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Chapter 1

Introduction

Traffic congestion is a globally occurring problem [2]. While more network capacity could
potentially decrease congestion, it is also one of the most expensive countermeasures [3].
Additionally, increasing the network capacity is not always possible as metropolitan areas
usually provide limited space for new infrastructure. Therefore, current research aims at
decreasing congestion using more cost effective methods. Various approaches are currently
being researched.

A common approach to reduce congestion is a modal shift policy [3]. It aims at de-
creasing driving demand by providing easy access to alternative means of transportation.
The prime example is mass transit, which larger urban areas continue to develop [11, 21].
Additionally, bicycles have been advocated early on as a green, healthy alternative for short
distances [3]. This initiative aims at making popular roads more accessible to cyclists as
well as providing more cycling infrastructure in urban centers. More recently car sharing
has also been gaining popularity [22]. It owes its success mostly to on-line car sharing
communities, which make on-demand access to vehicles easily available.

In contrast, this thesis explores dynamic traffic routing as a less invasive method to
decrease overall network congestion. The central idea is to use a reinforcement learn-
ing algorithm, namely Policy Optimizer for Exponential Models (POEM) [38], to detect
congested areas in road networks. The results computed by POEM will then be used to
provide live traffic updates. This should enable road users to bypass congestion at an early
stage, which in turn should distribute traffic more evenly and reduce overall network con-
gestion. As a result individual travel time should decrease for most road users. However,
an advantage for some road users is expected to be at the expense of others.

Implementing such a system inherently requires exhaustive live road network data, col-
lected by a multitude of sensors. For example, Sydney Coordinated Adaptive Traffic System
(SCATS) is a proprietary system which integrates stationary sensors in existing road net-
works. The SCATS system was already implemented in many urban areas such as Hong
Kong, Shanghai or Dublin [29]. However, widespread coverage using stationary sensors is
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2 CHAPTER 1. INTRODUCTION

costly and rarely available. A more attractive, software-based solution could collect in-
formation using smartphone applications. Frequently cited examples are TomTom [1] and
Google Maps [8]. Finally, information must be made available to the road users. Here, nav-
igation devices without an Internet connection can use the Traffic Messaging Channel [23],
which is a one-way radio interface.

Existing approaches and related work are presented in chapter 2. The principles re-
garding general reinforcement learning and traffic flow theory are outlined in chapter 3.
Then, POEM is applied to congestion detection and vehicle routing in chapter 4. The pro-
posed application is evaluated in chapter 5. Finally, a conclusion is drawn and prospective
research is described in chapter 6.



Chapter 2

Related Work

The worldwide levels of congestion continue to rise every year, which is why research on its
avoidance remains an active area of research. This chapter outlines a selection of relevant
approaches.

The paper [28] introduces r-Extreme Signaling, an interval scheduling scheme which
counters congestion by distributing vehicles more evenly. In r-Extreme Signaling road cost
information is provided in intervals as opposed to scalars. Then vehicles individually chose
scalar costs from the interval with respect to a predetermined policy. Each unique policy
will provide a distinct view on the road network. This consequently leads to a more even
vehicle distribution. In contrast to dynamic routing as presented in section 4.2 vehicles will
not perform dynamic congestion avoidance, but rather remain on routes set at departure.
This may be a caveat of r-Extreme Signaling, as drivers will occasionally be uncooperative
and autonomously choose to bypass jams. However, a system without sudden reroutes
may put less stress on drivers in real-world scenarios.

In [15] CHIMERA is presented as a novel Intelligent Transportation System (ITS) [17].
The proposed system installs multiple road side units (RSU) in a road network to monitor
its current state. An RSU itself is not a sensor, but rather receives and processes mea-
surements made by in-vehicle sensors currently located in its assigned area of influence.
The measurements determine a road’s density and mean speed, which are introduced in
section 3.2. Those are used in a k-Nearest-Neighbor algorithm to predict congested roads.
Finally, vehicles likely to be caught in a jam are selectively rerouted. The evaluation of
CHIMERA uses Simulation for Urban Mobility (SUMO) [24]. This simulator is also used
to evaluate dynamic routing with Policy Optimizer for Exponential Models (POEM) [38]
in chapter 5. Although no direct comparison is made section 5.5 also evaluates dynamic
routing with POEM using solely vehicle density and mean speed measurements.

