§  Many types of entities 

§  Relations between them 

§  Arbitrary knowledge 

19th C 5th C B.C. 

 Explicit enumeration 

daugther-of(cecily,john) 

daugther-of(lily,tom) 

… 

E.g., rules of chess (which is a tiny problem):                                                         

1 page in first-order logic,  

~100000 pages in propositional logic, 

~100000000000000000000000000000000000000  pages as atomic-state 
model 

Logic 

true/false 
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Probability handles Uncertainty 

Logic 

true/false 

Probability 

atomic propositional first-order/relational 

 Sensor noise 

 Human error 

 Inconsistencies 

 Unpredictability 

5th C B.C. 19th C 

17th C 20th C 

 Many types of entities 

 Relations between them 

 Arbitrary knowledge  Explicit enumeration 
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 Will Traditional AI Scale ? 

Logic 

true/false 

Probability 

atomic propositional first-order/relational 

 Sensor noise 

 Human error 

 Inconsistencies 

 Unpredictability 

5th C B.C. 19th C 

17th C 20th C 

 Many types of entities 

 Relations between them 

 Arbitrary knowledge  Explicit enumeration 

“Scaling up the environment 
will inevitably overtax the 

resources of the current AI 
architecture.” 
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Statistical Relational Learning / AI 
(StarAI*) 

… unifies logical and statistical AI, 
… solid formal foundations,  
… is of interest to many communities. 

Let‘s deal with uncertainty, objects, and 
relations jointly 

… 

Robotics 
CV 

Search 

Planning 
SAT 

Probability 

Statistics 

Logic 

Graphs 

Trees 
  

Learning   

§  Natural domain modeling: 
objects, properties, 
relations 

§  Compact, natural models 
§  Properties of entities can 

depend on properties of 
related entities 

§  Generalization over a 
variety of situations 

The study and design of 
intelligent agents that 
act in noisy worlds 
composed of objects 
and relations among the 
objects 

Kristian Kersting                           
(Statistical) Relational Learning § 19 

See also Lise Getoor‘s 
lecture on Friday! 

§ 20 

Prop First-Order 

Propositional Logic First Order Logic 

Statistical Relational Learning 

And AI 

Probability Theory 

Inductive Logic 
Programming (ILP) 

Classical (Statisitcal) 

Machine Learning 

Propositional Rule  

Learning 

Deterministic 

Stochastic 

Learning 

No Learning 

Probabilistic Logic 

Kristian Kersting                            
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Let’s consider a simple example: 
Reviewing Papers 

§  The grade of a paper at a conference depends 
on the paper’s quality and the difficulty of the 
conference. 
§  Good papers may get A’s at easy 

conferences 
§  Good papers may get D’s at top conference 
§  Weak papers may get B’s at good 

conferences 
§  … 
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Propositional Logic 

§  Good papers get A’s at easy 
conferences 
§  good(p1)∧conference(c1,easy)⇒grade(p1,c1,a) 

§  good(p2)∧conference(c1,easy)⇒grade(p2,c1,a) 

§  good(p3)∧conference(c3,easy)⇒grade(p3,c3,a) 

 Number of statements explodes with the number of papers and 
conferences 

 No generalities, thus no (easy) generalization 
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First Order Logic 

§  The grade of a paper at a conference 
depends on the paper’s quality and the 
difficulty of the conference. 
§  Good papers get A’s at easy conferences 

§  ∀P,C [good(P)∧conference(C,easy)⇒grade(P,C,a)] 

 Many ‘all universals’ are (almost) false 

 Even good papers can get either A, B, C 

 True universals are rarely useful 
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Modeling the Uncertainty Explicitely 

Compact representation of the  joint probability distribution 

 

Associate a conditional 
probability distribution 
to each node 

Random Variables 
Direct Influences 

Bayesian Networks: Directed Acyclic Graphs 
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(Reviewing) Bayesian Network … 

P(Qual) 
low middle high 

0.3 0.5 0.2 

P(Diff) 

low middle high 

0.2 0.3 0.5 

Qual Diff 

P(Grade) 

c b a 

low low 0.2 0.5 0.3 

low middle 0.1 0.7 0.2 

... 
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(Reviewing) Bayesian Network … 

P(Qual) 
low middle high 

0.3 0.5 0.2 

P(Diff) 

low middle high 

0.2 0.3 0.5 

Qual Diff 

P(Grade) 

c b a 

low low 0.2 0.5 0.3 

low middle 0.1 0.7 0.2 

... 
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The real world, however, has inter-
related objects 

These ‘instance’ are not independent ! 
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Information Extraction 

Parag Singla and Pedro Domingos, “Memory-Efficient Inference in Relational 
Domains” (AAAI-06).  

 

Singla, P., & Domingos, P. (2006). Memory-efficent inference in relatonal 
domains. In Proceedings of the Twenty-First National Conference on Artificial 
Intelligence (pp. 500-505). Boston, MA: AAAI Press. 

 

H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and 
Deterministic Dependencies”, in Proc. AAAI-06, Boston, MA, 2006. 

 

P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National 
Conference on Artificial Intelligence. 
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Information Extraction 
Paper 

Parag Singla and Pedro Domingos, “Memory-Efficient Inference in Relational 
Domains” (AAAI-06).  

 

Singla, P., & Domingos, P. (2006). Memory-efficent inference in relatonal 
domains. In Proceedings of the Twenty-First National Conference on Artificial 
Intelligence (pp. 500-505). Boston, MA: AAAI Press. 

