

Nat Rev Genet. 2012 May 2;13(6):395-405

nature

GENETICS

Heart diseases and strokes – cardiovascular disease – are expensive for the world

According to the World Heart Federation, cardiovascular disease cost the European Union EURO169 billion in 2003 and the USA about EURO310.23 billion in direct and indirect annual costs. By comparison, the estimated cost of all cancers is EURO146.19 billion and HIV infections, EURO22.24 billion

Electronic Health Records A New Opportunity for AI to Save our Lifes

[Natarajan, Kersting, Joshi, Saldana, Ip, Jacobs, Carr IAAI 2013]

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Problem: Find automorphism (*) of an undirected graph with adjancency matrix A

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Conditional Gradients for Color Refinement/Weissfeiler Lehman

Algorithm 1: CGCR(*A*): CG for Color Refinement

- 1 Set $D^{(0)} = \frac{1}{n} \mathbf{1} \in \mathcal{D}$, i.e., the flat partition matrix;
- 2 Set k := 1;
- 3 repeat
- 4 | $B := CHARACTMAT(\nabla F(D^{(k)}));$
- 5 $S := \operatorname{diag}(B^T \mathbf{1}) / * \operatorname{diagonal mat. of class sizes */;}$
- 6 Update $D^{(k+1)} := BS^{-1}B^T$;
- $5 \quad \text{Set } k := k + 1;$

Materializing D⁽⁰⁾ breaks memory already for medium size graphs

Provably convergent to a local maximum of F in a linear number of iterations producing the same sequence of intermediate solutions as WL with flooding

Matlab code available at http://www-ai.cs.uni-dortmund.de/weblab/code.html Perfectly Hashed Color Refinement/ Weissfeiler Lehman

Algorithm 5: HCGCR(A): Hashed CGCR

- 1 Let π an array where $\pi(i)$ equals to the *i*th prime;
- 2 $c^{(0)} := 1$, i.e., the all 1 column vector;
- 3 $m^{(0)} := 1$ (the maximal color) and k := 1;
- 4 repeat
- 5 $c^{(k+1)} := \text{COLORS}(c^{(k)} + A \log(\pi(c^{(k)})));$

This is quadratic and can actually be turned into quasi-linear time using asynchronous updates

The fundamental theorem of artihmetic tells us that this is proveably correct

		one / c	011 20	- ·]						
Empirical 1	illus	trati	on	115	ina	Ma	atla	h		
Empiricari	inas	ci a ci		us						
Name / Description	# nodes	# edges	Avg. (5 Hast	reruns)	time in s	ec. / media Ifix	an # CG if PIfi	teration	S	C
chain100001: Chain graph	100001	$\frac{7}{100.000}$	699.62	50002	420.18	•1252	•136.59	2892	< 0.01	49%
zrid1000: Grid graph	1,000,000	1,998,000	96.26	501	77.44	•21	•23.87	41	0.43	13%
email-EuAll: Email comm. netw., EU res.	265,214	365,030	•0.32	8	6.09	•5	0.51	•5	0.05	81%
soc-Epinions1: Who-trusts-whom netw.	75,888	405,740	●0.08	5	1.60	5	0.14	•4	0.02	30%
web-Ĝoogle: Web graph from Google	875,713	4, 322, 051	●5.61	17	163.49	•11	14.67	•11	1.03	40%
lickr: 2005 crawl of flickr.com by D. Gleich	820,878	9,837,214	●1.32	•5	59.70	6	3.47	•5	0.61	40%
ung2: Transp. in lung, Uni. Aukland	109,460	492,564	4.84	227	3.39	•10	1.48	26	0.06	59%
xenon2: Complex zeolite, sodalite crystals	157,464	1,933,344	0.96	35	3.81	•5	●0.78	10	0.16	59%
		Total •	4	1	(6	4	4		
Name	/ # graphs / a	wg. # nodes	Hash	ing	WL	CGCR	S			
MUT	AG / 188 /	17.93	•0	.23	0.53	0.6	-			
ENZ	YMES / 60	00/29.87	•0	64	3.46	2.08	_			
NCI	/ 111 / 29	87	•5	25 1	6.07	93.81	_			
Weighted MUTAG				_	_	•0.40	_			
						-1 89				
weig	Weighted ENZ I MES			_	_	●1.02 111 FO	_			
weig	nted NCII			-	- •	111.53	_			
						2014		\square		

Empirical Illustration

			PIC		PICWR				
Dataset	k	Purity	NMI	RI	Purity	NMI	RI		
Iris	3	0.9800	0.9306	0.9741	0.9800	0.9306	0.9741		
PenDigits01	3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
PenDigits17	3	0.7550	0.2066	0.6300	0.7550	0.2066	0.6300		
PolBooks	3	0.8000	0.4641	0.7702	0.8667	0.6205	0.8405		
UBMCBlog	2	0.9480	0.7193	0.9014	0.9530	0.7488	0.9104		
AGBlog	2	0.9566	0.7426	0.9170	0.9574	0.7492	0.9185		
20ngA	2	0.9600	0.7594	0.9232	0.9600	0.7594	0.9232		
20ngB	2	0.8800	0.5563	0.7888	0.9450	0.7042	0.8961		
20ngC	3	0.6433	0.4955	0.6923	0.6417	0.4932	0.6902		
20ngD	4	0.5425	0.2979	0.6538	0.5637	0.3283	0.6845		

Clusters are nothing but fix budget fractional automorphisms of datasets

Kristian Kersting Lifted Approximate Inference tu technische universität dortmund 2014

LAW

77

 (\mathbf{S})

