Lifted Approximate Inference

$\square \stackrel{1}{\rightleftharpoons} \bigcirc \stackrel{2}{\rightleftharpoons} \square \quad$ instead of

Goals

- Loopy Belief Propagation and Linear Programming can be made aware of computational symmetries
- This can result in great speed-ups
- Computational symmetries can be detected using the Weisfeiler-Lehman (WL) algorithm
- WL computes fractional automorphisms in quasi-linear time; essentially no overhead!
- Few lines of Matlab code realize WL (with flooding) using sparse-matrix operations
- Strong connections to community detection, role discovery, graph kernels, clustering,

General Take-Away Message

- Sparseness and Tree-width are not enough

We need to be aware of Symmetries

A Simple AI Problem

Probability $13 / 52=1 / 4$

Kristian Kersting
Lifted Approximate Inference
tu technische universität dortmund
$\stackrel{2014}{(\text { S } \rightarrow(M) \rightarrow(\text { (D) }}$
6

A Simple AI Problem

What if we knew already that its color is red?

Probability 13/26=1/2

A Simple AI Problem

Probability13/51

Why? Conditional Independency

Dependencies simplify computations

Back to the card problem

- Probabilistic propositional model is fully connected

- There are NO independencies
- Exact inference builds a table of $\geq 13^{52}$ Rows!
- Even approximate (for example, message passing) methods need to pass $\geq 13^{52}$) messages

Tractable Probabilistic Inference

- Traditional Belief: Independence (Conditional/Contextual)
- Now: Symmetry (Exchangeability)

Where do the symmetries come from?

Standard Data Representation: Single Tables

| Id | Age | Gender | Weight | BP | Sugar | LDL | Diabetes? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 27 | M | 170 | $110 / 70$ | 6.8 | 40 | N |
| 2 | 35 | M | 200 | $180 / 90$ | 9.8 | 70 | Y |
| 3 | 21 | F | 150 | $120 / 80$ | 4.8 | 50 | N |
| \ldots | | | | | | | |

But nowadays data become richer and richter

Heart diseases and strokes cardiovascular disease - @『ల expensive for the world

According to the World Heart Federation, cardiovascular disease cost the European Union EURO169 billion in 2003 and the USA about EURO310.23 billion in direct and indirect annual costs. By comparison, the estimated cost of all cancers is =URO1.4.6.19 billion and MIV infections, EURO22.24 billion

Electronic Health Records A New Oppoftrinity for AI to Save our Lifes

[N@tarajan, Kersting, Joshi, Saldan@a I®o Jacobs, Carr TAAAI 2013]

Big Data is not enough

- The data soup: most data is in logs, text, blogs, images, the web, databases, ...
- The knowledge soup: next to the data, we may have background knowledge, often even competing theories
- The reasoning soup: pool of interacting tasks and algorithms
Even though computers can search the data for keywords, features, and models, they do not really understand most of it

Statistical Relational AI is serious business

However, efficient complex probabilistic

 reasoning becomes central!Can we make it faster?

- Probabilistic relational models are used by several million users.
- Many other applications such as entity resolution, information extraction, unsupervised semantic parsing, NELL, information broadcasting, ...
$\stackrel{2014}{(\mathrm{~S})} \rightarrow(\mathrm{M}) \rightarrow(\mathrm{A})$

So, what is lifted inference?

1. An inference algorithm that deals with "groups" of random variables at a first-order level

- Takes a general first-order model as input
- Automatically answers queries without computational waste

2. Reason over a large domains in time independent of the number of objects
3. Ability to carry out probabilistic inference in a relational probabilistic model without needing to reason about each individual separately
4. Try and perform inference at the first-order logic level and to ground out only when necessary 27

More views

5. Algorithm that exploits interchangeability in the domain
6. Queries are answered without instantiating all the objects in the domain
7. Exploit shared correlations - Same uncertainties and correlations repeatedly occur in data
8. Exploit symmetries in the data and the model