 

H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and 
Deterministic Dependencies”, in Proc. AAAI-06, Boston, MA, 2006. 

 

P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National 
Conference on Artificial Intelligence. 
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Segmentation Author 
Title 
Venue Paper 

Parag Singla and Pedro Domingos, “Memory-Efficient Inference in Relational 
Domains” (AAAI-06).  

 

Singla, P., & Domingos, P. (2006). Memory-efficent inference in relatonal 
domains. In Proceedings of the Twenty-First National Conference on Artificial 
Intelligence (pp. 500-505). Boston, MA: AAAI Press. 

 

H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and 
Deterministic Dependencies”, in Proc. AAAI-06, Boston, MA, 2006. 

 

P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National 
Conference on Artificial Intelligence. 

Kristian Kersting                           
(Statistical) Relational Learning § 30 



16 
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Entity Resolution Author 
Title 
Venue Paper 

Parag Singla and Pedro Domingos, “Memory-Efficient Inference in Relational 
Domains” (AAAI-06).  

 

Singla, P., & Domingos, P. (2006). Memory-efficent inference in relatonal 
domains. In Proceedings of the Twenty-First National Conference on Artificial 
Intelligence (pp. 500-505). Boston, MA: AAAI Press. 

 

H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and 
Deterministic Dependencies”, in Proc. AAAI-06, Boston, MA, 2006. 

 

P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National 
Conference on Artificial Intelligence. 

Again, ‘instance’ are not independent ! 
§ 31 

Topic Models 

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 
Prob. 

Prob. 
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Wikipedia 

Again, ‘instance’ are not independent ! 
§ 33 
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http://www.cs.washington.edu/research/textrunner/ 

Object Object Relation Uncertainty 

[Etzioni et al. ACL08] 

No complex inference (yet) ! 
TextRunner: (Turing, born in, London)  

+ WordNet: (London, part of, England) 

+ Rule: ‘born in’ is transitive thru ‘part 
of’  

 Conclusion: (Turing, born in, England) 

And again, ‘instance’ are not independent ! 
§ 34 
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Relations are everywhere … 

-  Hyperlinks in web pages  
-  References in scientific publications 
-  Social networks 
-  Ontologies 
- … 

and connectivity is important  
-  PageRank 
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Objects + Relations + Uncertainty are 
everywhere  

BioInformatics 

Scene 
 interpretation/ 
segmentation 

Social Networks 

Robotics 

Natural Language 
Processing 

Activity 
Recognition 

Planning 

a b 
d c 
e 

e a b 
d c 

a b 
d c 
e 

a b 
d 
e 
c 

Games 

Data Cleaning 

§  Web data (web) 
§  Biological data (bio) 
§  Social Network Analysis 

(soc) 
§  Bibliographic data (cite) 
§  Epidimiological data (epi) 
§  Communication data 

(comm) 
§  Customer networks (cust) 
§  Collaborative filtering 

problems (cf) 
§  Trust networks (trust) 
§  … Kristian Kersting                           

(Statistical) Relational Learning § 36 
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Costs and Benefits of SRL / StarAI 
 

Relations can reveal additional 
correlations. Abstraction allows for 
generalization. 

Yes, SRL/StarAI are challenging but 
can make the difference 

SRL/StarAI techniques 
have the potential to lay 
the foundations of next 
generation AI systems 

Benefits 
Better predictive accuracy 
Better understanding of domains 
Growth path for machine learning 
and artificial intelligence 

Costs 
Learning is much harder 
Inference becomes a crucial issue 
Greater complexity for user 
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So far 

§  The world is complex and uncertain 
§  Reviewing papers 
§  Joint segmentation and entity resolution 
§  Topic models 
Now 
§  Let‘s get started! 

§  How is statistical relational learning working? 
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Main StarAI / SRL Key Dimensions 

§  Logical language 
First-order logic, Horn clauses, 
frame systems 

§  Probabilistic language 
Bayesian networks, Markov 
networks, PCFGs 

§  Type of learning 
§  Generative / Discriminative 
§  Structure / Parameters 
§  Knowledge-rich / Knowledge-poor 

§  Type of inference 
§  MAP / Marginal 
§  Full grounding / Partial grounding / Lifted Kristian Kersting                           

(Statistical) Relational Learning § 39 
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Fact 

(Propositional) LP – Some Notations 

Clauses: IF burglary and earthquake are true THEN alarm is true 

Clause 

burglary. 

earthquake. 

alarm :- burglary, earthquake. 

marycalls :- alarm. 

johncalls :- alarm. 

Herbrand Base (HB) = all atoms in the program 

            burglary, earthquake, alarm, marycalls, johncalls 

Program 

atom 

body 

head 

Two closely related ways to define semantics 

1.  Model-theoretic 

2.  Proof-theoretic 
§ 40 
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Model Theoretic:  Restrictions on 
Possible Worlds 

§  Herbrand Interpretation 
§  Truth assigments to all elements of HB 

§  An interpretation is a model of a clause C ó         
    If the body of C holds then the head holds, too 

0.9 0.1 
e 

b 
e 

0.2 0.8 

0.01 0.99 
0.9 0.1 

b e 

b 
b 

e 

B E P(A | B,E) 
Earthquake 

JohnCalls 

Alarm 

MaryCalls 

Burglary burglary. 

earthquake. 

alarm :- burglary, earthquake. 

marycalls :- alarm. 

johncalls :- alarm. 
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Goal 

Proof Theoretic: Restrictions on 
Possible Derivations 

§  A set of clauses can be used to prove that 
atoms are entailed by the set of clauses. 

burglary. 

earthquake. 

alarm :- burglary, earthquake. 

marycalls :- alarm. 

johncalls :- alarm. 