The paper [27] presents Themis as a participatory smartphone navigation system. The
users of Themis are routed evenly through a road network by using a proactive routing
algorithm [33]. This counters the negative effects of selfish routing in which every vehicle
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4 CHAPTER 2. RELATED WORK

choses the shortest path [35]. Additionally, all users regularly send position updates to
Themis. Those are used in a logistic regression model [5] which estimates the current
number of vehicles on each road. This enables Themis to provide more accurate route
suggestions to users which bypass congested areas. The main difference between Themis
and dynamic routing with POEM is the employed learning method. Themis estimates
current vehicle counts using a supervised learning algorithm. In contrast, POEM is a
reinforcement learning algorithm and is used in section 4.4 to directly classify a road as
either congested or uncongested.

The game-theoretic Nash equilibrium [31] can also be applied to vehicles in a road
network. It is a local optimum in which no vehicle can gain a time-wise benefit by solely
changing its own route. However, it is not necessarily a global optimum as changing routes
of more than one vehicle may result in better overall network performance. The Nash
equilibrium cannot be applied to real-world scenarios, as its calculation requires complete
prior knowledge about driving demand. It is also unable to cope with unpredictable events
such as accidents. Hence, it is only presented as an upper baseline during the evaluation
in chapter 5.



Chapter 3

Principles

This chapter provides an overview of the necessary terminology and theories used through-
out the thesis. Firstly, an overview of traffic sensors is given in section 3.1. Then, math-
ematical models of traffic flow and road networks are presented in sections 3.2 and 3.3.
Lastly, a short introduction to reinforcement learning is given in section 3.4.

3.1 Traffic Sensors

Data representing the current state of a road network is collected using a wide range of
sensors. They can usually be classified as being either single-point or point-to-point.

As the name suggests, a single-point sensor measures data in a single point of a road
network. The measured data is usually limited to vehicle count, but more complex sensors
are also able to detect vehicle speed or type. The most prevalent single-point sensor is the
induction loop. Here, either a single or double wire loop installed inside the pavement is
used to detect electromagnetic distortions caused by passing vehicles. The main advantage
of the more expensive double loop variant is its capability of reliably measuring vehicle
speeds. However, measurements by single loop sensors can be used to estimate vehicle
speeds [32].

More recently, point-to-point sensors have been gaining relevance. One goal is to create
source-target distributions by monitoring individual vehicles at two or more points in a road
network. However, smartphones as point-to-point sensors allow more exhaustive data to be
collected, as they natively provide positioning systems and routing applications [8, 10]. The
measurements can then either be streamed live over a mobile network or uploaded later,
when a Wi-Fi connection is available. Nevertheless, due to its accuracy, personalization
and invasiveness, this information is without doubt very sensitive and must be collected
defensively.

The sensor data in combination with static road network data is then used to create
various empirical models describing the state of a road network.
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6 CHAPTER 3. PRINCIPLES

3.2 Traffic Flow Modeling

In order to improve road networks and routing services, a mathematical model of real-
world traffic is required. The complexity of this task is created by the large number of
independent actors in a road network, such as vehicles, pedestrians or cyclists. Hence, all
models provide merely an approximation by making various assumptions to simplify the
relations between the actors.

Most models usually take either a micro- or macroscopic approach. A microscopic
model is more intricate as it describes the state of a road network by modeling each
individual vehicle and their interactions with others. In contrast, a macroscopic model only
describes an aggregated state of road network components. Consequently, a sufficiently
good microscopic model will always outperform any macroscopic model, albeit at much
greater computational costs. Additionally, real-world microscopic datasets are very large
in size. For example, microscopic in-vehicle sensors will continuously store vehicle positions
and speeds. This is manageable when selected vehicles are monitored but does not scale
well for larger sample sizes. Not only does processing of microscopic data require a lot of
coordination but it also raises concerns with regard to privacy [25]. This is why microscopic
data is usually aggregated to create a generalized, privacy preserving macroscopic model.

According to [18] a spatial model must satisfy two requirements. Firstly, it must be
related to real-world scenarios. Secondly, it must be possible to move between micro- and
macroscopic models without loss of critical information. The presented macroscopic model
conforms with those requirements as it is based on aggregated, microscopic real-world
sensor measurements.

Macroscopic Model

Macroscopic variables are used to represent an aggregated state of a road network [20].
Most commonly, a spatio-temporal average or sum is modeled, where a variable describes
a cross section of road network over a discrete period of time. Here, cross section refers to
a stretch of a road or lane, rather than a single point.