Different definitions but similar goals

Least Common Denominator

- Exploit symmetry = Identify similar groups of random variables

[Gogate, Domingos AAAI 2011, Van den Broeck et al. JJCAI 2011]
Probabilistic Theorem Proving (PTP)

```
TP(KB, Query)
    KB
    return \negSAT(CNF(KBQ ))
```

```
PTP(PKB, Query)
    PKB}\mp@subsup{Q}{Q}{}\leftarrowPKB U {(Query,0)
    return WMC(WCNF(PKB }\mp@subsup{\mp@code{Q}}{~}{\prime}
        / WMC(WCNF(PKB))
```

All we need is lifted weighted model counting

First, however, we have to convert the PKB into (Lifted) CNF + Weights

WCNF $(P K B) \quad$ Clauses/Formula_Potential

for all $\left(F_{i}, \Phi_{i}\right) \in P K B$ s.t. $\Phi_{i}>0$ do
$P K B \leftarrow P K B \cup\left\{\left(\boldsymbol{F}_{i} \Leftrightarrow \boldsymbol{A}_{i}, 0\right)\right\} \backslash\left\{\left(F_{i}, \Phi_{i}\right)\right\}$
$C N F \leftarrow \operatorname{CNF}(P K B)$ Hard formula as weight is 0
for all $\neg A_{i}$ literals do $W_{\neg A i}:=\Phi_{i}$
for all other literals L do $W_{L}:=1$
return (CNF, weights)

Lifted Weighted Model Counting

LWMC(CNF, substs, weights)
if all clauses in WCNF are satisfied
if CNF has empty unsatisfied clause return 0

Lifted Weighted Model Counting

LWMC(CNF, substs, weights) if all clauses in WCNF are satisfied return $\prod_{A \in \mathrm{~A}(C N F)}\left(w_{A}+w_{\neg A}\right)^{n_{A}(\text { substs })}$ if CNF has empty unsatisfied clause return 0
if there exists a lifted decomposition of CNF sharing no unifiable literals return $\prod_{i=1}^{k}\left[L W M C\left(C N F_{i, 1} \text {, substs, weights }\right)\right]^{m_{i}}$ Decomp. Step

Lifted Weighted Model Counting

What about approximate inference?
choose an atom A Splitting Step

Main computational step. I am skipping the details. Nice connection to knoweldge compilation e.g. using firstorder d-DNNF for efficient model counting. Is closely related to recursive conditioning

[Pearl, Koller, Friedman, Lauritzen, Spiegelhalter, ...]

Reminder Factor Graphs

Distributions can naturally be represented as Factor Graphs

- There is an edge between a circle and a box if the variable is in the domain/scope of the factor

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]
Step 1: Coloring the graph
- Color nodes according to the evidence you have

- No evidence, say red
" State „one", say brown
" State „two", say orange
- ...
- Color factors distinctively according to their equivalence classes. For instance, assuming f_{1} and f_{2} to be identical and B appears at the second position within both, say blue
$2014 \rightarrow(\mathrm{D})$
(5) \rightarrow (M) wroctaw

44
[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]
Step 2: Pass the colors around

1. Each factor collects the colors of its neighboring nodes

Step 2: Pass the colors around

1. Each factor collects the colors of its neighboring nodes
2. Each factor "signs" ist color signature with its own color

3. Each factor collects the colors of its neighboring nodes
4. Each factor „signs" ist color signature with its own color
5. Each node collects the signatures of its neighboring factors
```
Kristian Kersting Lifted Approximate Inference
```

- technische universität dortmund
$\xrightarrow[(S)]{\rightarrow(\mathrm{L})}$

47

Step 2: Pass the colors around

1. Each factor collects the colors of its neighboring nodes
2. Each factor "signs" ist color signature with its own color
3. Each node collects the signatures of its neighboring factors
4. Nodes are recolored according to the collected signatures
[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]
Step 2: Pass the colors around

5. Each factor collects the colors of its neighboring nodes
6. Each factor „signs" ist color signature with its own color
7. Each node collects the signatures of its neighboring factors
8. Nodes are recolored according to the collected signatures
9. If no new color is created stop, otherwise go back to 1