:- johncalls. 

:- alarm. 

:- burglary, earthquake. 

:- earthquake. 

{} 
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Stochastic Grammars 
Weighted Rewrite Rules 

S 
NP VP 

VP PP 

i saw 

V NP P NP 
Det N Det N 

man with the telescope the 

 1.0 : S → NP, VP 

 1/3 : NP → i 
 1/3 : NP → Det, N 
 1/3 : NP → NP, PP 

 1.0 : Det → the 

 0.5 : N → man 
 0.5 : N → telescope 

 0.5 : VP → V, NP 
 0.5 : VP → VP, PP 

 1.0 : PP → P, NP 

 1.0 : V → saw 

 1.0 : P → with 1.0 * 1/3 * 0.5 * 0.5 * 1.0 * ... 
= 0.00231  

Upgrade HMMs (regular  
languages) to more complex  
languages such as   
context-free languages. 

Kristian Kersting                           
(Statistical) Relational Learning § 43 

Upgrading to First-Order Logic 

The maternal information mchrom/2 depends on the maternal and paternal 
pchrom/2 information of the mother mother/2: 
  mchrom(fred,a). mchrom(fred,b),... 

or better     
  mchrom(P,a) :- mother(M,P), pchrom(M,a), mchrom(M,a). 
 mchrom(P,a) :- mother(M,P), pchrom(M,a), mchrom(M,b). 

 mchrom(P,b) :- mother(M,P), pchrom(M,a), mchrom(M,b). 

 ... 

father(rex,fred).      mother(ann,fred).  

father(brian,doro).    mother(utta, doro).  

father(fred,henry).    mother(doro,henry). 

pchrom(rex,a).  mchorm(rex,a).  

pchrom(ann,a).  mchrom(ann,b). 

... 
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Upgrading - continued 

alarm :- burglary, earthquake. clause 

head body 

Propositional Clausal Logic 
Expressions can be true or 

false 

Kristian Kersting                           
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Upgrading - continued 

Substitution: Maps variables to terms: {M / ann}: 

  mc(P,a) :- mother(ann,P),pc(ann,a),mc(ann,a). 

Herbrand base: set of ground atoms (no variables): 

   {mc(fred,fred),mc(rex,fred),…}  

atom 

mc(P,a) :- mother(ann,P),pc(ann,a),mc(ann,a). clause 

head body 

variable (placeholder) 
constant 

terms 

Relational Clausal Logic 
Constants and variables refer 

to objects 

Propositional Clausal Logic 
Expressions can be true or 

false 
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Upgrading - continued 

Full Clausal Logic 
Functors aggregate objects 

Relational Clausal Logic 
Constants and variables refer to 

objects 

Propositional Clausal Logic 
Expressions can be true or 

false 

§ Substitution: Maps variables to terms: {M / ann}: 

§   mc(P,a) :- mother(ann,P),pc(ann,a),mc(ann,a). 

§ Herbrand base: set of ground atoms (no variables): 

§    {mc(fred,fred),mc(rex,fred),…}  

nat(0). 

nat(succ(X)) :- nat(X). 

atom 

clause 

head 
body 

variable  

constant 

functor 
term 

Interpretations can be infinite ! 

nat(0),nat(succ(0)), 

nat(succ(succ(0))), ... Kristian Kersting                           
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Inference in First-Order Logic 

§  Traditionally done by theorem proving 
(e.g.: Prolog) 

§  Main approach within SRL: 
Propositionalization followed by “model 
checking” 
§  Propositionalization: 

Create all ground atoms and clauses 
§  Model checking: Inference in graphical models, 

weighted Satisfiability testing 

Kristian Kersting                           
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Forward Chaining 

father(rex,fred).      mother(ann,fred).  
father(brian,doro).    mother(utta, doro).  
father(fred,henry).    mother(doro,henry). 
pc(rex,a).  mc(rex,a).  
pc(ann,a).  mc(ann,b). 
... 

mc(P,a) :- mother(M,P), pc(M,a), mc(M,a). 

mc(P,a) :- mother(M,P), pc(M,a), mc(M,b). 

{M/ann, P/fred} 

mc(P,a):- mother(M,P), pc(M,a), mc(M,b). 

mc(fred,a) 

...
 

 mother(ann,fred). pc(ann,a) mc(ann,b)  father(rex,fred). ... ... 

...
 

Set of derivable ground atoms = least Herbrand model 
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Backward Chaining 

father(rex,fred).      mother(ann,fred).  
father(brian,doro).    mother(utta, doro).  
father(fred,henry).    mother(doro,henry). 
pc(rex,a).  mc(rex,a).  
pc(ann,a).  mc(ann,b). 
... 

mc(P,a) :- mother(M,P), pc(M,a), mc(M,a). 

mc(P,a) :- mother(M,P), pc(M,a), mc(M,b). 

 mother(ann,fred). 

{M/ann} 
pc(ann,a),mc(ann,a) 

 mother(ann,fred). 