The flow or vehicle count q := n ∗ T−1 is defined as the number of vehicles n that
pass a cross section over a discrete time period T. This variable can be measured using
single-point sensors. Next density k := n ∗ X−1 is defined as the number of vehicles n
per distance unit X. Similarly, occupancy is defined as the percentage of a cross section
covered by vehicles. It will generally stay well below 100% as drivers will always keep a
minimum distance to others. Another macroscopic variable is the mean vehicle speed u

on a cross section. In order to reliably measure density, occupancy or vehicle mean speed,
point-to-point sensors are required. However, measurements by single-point sensors can be
extrapolated over a cross section with an inherent loss of accuracy. Finally, waiting time
is defined as the absolute time all vehicles wait on a cross section over a period of time.
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It is rarely measured using conventional sensors as it requires sophisticated point-to-point
sensors. This should not be confused with waiting time in a single point, which is usually
measured with induction loops or cameras and used to control signals.

Congestion Detection

Traffic congestion is usually characterized by slow, inconsistent vehicle speeds and occurs
whenever road network demand is greater than its capacity. This section presents two
primitive methods to quickly indicate whether or not a road might be congested.
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Figure 3.1: The graphs show exemplary relations between flow, density and speed in a macro-
scopic model. The exact numbers will depend on various variables such as road conditions, speed
limits or weather. Source: Traffic Flow Theory and Modelling [20]

In macroscopic models flow, density and mean speed are related. Those relations are
derived from empirical data in [20] and presented in figure 3.1. When a vehicle enters a
relatively empty road, it can generally drive at maximum allowed speed without influencing
others. The density of a road will inherently increase when more vehicles enter it. This
continues up to a critical density kc, where a road will operate at its maximum capacity
qc. At critical density each vehicle is still able to drive at maximum speed, but actions
by drivers such as breaking or speeding could easily lead to jams as other drivers will
react accordingly. A density value above kc means vehicles cannot keep sufficient safety
distances to each other anymore. Hence, some drivers will chose to drive at slower speeds.
This reduces necessary safety distances, which in turn allows more vehicles to enter. This
continues until a jam density kj at which each vehicle stops is reached [20].

The exact values of kj and kc depend on static and dynamic variables such as lane
count, road condition or weather. However, rough estimations about kj and kc can be
made. At kj vehicles will not move and be relatively close to each other. Hence, an
intuitive estimation of kej for a road e would use its lane count LCe, average vehicle length
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vehl (m) and minimum safety distance vehs (m). Then, an estimation k̃ec of kec can be
made, as [13] states that it is generally one seventh of the jam density:

k̃ec :=
1

7
∗ 1000 ∗ LCe ∗ (vehl + vehs)

−1 (3.1)

The primitive density congestion detection method δdensity labels a road as congested when
its density is larger than its estimated critical density. Additionally, slow vehicle speeds
can also indicate congestion. Similar methods were studied in [36] and are implemented
in [8]. The primitive mean speed congestion detection method δspeed labels a road as con-
gested when its mean speed is below 10km/h of the respective speed limit. This threshold
parameter was chosen due to its overall good performance in simulations.

3.3 Road Network Modeling

This section describes how road networks can be modeled as graphs. The subsequently
used shortest path algorithm A∗ is presented as well.

A road network can be modeled by a directed graph G = (V,E, c). The nodes v ∈ V
represent junctions, which are located in a 3-dimensional Euclidean vector space. For
notational convenience, let v ∈ V not only represent a node in V , but also its Euclidean
coordinates. This allows calculation of the direct distance between nodes u, v ∈ V using
the Euclidean norm as shown in equation 3.5. Next, a road connecting nodes u, v ∈ V is
represented by a directed edge (u, v) ∈ E ⊂ {(p, q) | p, q ∈ V, p 6= q}. An edge e ∈ E is
associated with its positive length l : E → R∗+ and its positive speed limit s : E → R∗+.
Finally, c : E → R+ maps a nonnegative cost value to each edge. A simple example for
c would be l. This can be improved by additionally using the provided speed limit to
calculate the minimum time it would take to pass an edge, which yields:

c(e) := l(e) ∗ s(e)−1 (3.2)

This equation assumes that every vehicle is capable of driving the maximum speed limit.
In reality, each vehicle must also consider its own maximum speed.