Step 3: Compress the factor

Essentially we just compute the so-called quotient factor graph

 50
Step 4: Run a modified Loopy Belief Propagation

" Nodes are now groups of random variables

- The counts ensure that we send the same number of message as standard loopy belief propagation

51
[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]

Mind the counts! They also depend on the position of the variable within the factors

$$
\begin{aligned}
\mu_{\mathfrak{X} \rightarrow \mathfrak{f}, p}(x) & =\mu_{\mathfrak{f}, p \rightarrow \mathfrak{X}}(x)^{c(\mathfrak{f}, \mathfrak{X}, p)-1} \prod_{\mathfrak{h} \in \operatorname{nb}(\mathfrak{X})} \prod_{\substack{q \in P(\mathfrak{h}, \mathfrak{X}) \\
(\mathfrak{h}, q) \neq(\mathfrak{f}, p)}} \mu_{\mathfrak{h}, q \rightarrow \mathfrak{X}}(x)^{c(\mathfrak{h}, \mathfrak{X}, q)} \\
\mu_{\mathfrak{f}, p \rightarrow \mathfrak{X}}(x) & =\sum_{\neg\{\mathfrak{X}\}}\left(\mathfrak{f}(\mathbf{x}) \prod_{\mathfrak{Y} \in \operatorname{nb}(\mathfrak{f})} \prod_{q \in P(\mathfrak{f}, \mathfrak{Y})} \mu_{\mathfrak{Y} \rightarrow \mathfrak{f}, q}(y)^{c(\mathfrak{f}, \mathfrak{Y}, q)-\delta_{\mathfrak{X} \mathfrak{Y}} \delta p q}\right) \\
b_{i}\left(x_{i}\right) & =\prod_{\mathfrak{f} \in \operatorname{nb}\left(\mathfrak{X}_{i}\right)} \prod_{p \in P\left(\mathfrak{f}, \mathfrak{X}_{\mathfrak{i}}\right)} \mu_{\mathfrak{f}, p \rightarrow \mathfrak{X}_{i}}\left(x_{i}\right)^{c\left(\mathfrak{f}, \mathfrak{X}_{\mathfrak{i}}, p\right)}
\end{aligned}
$$

- Here, $P(\mathfrak{h}, \mathfrak{X})$ denotes the position variables appear in factors
- The main difference is in the factor to variable messages. We now send only one message per „supernode" and position as expressed by the indicator functions
- For the lifting, we can turn the graph into a position- pairwise factor graph and then run color-passing

[Taken from Mladenov, Globerson, Kersting UAI 2014]

And these kinds of lifted message-passing approaches can be orders of magnitudes faster

Weisfeiler-Lehman (WL) Algorithmus aka "naive vertex classification"

- Basic subroutine for graph isomorphism testing
- Computes so called
fractional automorphisms:

Doubly stochastic matrices instead of permutation matrices

- Quasi-linear running time $O((n+m) \log (n))$ when using asynchronous updates
[Berkholz, Bonsma, Grohe ESA 2013]
- Part of graph tool SAUCY
[See e.g. Darga, Sakallah, Markov DAC 2008]
- Can be extended to weighted graphs
[Grohe, Kersting, Mladenov, Selman ESA 2014]

But how do we get from factor graphs to graphs?

- Encode the factor colors into the node colors

- Then run Weisfeiler-Lehman / Color-Passing just on the graph with these initial colors

[Berkholz, Bonsma, Grohe ESA 2013]