{M/ann} 
pc(ann,a),mc(ann,b) 

 pc(ann,a). 

mc(ann,a) 

fail 

 pc(ann,a). 

mc(ann,b) 

success 

mc(fred,a) 

{P/fred} 

mother(M,fred),pc(M,a),mc(M,a) 

mc(P,a):- mother(M,P), pc(M,a), mc(M,a). 

mother(M,fred),pc(M,a),mc(M,b) 

mc(P,a):- mother(M,P), pc(M,a), mc(M,b). 
{P/fred} 

§ 50 
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So far 

§  Motivation 
§  Brief review of logic 

Now 
§  Let‘s see some actual SRL frameworks 
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Alphabetic Soup of SRL 

§  Knowledge-based model construction 
[Wellman et al., 1992] 

§  PRISM [Sato & Kameya 1997] 
§  Stochastic logic programs [Muggleton, 1996] 
§  Probabilistic relational models [Friedman et al., 

1999] 
§  Bayesian logic programs [Kersting & De Raedt, 

2001] 
§  Bayesian logic [Milch et al., 2005] 
§  Markov logic [Richardson & Domingos, 2006] 

§  Relational dependency networks        
[Neville & Jensen 2007] 

§  ProbLog [De Raedt et al., 2007]                           
And many others! 
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Relational Dependency Networks 

§  Logical language: SQL queries 
§  Probabilistic language: Dependency 

networks 
§  Conditional probability template for each predicate 
§  Atoms depend on related atoms 
§  >1 clause w/ head: aggregate functions 
§  Cyclic dependencies 

§  Learning: 
§  Parameters: EM based on Gibbs sampling 
§  Structure: relational probability trees, boosting 

§  Inference: Gibbs sampling 

[Neville & Jensen 2007] 
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Markov Logic 

§  Logical language: “First-order” logic 
§  Probabilistic language: Markov networks 

§  Syntax: First-order formulas with weights 
§  Semantics: Templates for Markov net features 

§  Learning: 
§  Parameters: Generative or discriminative 
§  Structure: ILP with arbitrary clauses and MAP score 

§  Inference: 
§  MAP: Weighted satisfiability 
§  Marginal: MCMC with moves proposed by SAT solver 
§  Partial grounding + Lazy inference 

[Richardson & Domingos, 2006] 

Kristian Kersting                           
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Markov Logic 

§  A Markov Logic Network (MLN) is a set 
of pairs (F, w) where 
§  F is a formula in first-order logic 
§  w is a real number 

 
§  Together with a finite set of constants, it 

defines a Markov network with 
§  Kind of undirected BLPs 

Iterate over all first-order MLN formulas 

# true groundings  
of ith clause 

Normalization constant 

Cancer 

Cough Asthma 

Smoking 
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P(X) = 1
Z
exp wini (x)

i∈F
∑
#

$
%

&

'
(

Example of First-Order KB 

Co-authors are either both smart or both not 
High quality papers get accepted 

Kristian Kersting                           
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Example of First-Order KB 

( )
_ ( ) ( )

, _ ( , ) ( ) ( )
x high quality p accepted p
x y co author x y smart x smart y

∀ ⇒

∀ ⇒ ⇔
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Markov Logic 

( )
),(_),(),(,

)()(),(_,
)()(_

)(_)(),(

yxauthorcopyauthorpxauthorpyx
ysmartxsmartyxauthorcoyx

pacceptedpqualityhighx
pqualityhighxsmartpxauthorx

⇒∧∃∀

⇔⇒∀

⇒∀

⇒∧∀

∞

2.1
1.1
5.1

Suppose we have constants: alice, bob and p1 

smart(bob) smart(alice) 

high_quality(p1) 

author(p1,alice) author(p1,bob) 

accepted(p1) 

co_author(bob,alice) co_author(alice,bob) 

co_author(alice,alice) co_author(bob,bob) 

Kristian Kersting                           
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Same procedure for different 
(numbers of) papers and 
conference  

Model holds for a variable 
number of objects and 
relations among objects 
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Most common approach to semantics 
and inference 
§  Propositionalization followed by graphical model 

inference respectively (probabilistic) model 
checking 

 

§  Propositionalization: 
Create all ground atoms and clauses using 
essentially forward or backward chaining. Can 
be query directed. There even exists first-order 
Bayes’ ball variants 

§  Variable elimination, Belief Propagation, 
Gibbs Sampling,  Weighted (MAX)-SAT, 
BDD-based, … 
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Costs and Benefits of the SRL soup 

§  Benefits 
§  Rich pool of different languages 
§  Very likely that there is a language that fits your 

task at hand well 
§  A lot research remains to be done, ;-) 

§  Costs 
§  “Learning” SRL is much harder 
§  Not all frameworks support all kinds of inference 

and learning settings 

Kristian Kersting                           
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How do we actually learn relational models from data? 

Quite similar to propositional ones! 
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Relational Parameter Estimation 

bt

pc mc

Person

bt

pc mc

Person

mc

pc mc

Person

mother

Mother

mc

pc mc

Person

mother

Mother

pc

pc mc

Person

father

Father

pc

pc mc

Person

father

Father

bt/1

pc/1 mc/1

bt/1

pc/1 mc/1

Model(1)

pc(brian)=b,

bt(ann)=a,

bt(brian)=?,

bt(dorothy)=a

Model(1)

pc(brian)=b,

bt(ann)=a,

bt(brian)=?,

bt(dorothy)=a

Background

m(ann,dorothy),

f(brian,dorothy),

m(cecily,fred),

f(henry,fred),

f(fred,bob),

m(kim,bob),

...