This graph representation of a road network can now be used to calculate a path
between two nodes with minimum costs, which is commonly known as the single-source
shortest path problem. All subsequent sections will useminimum cost and shortest distance
interchangeably. The next section presents, amongst other algorithms, A∗ as an efficient
solution.

Route Calculation with A∗

The single-source shortest path problem is about finding a path between two nodes s, t ∈ V
with minimum costs in a graph G = (V,E, c). Here, Dijkstra’s algorithm [16] is the most
established solution when dealing with weighted graphs [9].
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Dijkstra’s algorithm maintains a priority queue Q of nodes. Here, nodes are sorted
by currently known shortest path distances to the starting node s. The algorithm starts
by initializing all distances to ∞, excluding s, which is initialized to 0. Then, a loop
will iteratively remove node u, also known as expanding node u, with shortest distance
to s from Q. Having removed node u implies a shortest path between nodes s and u was
discovered. Finally, in each iteration Dijkstra’s algorithm inspects each node v adjacent
to u, v : (u, v) ∈ E, and updates Q when a shorter path from s to v via u exists. The
algorithm stops when Q is empty or a shortest path between nodes s and t has been
discovered.

The A∗ algorithm improves Dijkstra’s algorithm with respect to computational com-
plexity. This is achieved by ideally minimizing the search space by processing nodes closer
to the target node in an earlier iteration. To do so A∗ additionally considers the actual
shortest distance between t and other nodes when ordering Q. However, since such values
are generally unknown a heuristic πt : V → R+ must be used to provide estimations. In
A∗ heuristics are usually characterized by two properties. It is said to be admissible when
it is a lower bound on the actual shortest distance. In other words πt is admissible if and
only if it does not overestimate the distance between two nodes:

∀v ∈ V : πt(v) 6 π
′
t(v) (3.3)

where π′
t(v) denotes the actual shortest distance between nodes v and t. Furthermore, it

is said to be consistent when it satisfies a triangle inequality:

∀(u, v) ∈ E : πt(u) 6 c((u, v)) + πt(v) (3.4)

When a heuristic is admissible and consistent, no further alterations need to be made
to Dijkstra’s algorithm other than updating Q by additionally adding πt(v) to every node
v ∈ Q. Hence, using πt : V → {0} is equivalent to Dijkstra’s algorithm, whereas using
πt = π

′
t will only consider edges on the shortest path [9]. In other words estimation

performance of πt will directly influence the decrease in computational complexity.

However, when a heuristic is admissible and inconsistent, a more complex implementa-
tion must be chosen to guarantee optimal results. The reason is that without consistency,
removing a node from Q does not always imply that a shortest path to it was discovered.
In such instances nodes need to be reinserted to Q when a shorter path is discovered during
node inspection.

When a heuristic is inadmissible A∗ cannot guarantee optimal results. The algorithm
may prune the search space too much and expand node t before it can verify that there are
no shorter paths over adjacent nodes. Lastly, it should be noted that consistency implies
admissibility [19].
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The heuristic which was used throughout the thesis, shown in equation 3.5, uses the
Euclidean distance between two nodes and divides it by the maximum speed limit in the
road network. More sophisticated approaches are presented in [9].

πt(v) = ‖v − t‖ ∗ smax
−1, smax := max

e∈E
s(e) (3.5)

where ‖v − t‖ denotes the Euclidean distance between nodes v and t.

3.4 Reinforcement Learning

The domain of machine learning deals with making predictions about data without a set
of static rules but rather by examination of data. The domain is generally subdivided
in three categories: supervised-, reinforcement- and unsupervised learning. Firstly, su-
pervised learning algorithms learn using a set of fully labeled examples. In other words
correct predictions for a subset of data must be available. Secondly, reinforcement learning
algorithms learn by interactions with an environment. The approach closely resembles the
natural acquisition of intelligence through experiments [37]. Thirdly, unsupervised learning
algorithms explore structures in datasets without prior knowledge about existence of such
structures. This section outlines general reinforcement learning.