Quasi-linear running time

- Send color message asynchronously and keep a stack of active color classes
- Initially only color 1 is active
- Pop an active color C from the stack and send message to the neigbors of the corresponding color class members (refine)
- Push all new colors on the stack in increasing order except we used C already before. If so, then push all new colors but the largest one -Hopcroft's trick resulting in a halfing argument-
- Stop if the stack if empty
- Due to the halfing argument this can be shown to be of $\mathrm{O}((\mathrm{n}+\mathrm{m}) \log (\mathrm{n}))$

```
[Kersting, Mladenov, Garnett, Grohe AAAI 2014]
Problem: Find automorphism (*) of an
undirected graph with adjancency matrix A
    Find a permutation matrix P such
        that AP=PA
    P*}=\operatorname{arg}\mp@subsup{\operatorname{min}}{P\in\mathcal{P}}{}S(P
    S(P):=|A-A'|}\mp@subsup{|}{F}{2}=|A-PA\mp@subsup{P}{}{T}\mp@subsup{|}{F}{2
    =|(A-PAPT})P\mp@subsup{|}{F}{2}=|AP-PA\mp@subsup{|}{F}{2
    |A|\mp@subsup{|}{F}{2}=\operatorname{tr}(\mp@subsup{A}{}{T}A)=\mp@subsup{\sum}{i,j}{}|\mp@subsup{A}{ij}{}\mp@subsup{|}{}{2}
(*) Automorphisms have recently received a lot of attention for lifted inference, see e.g.
[Kersting, Mladenov, Garnett, Grohe AAAI 2014]
Problem: Find automorphism (*) of an undirected graph with adjancency matrix A

Find a permutation matrix \(P\) such that AP=PA
\[
\begin{aligned}
P^{*} & =\arg \min _{P \in \mathcal{P}} S(P) \\
& =\arg \max _{P \in \mathcal{P}} F(P)
\end{aligned}
\]

Complexity is
unknown. Let's
```

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

```

\section*{Problem: Fractional Automorphism}
Find a doubly stochastic matrix D s.t. AD=DA
```

$D^{*}=\arg _{\max }^{D \in \mathcal{D}}{ } F(D)$

```
\(D 1=1\)
\(\mathbf{1}^{T} D=\mathbf{1}^{T}\)

Birkhoff Polytope consists of all doubly stochastic matrices.
It is convex

\section*{[Kersting, Mladenov, Garnett, Grohe AAAI 2014]}

\section*{Optimization over a convex set:} Conditional Gradients aka Frank-Wolfe
- Start with \(D^{(0)} \in \mathcal{D}\) This lower bound
- Lower bound F(D) with its FO Taylor series expansion
\[
T^{(k)}(H):=F\left(D^{(k)}\right)+\left\langle\nabla F\left(D^{(k)}\right), H-D^{(k)}\right\rangle
\]
- Maximize \(T^{(k)}(H)\) s.t. \(H \in \mathcal{D} \begin{gathered}\text { Assignement is a Linear } \\ \text { Astem }\end{gathered}\)
\[
H^{(k)}=\max _{H \in \mathcal{D}}\left\langle\nabla F\left(D^{(k)}\right), H\right\rangle
\]
- Since the polytope is convex, run a line search between \(\mathrm{D}^{(k)}\) and \(\mathrm{H}^{(k)}\) to find next \(\mathrm{D}^{(k+1)}\). Since the lower bound is concave, \(\mathrm{H}^{(k)}\) will be selected
\(\cdot\)
Mission completed?

\section*{NO!!}
- This does not mimic WL at all!!!!
- It will just find the trivial solution (identity matrix). We do not employ the more-general-than relation among solutions!
- Replacing a quasi-linear approach by a sequence of cubic LAPs is stupid!

\section*{Exploit symmetries in the induced linear problems!}
\[
\nabla F\left(D^{(k)}\right)=2 A D^{(k)} A
\]
- Intuitively, if two vertices of a graph have identical subgradients (rows in the gradient matrix) they are interchangeable
\[
B_{i j}= \begin{cases}1 & i \text { th vertex is in } j \text { th cluster of } \nabla F\left(D^{(k)}\right) \\ 0 & \text { otherwise }\end{cases}
\]


Do not solve the induced LPs at all
- B induces actually ascent directions. They are all what we need
\[
H=B S^{-1} B^{T}
\]
where \(S\) (the sizes of the clusters) takes care of normalization

\section*{[Kersting, Mladenov, Garnett, Grohe AAAI 2014] \\ Conditional Gradients for Color Refinement/Weissfeiler Lehman}
```