Background

m(ann,dorothy),

f(brian,dorothy),

m(cecily,fred),

f(henry,fred),

f(fred,bob),

m(kim,bob),

...

Model(2)

bt(cecily)=ab,

bt(henry)=a,

bt(fred)=?,

bt(kim)=a,

bt(bob)=b

Model(2)

bt(cecily)=ab,

bt(henry)=a,

bt(fred)=?,

bt(kim)=a,

bt(bob)=b

Model(3)

pc(rex)=b,

bt(doro)=a,

bt(brian)=?

Model(3)

pc(rex)=b,

bt(doro)=a,

bt(brian)=?

+ 
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Relational Parameter Estimation 

bt

pc mc

Person

bt

pc mc

Person

mc

pc mc

Person

mother

Mother

mc

pc mc

Person

mother

Mother

pc

pc mc

Person

father

Father

pc

pc mc

Person

father

Father

bt/1

pc/1 mc/1

bt/1

pc/1 mc/1

Model(1)

pc(brian)=b,

bt(ann)=a,

bt(brian)=?,

bt(dorothy)=a

Model(1)

pc(brian)=b,

bt(ann)=a,

bt(brian)=?,

bt(dorothy)=a

Background

m(ann,dorothy),

f(brian,dorothy),

m(cecily,fred),

f(henry,fred),

f(fred,bob),

m(kim,bob),

...

Background

m(ann,dorothy),

f(brian,dorothy),

m(cecily,fred),

f(henry,fred),

f(fred,bob),

m(kim,bob),

...

Model(2)

bt(cecily)=ab,

bt(henry)=a,

bt(fred)=?,

bt(kim)=a,

bt(bob)=b

Model(2)

bt(cecily)=ab,

bt(henry)=a,

bt(fred)=?,

bt(kim)=a,

bt(bob)=b

Model(3)

pc(rex)=b,

bt(doro)=a,

bt(brian)=?

Model(3)

pc(rex)=b,

bt(doro)=a,

bt(brian)=?

+ 

Parameter tighting 
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So, apply „standard“ EM 

bt

pc mc

Person

bt

pc mc

Person

mc

pc mc

Person

mother

Mother

mc

pc mc

Person

mother

Mother

pc

pc mc

Person

father

Father

pc

pc mc

Person

father

Father

bt/1

pc/1 mc/1

bt/1

pc/1 mc/1

Model(1)

pc(brian)=b,

bt(ann)=a,

bt(brian)=?,

bt(dorothy)=a

Model(1)

pc(brian)=b,

bt(ann)=a,

bt(brian)=?,

bt(dorothy)=a

Background

m(ann,dorothy),

f(brian,dorothy),

m(cecily,fred),

f(henry,fred),

f(fred,bob),

m(kim,bob),

...

Background

m(ann,dorothy),

f(brian,dorothy),

m(cecily,fred),

f(henry,fred),

f(fred,bob),

m(kim,bob),

...

Model(2)

bt(cecily)=ab,

bt(henry)=a,

bt(fred)=?,

bt(kim)=a,

bt(bob)=b

Model(2)

bt(cecily)=ab,

bt(henry)=a,

bt(fred)=?,

bt(kim)=a,

bt(bob)=b

Model(3)

pc(rex)=b,

bt(doro)=a,

bt(brian)=?

Model(3)

pc(rex)=b,

bt(doro)=a,

bt(brian)=?

Initial Parameters q0 

Logic Program L 

Expected counts of a clause 

Expectation  

Inference  

Update parameters (ML, MAP) 
Maximization  

iterate until convergence 

Current Model 

(M,qk) 

P( head(GI), body(GI) | DC ) M
 

M
 

DataCase DC Ground Instance 
 
GI P( head(GI), body(GI) | DC ) M

 
M

 

DataCase DC Ground Instance 
 
GI 

P( body(GI) | DC ) M
 

M
 

DataCase DC Ground Instance 
 
GI 

Variants exists! Combining Rules, Generative, discriminative, max-margin, … 

But how do we select a model ?  

ILP= Machine Learning + Logic Programming 
[Muggleton, De Raedt JLP96] 

   Examples E 
pos(mutagenic(m1))            

neg(mutagenic(m2)) 

pos(mutagenic(m3)) 

... 

c c 

c c 

c c 

n 

o 

Background Knowledge B 
molecule(m1) 

atom(m1,a11,c) 

atom(m1,a12,n) 

bond(m1,a11,a12) 

charge(m1,a11,0.82) 

... 

molecule(m2) 

atom(m2,a21,o) 

atom(m2,a22,n)               

bond(m2,a21,a22) 

charge(m2,a21,0.82) 

...  

Find set of general rules 

mutagenic(X) :- atom(X,A,c),charge(X,A,
0.82) 

mutagenic(X) :- atom(X,A,n),... 