Figure 3.2 shows a sketch of the main components and interactions in a reinforcement
learning setting. The environment is characterized by its current state and a set of possible
actions. Additionally, each action is assigned an immediate reward value depending on the
current state. The agent represents the learning entity. It moves through the environment
by iteratively selecting actions according to its internal policy and thereby collecting re-
wards. The goal of an agent is to maximize its collected reward. However, selecting an
action will cause the environment to advance into a new state, which is determined by
the selected action itself rather than its reward. This is the identifying characteristic of
reinforcement learning. The rewards are not instructive, meaning it alone does not decide
which action to take. Only a combination of environmental state, action and reward can

Agent

Environment

actionstate reward

Figure 3.2: The interactions between an agent and its environment in a reinforcement learning
setting.
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be used to make a prediction about a prospective series of actions [37]. Therefore, in order
to solve a reinforcement learning problem, a policy must not only exploit actions with good
immediate rewards, but also explore other actions which may lead to a greater long-term
reward.

This problem is known as exploration versus exploitation and is a deciding factor in the
success of reinforcement learning algorithms. In order to gain good long-term rewards a
policy must explore the search space by examining a set of varying actions. The expected
rewards should not be considered during exploration, since areas of good long-term rewards
may only be accessible through actions with low immediate rewards. When a search space
is sufficiently explored, an algorithm will begin exploiting actions which are known to lead
to a good overall reward. This is achieved by predicting such actions based on the current
environment state.

The rewards provided by the environment actions are not always known in advance.
In other words a reward is only assigned to an action after it was chosen. This is known
as a multi-armed bandit problem [7, 37]. This subclass of reinforcement learning problems
is especially challenging since a solution must additionally estimate the expected rewards
for all available actions in an environment state.
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Chapter 4

Dynamic Traffic Routing

This chapter discusses the challenges of routing in road networks. The concept of dynamic
routing presents a possible solution. It is additionally combined with a congestion detection
method based on Policy Optimizer for Exponential Models (POEM) [38].

4.1 Dynamic Nature of Road Networks

In many cases road networks are exceedingly dynamic structures.

Firstly, the topology of a road network is evolving over time. Infrastructural changes
are usually planned years in advance and do not pose a challenge to map providers. The
problem lies in unpredictable changes, such as minor roadworks or accidents possibly re-
sulting in lane or junction closures. When calculating a route, those situations should
be considered as soon as possible. This simplifies bypassing the situation as well as the
congestion arising in its close proximity.

Secondly, even though the overall flow of traffic usually follows a predictable pattern,
localized situations are often too volatile to predict, making them onerous to include in
regular route planning. For example, sporting events or concerts greatly increase local
traffic over a short, irregular period of time. To maximize flow, a routing system should
evenly distribute vehicles involved in such scenarios, while all others should be routed
around the area.

Thirdly, road networks are beginning to be more dynamic by design. High demand
areas are starting to implement digital signaling and signage [12]. In those cases sensors
monitor the current flow of traffic and adjust signals and signs accordingly. The central
idea of research presented in this paper is to additionally utilize such live sensor data in
traffic routing. The goal is to increase the performance of routing systems in the described
scenarios.

13



14 CHAPTER 4. DYNAMIC TRAFFIC ROUTING

These dynamic properties pose great challenges to traffic routing. Therefore, in order
to make adequate route suggestions, navigation systems must utilize live road network
information.

4.2 Dynamic Routing

The idea of dynamic routing is to incorporate live sensor data in route calculation, mainly
to bypass roads which are currently congested. This information is usually publicly broad-
cast by a central authority using the Traffic Messaging Channel [23]. This system would
work best, if only a limited number of vehicles responded to live updates. However, as
information is publicly available over radio, a scenario in which many vehicles respond to
updates concurrently is not unlikely. This could result in many vehicles making similar
route alterations, which would simply relocate congested areas. Hence, overall network
congestion would not decrease. Therefore, methods which additionally aim at evenly dis-
tributing traffic need to be researched.

Scarce, irregular road network information updates alone are not effectively countering
congestion [28]. Fast paced, frequent updates in contrast could distribute traffic more
evenly, so much that individual travel time will decrease on average. The idea is that when
many vehicles are aware of the live network state, congested areas can be bypassed in a
more even manner. The scenarios are outlined by the following examples.

Assume a central authority sends updates to all vehicles whenever the state of a road
changes from normal to severely congested or vice versa. Assume most vehicles which
receive updates about congested roads en route will calculate new routes simultaneously
in a more or less greedy manner. The likely result is that most alternative routes will
bypass the congested roads using similar diversions. Especially vehicles close to the affected
roads will usually only make minimal route changes. This could, in some cases, even give
rise to more congestion, particularly when alternative roads in close proximity have lower
capacities.