Algorithm 1: CGCR(A): CG for Color Refinement
1 Set }\mp@subsup{D}{}{(0)}=\frac{1}{n}\mathbf{1}\in\mathscr{D}\mathrm{ , i.e., the flat partition matrix;
Set k:=1;
repeat
B:= CHARACTMAT}(\nablaF(\mp@subsup{D}{}{(k)}))
S:= diag(BT
Update D}\mp@subsup{D}{}{(k+1)}:=B\mp@subsup{S}{}{-1}\mp@subsup{B}{}{T}\mathrm{ ;
Set k:=k+1;
Materializing D(0) breaks memory
already for medium size graphs

```
Provably convergent to a local maximum of Fin
a linear number of iterations producing the
same sequence of intermediate solutions as WL
with flooding

\section*{[Kersting, Mladenov, Garnett, Grohe AAAI 2014] \\ Matrix Multiplications for Color Refinement/Weissfeiler Lehman}
```

Algorithm 4: CGCR (A) : CG for Color Refinement
$B^{(0)}:=1$, i.e., the all 1 column vector;
$2 m^{(0)}:=1$ (the current maximal color) and $k:=1$;
But cubic running time !!!
Just a few lines of matiab code :
Memory consumption scales well
for sparse matrices

```
Provably convergent to a local maximum of Fin
a linear number of iterations producing the
same sequence of intermediate solutions as WL
with flooding
[Kersting, Mladenov, Garnett, Grohe AAAI 2014]
Matlab code available at http://www-ai.cs.uni-dortmund.de/weblab/code.html
Perfectly Hashed Color Refinement/ Weissfeiler Lehman
```

Algorithm 5: $\operatorname{HCGCR}(A)$: Hashed CGCR
1 Let π an array where $\pi(i)$ equals to the i th prime;
$2 c^{(0)}:=\mathbf{1}$, i.e., the all 1 column vector;
$3 m^{(0)}:=1$ (the maximal color) and $k:=1$;
4 repeat
$5 \quad c^{(k+1)}:=\operatorname{CoLORS}\left(c^{(k)}+A \log \left(\pi\left(c^{(k)}\right)\right)\right) ;$

```
```

This is quadratic and can actually be

```
This is quadratic and can actually be
turned into quasi-linear time using
turned into quasi-linear time using
asynchronous updates
```

asynchronous updates

```

\section*{The fundamental theorem of artihmetic tells us that this is proveably correct}


[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

\section*{Empirical Illustration using Matlab}

\begin{tabular}{|c|c|c|c|c|}
\hline Name / \# graphs / avg. \# nodes & Hashing & WL & CGCR & S \\
\hline MUTAG/188/17.93 & \(\bullet 0.23\) & 0.53 & 0.6 & - \\
\hline ENZYMES / 600 / 29.87 & \(\bullet 0.64\) & 3.46 & 2.08 & - \\
\hline NCI1 / 111 / 29.87 & \(\bullet 5.25\) & 16.07 & 93.81 & - \\
\hline Weighted MUTAG & - & - & \(\bullet 0.40\) & - \\
\hline Weighted ENZYMES & - & - & \(\bullet 1.82\) & - \\
\hline Weighted NCII & - & - & \(\bullet 111.53\) & - \\
\hline
\end{tabular}

\section*{Why should I care?}
- Well, this suggests to view lifting as an approach for clustering, community detection, and role discovery

\section*{Power Iteration Clustering with Restarts}
- One iteration of Power Iterated WL using k-Means instead of exact clustering essentially mimics Power Iterated Clustering [Lin, Cohen ICML 2010]
```