Relational Model Selection / Structure Learning 
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:- true 

Coverage = 0.5,0.7  

Coverage = 0.6,0.3  

Coverage = 0.4,0.6 

:- atom(X,A,c) 

:- atom(X,A,n) 

:- atom(X,A,f) 

Coverage = 0.8 

Coverage = 0.6 

:- atom(X,A,c),bond(A,B) 

:- atom(X,A,n),charge(A,0.82) 

Example ILP Algorithm: FOIL [Quinlan MLJ 5:239-266, 
1990] 
mutagenic(X) :- atom(X,A,n),charge(A,0.82) 

mutagenic(X) :- atom(X,A,c),bond(A,B) 

0

1

…

∨

∨

≡ 1 
…

Some objective function, e.g.  

percentage of covered positive examples 
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Vanilla SRL [De Raedt, Kersting ALT04] 

§  Traverses the hypotheses space a la ILP 
§  Replaces ILP’s 0-1 covers relation by a 

“smooth”, probabilistic one [0,1] 

0

1

…

∨

∨

≡ 1 
mutagenic(X) :- atom(X,A,n),charge(A,0.82) 

mutagenic(X) :- atom(X,A,c),bond(A,B) 

…

 =0.882 
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If data is complete: 

To update score after local change,  
only re-score (counting) families 
that changed 

If data is incomplete: 

To update score after local change, 
reran parameter estimation algorithm 

So, essentially like in the propositional case ! 

S C 

E 

D 

Reverse C →E 
Delete C →

E 

Add C →D 

S C 

E 

D 

S C 

E 

D 

S C 

E 

D 
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Structural EM [Friedman et al. 98] 
 

Training 

Data 

Expected Counts 
EN(X1) 

EN(X2) 

EN(X3) 

EN(H, X1, X1, X3) 

EN(Y1, H) 

EN(Y2, H) 

EN(Y3, H) 

Computation 

X1 X2 X3 

H 

Y1 Y2 Y3 

X1 X2 X3 

H 

Y1 Y2 Y3 

+

Score & 
Parameterize 

Reiterate 

EN(X2,X1) 

EN(H, X1, X3) 

EN(Y1, X2) 

EN(Y2, Y1, H) 

X1 X2 X3 

H 

Y1 Y2 Y3 
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nFOIL = FOIL + Naive Bayes 

§  Clauses are independent features 
§  Likelihood for parameter estimation 
§  Conditional likelihood for scoring 

clauses 

atom(X,A,n),charge(A,0.82) 

atom(X,A,c),bond(A,B) 

…

mutagenic(X) 

P(truth value clauses|truth value target predicate) x P(truth value target predicate) 

[Landwehr, Kersting, De Raedt JMLR 8(Mar):481-507, 2007] 

§ 69 

Several variants exists! Top-down, bottom-up, boosting, 
transfer learning, among others 

Let‘s have a look at bottom-up, i.e. data-driven 
approaches 

Relational Pathfinding [Richards & Mooney, AAAI’92] 

§  Find paths of linked ground atoms !formulas 
§  Path ´ conjunction that is true at least once 
§  Exponential search space of paths 
§  Restricted to short paths 

Sam 

Pete CS1 
CS2 
CS3 
CS4 
CS5 
CS6 
CS7 
CS8 

Paul 
Pat 
Phil 

Sara 
Saul 
Sue 

Teaches 

TAs 

Advises 

Pete CS1 

Sam 

Advises(Pete,  Sam)  ^ Teaches(Pete, CS1) ^ TAs(Sam, CS1)  

 

 

Advises(   p  ,    s   ) ^Teaches(    p  ,    c  )  ^ TAs(   s  ,   c    )  
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Advises 
Pete Sam  
Pete Saul 
Paul Sara 

… … 
TAs 

Sam CS1 
Sam CS2 
Sara CS1 

… … 

Teaches 
Pete CS1 
Pete CS2 
Paul CS2 

… … 
Sam 

Pete CS1 
CS2 
CS3 
CS4 
CS5 
CS6 
CS7 
CS8 

Paul 
Pat 
Phil 

Sara 
Saul 
Sue 

TAs 

Advises 
Teaches 

Learning via Hypergraph Lifting 
[Kok & Domingos, ICML’09] 

§  Relational DB can be viewed as hypergraph 
§  Nodes ´ Constants 
§  Hyperedges ´ True ground atoms 
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Advises 
Pete Sam  
Pete Saul 
Paul Sara 

… … 
TAs 

Sam CS1 
Sam CS2 
Sara CS1 

… … 

Teaches 
Pete CS1 
Pete CS2 
Paul CS2 

… … 
Sam 

Pete CS1 
CS2 
CS3 
CS4 
CS5 
CS6 
CS7 
CS8 

Paul 
Pat 
Phil 

Sara 
Saul 
Sue 

TAs 

Advises 
Teaches 

Pete 

Paul 

Pat 

Phil 

Sam 

Sara 

Saul 

Sue 

CS1   
CS2 

CS3   
CS4 

CS5   
CS6 

CS7   
CS8 

Teaches 

TAs 

Advises 

Professor 

Student 

Course 

‘Lifts’ 

Learning via Hypergraph Lifting 
[Kok & Domingos, ICML’09] 

Using “2nd”-order MLNs 
§  Jointly clusters nodes 

into higher-level 
concepts 

§  Clusters hyperedges 
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Advises 
Pete Sam  
Pete Saul 
Paul Sara 

… … 
TAs 

Sam CS1 
Sam CS2 
Sara CS1 

… … 

Teaches 
Pete CS1 
Pete CS2 
Paul CS2 

… … 
Sam 

Pete CS1 
CS2 
CS3 
CS4 
CS5 
CS6 
CS7 
CS8 

Paul 
Pat 
Phil 

Sara 
Saul 
Sue 

TAs 

Advises 
Teaches 

Pete 

Paul 

Pat 

Phil 

Sam 

Sara 

Saul 

Sue 

CS1   
CS2 

CS3   
CS4 

CS5   
CS6 

CS7   
CS8 

Teaches 

TAs 

Advises 

Professor 

Student 

Course 

‘Lifts’ 

Trace paths & 

convert paths to    

first-order 
clauses 

Learning via Hypergraph Lifting[Kok & Domingos, 
ICML’09] 

§ 73 

FindPaths 

1 + 11 + 1

Pete 

Paul 

Pat 

Phil 

Sam 

Sara 

Saul 

Sue 

CS1   
CS2 

CS3   
CS4 

CS5   
CS6 

CS7   
CS8 

Teaches 

TAs 

Advises 

Paths Found 

Pete 

Paul 

Pat 

Phil 

Sam 

Sara 

Saul 

Sue 

CS1   
CS2 

CS3   
CS4 

CS5   
CS6 

CS7   
CS8 

Advises(      ,      ) 

Advises(      ,      ) , 

Teaches (       ,       ) 
 

Advises(      ,      ) , 

Teaches (       ,       ), 

TAs(       ,        )      
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1 + 11 + 1

Advises(           ,           ) ,  

Pete 

Paul 

Pat 

Phil 

Sam 

Sara 

Saul 

Sue 

Teaches(                 ,                             ) ,    

CS1   CS2 

CS3   CS4 

CS5   CS6 

CS7   CS8 

Pete 

Paul 

Pat 

Phil 

TAs(                  ,                              ) 

Sam 

Sara 

Saul 

Sue 

CS1   CS2 

CS3   CS4 

CS5   CS6 

CS7   CS8 

not Advises(p,  s)  V not Teaches(p, c)  V not TAs(s, c)  

 

 

Clause Creation 

1 + 11 + 1

1 + 11 + 1

Advises(           ,           )   

Pete 

Paul 

Pat 

Phil 

Sam 

Sara 

Saul 

Sue 

Teaches(                 ,                             )      

CS1   CS2 

CS3   CS4 

CS5   CS6 

CS7   CS8 

Pete 

Paul 

Pat 

Phil 

TAs(                 ,                              ) 

Sam 

Sara 

Saul 

Sue 

CS1   CS2 

CS3   CS4 

CS5   CS6 

CS7   CS8 

and 

and 

1 + 11 + 1

Advises(           ,           )   

Teaches(                 ,                             )      

TAs(                 ,                              ) 

and 

and 

p 

p 

s 

s 

c 

c 

Advises(p,  s)  and Teaches(p, c) and TAs(s, c)  

 

 

  Advises(p,  s)    V   Teaches(p, c)  V notTAs(s, c) 

                             

… 

 

 

   Advises(p,  s)   V not Teaches(p, c)  V notTAs(s, c)  
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0 

0,2 

0,4 

0,6 

0,8 

1 

0 

0,2 

0,4 

0,6 

0,8 

0,17 

0,19 

0,21 

0,23 

LHL vs. BUSL vs. MSL 
Area under Prec-Recall Curve 

 
 
Syste
m 

IMDB UW-CSE 
AUC CLL AUC CLL 

LHL 0.69§0.0
1 

-0.13§0.0
0 

0.22§0.0
1 

-0.04§0.0
0 

BUSL 0.47§0.01 -0.14§0.00 0.21§0.01 -0.05§0.0
0 

MSL 0.47§0.01 -0.17§0.00 0.18§0.01 -0.57§0.0
0 

LHL BUSL MSL 

IMDB UW-CSE 

Cora 

 
 
Syste
m 

Cora 
AUC CLL 

LHL 0.87§0.0
0 

-0.26§0.0
0 

BUSL 0.17§0.00 -0.37§0.00 

MSL 0.17§0.00 -0.37§0.00 

LHL BUSL MSL 

LHL BUSL MSL 
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0 

4 

8 

12 

16 

LHL vs. BUSL vs. MSL 
Runtime 

 
 
Syste
m 

IMDB UW-CSE Cora 
 

(Minutes) (Hours) (Hours) 

LHL 15.63§1.88 7.55§1.51 14.82§1.78 

BUSL 4.69§1.02 12.97§9.80 18.65§9.52 

MSL 0.17§0.10 2.13§0.38 65.60§1.82 

0 

20 

40 

60 

0 

4 

8 

12 

UW-CSE IMDB 

Cora 

m
in

 

§ h
r 

hr
 

LHL BUSL MSL LHL BUSL MSL 
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Boosted Statistical Relational Learning 

Idea: drop the finite model assumption 

Most SRL approaches seek to find 
models with a finite set of parameters 
… 

… but we deal within infinite domains! 
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Gradient (Tree) Boosting  
[Friedman Annals of Statistics 29(5):1189-1232, 2001] 

§  Models = weighted combination of a large number of small 
trees (models) 

§  Intuition: Generate an additive model by sequentially fitting 
small trees to pseudo-residuals from a regression at each 
iteration… 

Data 

Predictions 

- Residuals = 
Data 

+ 
Loss fct 

Initial Model 
+ 

+ 
+ 

Induce 

Iterate 

Final 
Model = + + + + … 
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Gradient (Tree) Boosting 

§  Has been used for several learning tasks such as 
aglinment, learning relational dependency models, 
learning MLNs, policy estimation, etc.  