Algorithm 6: PICGCR (A) : Power Iterated CGCR
$B^{(0)}=\mathbf{1}$;
$m^{(0)}:=1$ (the current maximal color) and $k:=1$;
3 repeat
$4 \quad B^{(k+1)}:=\mathbf{P I C}\left(\mathbf{I}+\mathbf{k}, \mathbf{A}, \mathbf{B}^{(\mathbf{k})}\right)$
$5 \quad$ Set $m^{(k+1)}$ to the number of columns of $B^{(k+1)}$;
$6 \quad k:=k+1$;
until Clusters are not changing significantly anymore
return $B^{(k)}$

```
kMeans with I clusters over all colored early state distribution

\section*{Empirical Illustration}
\begin{tabular}{lllll|llc}
\hline & \multicolumn{3}{c|}{ PIC } & \multicolumn{3}{c}{ PICWR } \\
Dataset & \(k\) & Purity & NMI & RI & Purity & NMI & RI \\
\hline Iris & 3 & \(\mathbf{0 . 9 8 0 0}\) & \(\mathbf{0 . 9 3 0 6}\) & \(\mathbf{0 . 9 7 4 1}\) & \(\mathbf{0 . 9 8 0 0}\) & \(\mathbf{0 . 9 3 0 6}\) & \(\mathbf{0 . 9 7 4 1}\) \\
PenDigits01 & 3 & \(\mathbf{1 . 0 0 0 0}\) \\
PenDigits17 & 3 & \(\mathbf{0 . 7 5 5 0}\) & \(\mathbf{0 . 2 0 6 6}\) & \(\mathbf{0 . 6 3 0 0}\) & \(\mathbf{0 . 7 5 5 0}\) & \(\mathbf{0 . 2 0 6 6}\) & \(\mathbf{0 . 6 3 0 0}\) \\
PolBooks & 3 & 0.8000 & 0.4641 & 0.7702 & \(\mathbf{0 . 8 6 6 7}\) & \(\mathbf{0 . 6 2 0 5}\) & \(\mathbf{0 . 8 4 0 5}\) \\
UBMCBlog & 2 & 0.9480 & 0.7193 & \(\mathbf{0 . 9 0 1 4}\) & \(\mathbf{0 . 9 5 3 0}\) & \(\mathbf{0 . 7 4 8 8}\) & \(\mathbf{0 . 9 1 0 4}\) \\
AGBlog & 2 & 0.9566 & 0.7426 & 0.9170 & \(\mathbf{0 . 9 5 7 4}\) & \(\mathbf{0 . 7 4 9 2}\) & \(\mathbf{0 . 9 1 8 5}\) \\
20ngA & 2 & \(\mathbf{0 . 9 6 0 0}\) & \(\mathbf{0 . 7 5 9 4}\) & \(\mathbf{0 . 9 2 3 2}\) & \(\mathbf{0 . 9 6 0 0}\) & \(\mathbf{0 . 7 5 9 4}\) & \(\mathbf{0 . 9 2 3 2}\) \\
20ngB & 2 & 0.8800 & 0.5563 & 0.7888 & \(\mathbf{0 . 9 4 5 0}\) & \(\mathbf{0 . 7 0 4 2}\) & \(\mathbf{0 . 8 9 6 1}\) \\
20ngC & 3 & \(\mathbf{0 . 6 4 3 3}\) & \(\mathbf{0 . 4 9 5 5}\) & 0.6923 & 0.6417 & 0.4932 & 0.6902 \\
20ngD & 4 & 0.5425 & 0.2979 & 0.6538 & \(\mathbf{0 . 5 6 3 7}\) & \(\mathbf{0 . 3 2 8 3}\) & \(\mathbf{0 . 6 8 4 5}\) \\
\hline
\end{tabular}

\section*{Clusters are nothing but fix budget fractional automorphisms of datasets}

\section*{[Mladenov, Ahmadi, Kersting AISTATS 2012 ]}

If you still do not care, what about lifting
linear programs, working horse of AI, OR, ...


Run WL on the „LP"-graph to reduce the dimension of the LP


\section*{Lessons learnt}
- Loopy Belief Propagation and Linear Programming can be made aware of computational symmetries
- This can result in great speed-ups
- Computational symmetries can be detected using the Weisfeiler-Lehman (WL) algorithm
- WL computes fractional automorphisms in quasi-linear time; essentially no overhead!
- Few lines of Matlab code realize WL (with flooding) using sparse-matrix operations
- Strong connections to community detection, role discovery, graph kernels, clustering, ..```