§  ... and can be extended to deal with latent variables.   

Main step: estimate a relational regression model 
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Professor(P) 

Level(P,L) 

Student(S) 

IQ(S,I) 

Difficulty(C,D) 

Course(C) 

taughtBy(P,C) 
takes(S,C) 

ratings(P,C,R) 

satisfaction(S,B) 

grade(S,C,G) 

avgCGrade(C,G) 

avgSGrade(S,G) 

Relational Dependency Network-Example 

Aggregator 
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Relational Probability 
Trees 

§  Each conditional 
probability 
distribution can be 
learned as a tree 

§  Leaves are 
probabilities 

§  The final RDN is the 
set of these RPTs 

speed(X,S), S > 120 

job(X, politician) 

CountY(knows(X,Y)) 
> 0 

job(Y, politician) 

0.01 

0.05 

0.1 

0.98 

0.98 

no yes 

no yes 

no 

no 

yes 

yes 

Essentially like TILDE [Blockeel & De Raedt ’98] 

To predict Fine(X) 
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Gradient Tree Boosting 

§  Find ML parameters, i.e. maximize                        
without fixing the model structure/features 

§  Functional Gradient 
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Boosting RDNs 

Other preds Other preds Other preds Other preds Other preds … … 

pred pred pred pred pred … … 

Generate 
Example 
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Boosting RDNs 

Other preds Other preds Other preds Other preds Other preds … … 

pred pred pred pred pred … … 

Generate 
Example 

  
- 0.5 

“Weight” of each example 
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Boosting RDNs 

Other preds Other preds Other preds Other preds Other preds … … 

pred pred pred pred pred … … 

Generate 
Example 

  
- 0.5 
  
 0.2 

  
- 0.8 
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Boosting RDNs 

Other preds Other preds Other preds Other preds Other preds … … 

pred pred pred pred pred … … 

Generate 
Example 

  
- 0.5 
  
 0.2 

  
- 0.8 

Induce 
Regression 
Tree 
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Boosting RDNs 

Other preds Other preds Other preds Other preds Other preds … … 

pred pred pred pred pred … … 

Generate 
Example 

  
- 0.5 
  
 0.2 

  
- 0.8 

Induce 
Regression 
Tree 

U
pd

at
e 

M
od

el
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Boosting RDNs 

Other preds Other preds Other preds Other preds Other preds … … 

pred pred pred pred pred … … 

Generate 
Example 

  
- 0.5 
  
 0.2 

  
- 0.8 

Induce 
Regression 
Tree 

U
pd

at
e 

M
od

el
 

Final 
Model = + + + + … 
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UW-CSE  Results 

§   Task: Entity Relationship prediction 
§   Predict  advisedBy relation 
§   Train in 4 areas and test in 1 
§   Used RDN with Regression Tree Learner 

AUC-ROC AUC-PR Likelihood Training 
Time 

Boosting 0.961 0.930  0.810 9 s  

RDN 0.888  0.781  0.805 1 s 

Alchemy 0.535  0.621  0.731 93 hrs 
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OMOP Results 

§  Task: Predict Adverse-drug events  
§   Input: Drugs and conditions (side-effects) 
§   Goal: Predict if a patient is on a given drug 

(onDrug(D,P)) 
§   Learning “in reverse” 
§   Averaged over 5 train-test sets 
§   Each set is a different drug 

AUC-ROC AUC-PR Accuracy Training 
Time 

Boosting 0.824  0.839  0.753 497.8 s  
RDN 0.738  0.736  0.697 39.4 s 

ILP + Noisy-
Or 

0.420  0.582  0.687 2400 s 
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Direct Policy Learning 

§  Value functions can often be much more complex to 
represent than the corresponding policy 

§  When policies have much simpler representations than the 
corresponding value functions, direct search in policy 
space can be a good idea 

Goal: cl(a) 

Policy: put each block on top of a on the floor 
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Non-Parametric Policy Gradients  
[Kersting, Driessens ICML08] 

§  Assume policy to be expressed using an arbitray potential 
function 

§  Do functional gradient search w.r.t. world-value   

( , )

( , )( , , )
s a

s b
b

es a
e

π
Ψ

Ψ
Ψ =

∑

,

,

( ) ( , ) ( , )

( , )( ) ( , )

s a

s a

d s s a Q s a

s ad s Q s a

π π

π π

∂ρ ∂
π

∂ ∂
∂π
∂

=
Ψ Ψ

=
Ψ

∑

∑

sample 

compute 
locally 
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€ 

π (s,a) =
eΨ(s,a )

eΨ(s,b )
b
∑

Local Evaluation 

Monte-Carlo estimate or actor critic 

€ 

∂π (s,a)
∂Ψ(s,a)

= π (s,a)(1−π (s,a))

∂π (s,a)
∂Ψ(s,b)

= −π (s,a)π (s,b)
€ 

Qπ (s,a)
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i a b 
d c 

e 

f 
j 

h 
g 

Some Experimental Results 
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Allows us to treat propositional, continuous 
and relational features in a unified way!  

Lessons learnt 
§  Relational data is everywhere 
§  Relational models take the additional 

correlations provided by relations into account 
§  Main insight for parameter estimation: 

parameter tighing  
§  Vanilla relational learning approach does a 

greedy search by adding/deleting literals/
clauses using some (probabilistic) scoring 
function 

§  Learning many weak rules of how to change a 
model can be much faster 