Alternatively, a central authority could send updates in short intervals. The update
information would include live data about some or all roads in a network. When an update
is received, a vehicle will recalculate its route using the new information. This scenario
should allow vehicles to distribute more evenly throughout the whole network. Moreover,
vehicles farther away would bypass not only the congested road, but also all congestion
inevitably arising around it. This method should also perform well with respect to short-
lived, unpredictable jams. Vehicles could also adapt to changes in signaling or signage
within a matter of seconds or minutes.

In order to pursue this alternative approach, an encompassing network of sensors is
obligatory. A sensor would measure various numeric parameters which describe a specific
cross section of the road network. Common examples are a road’s occupancy, density, mean
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speed or vehicle count. However, sensors can only provide numeric values representing the
current state. Additionally, the application of a machine learning algorithm would allow
users to easily process sensor readings by predicting a concrete, prospective label. For
example, such a label could indicate whether a road will be congested or not. The next
section will introduce POEM as a suitable machine learning algorithm.

4.3 Policy Optimizer for Exponential Models

The Policy Optimizer for Exponential Models (POEM) [38] is a reinforcement learning
algorithm for structured output prediction. More specifically, POEM learns using logged
bandit feedback, meaning no interactive control over an environment is required. This
section outlines the application of POEM to single label classification. The goal of POEM
is to optimize an existing policy. In other words a system which makes predictions about
an input space X according to a policy h0 must already be implemented. Then, POEM
will utilize data logged by the existing system to optimize h0.

More specifically, let X ⊂ Rm, m ∈ N be the input space and Y ⊂ {(0), (1)} be the
output space. The input space X represents all possible input variables. The output space
Y represents a single label which is either assigned (1) or not assigned (0) to an input
variable x ∈ X. The existing policy h0(Y | x) is a probability distribution over the output
space and predictions are made by sampling y ∼ h0(Y | x). For notational convenience
let h0(y | x) denote the probability assigned to label y for input x. Since h0 is already
implemented in an active system, information about the quality of the sampled outputs can
be measured. However, information about other outputs remains unknown. Therefore, let
δ : X × Y → R denote a cardinal loss feedback for all observed pairs (x,y), where smaller
values indicate greater satisfaction with y for x. In order to improve h0, POEM requires
a dataset:

D := {(xi,yi, δi, pi) | i ∈ N6n}, δi = δ((xi,yi)), pi = h0(yi | xi) (4.1)

Then, POEM will explore the hypotheses space Hlin for a policy hw that maximizes user
satisfaction by using gradient descent on the estimated, expected loss as well as its em-
pirical standard deviation. For single label classification a policy hw ∈ Hlin will sample y

according to:

hw(y|x) = exp(y1 ∗wTx) ∗ (1 + exp(wTx))−1, w ∈ Rm (4.2)

where w denotes the vector learned by POEM and y1 denotes the single label stored
in vector y. A complete description and discussion of POEM as well as pseudo-code is
provided in [38]. The subsequent section will apply POEM to the problem of congestion
detection in road networks.
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4.4 Dynamic Routing with POEM

Traffic closely resembles a reinforcement learning environment. Vehicles serve as agents
which move in a road network. Actions are represented by the roads a vehicle can chose at
each intersection. Once a road is chosen, a reward will be assigned for that particular road
depending on its actual state. The rewards for all other roads which could have been chosen
instead remain unknown. This scenario is known as a multi-armed bandit problem [6]. The
lack of fully labeled data makes any supervised learning approach particularly complex.

With this in mind POEM [38] was chosen as a suitable learning algorithm. Firstly,
POEM solely requires the reward values provided by the environment to learn a model.
Additionally, POEM does not require interactive control over agents, but rather learns
using logged data. This approach is more robust, as learned models can be evaluated before
deployment. Furthermore, a model will not evolve over time, which otherwise might lead
to unpredictable behavior.

4.4.1 Prerequisites

The approach of POEM is to improve an already existent policy h0. It assigns a structured
output to an arbitrary input based on its probability of being correct. Therefore, before
applying POEM to congestion detection, a suitable policy h0, along with an input space X
and output space Y must be constructed. Additionally, a cardinal loss feedback mapping
δ, which provides a quality measure about all observed input/output combinations, is
required.

The input space need not fulfill any special characteristics. However, learning can
be performed more efficiently when its variables are scaled appropriately. Therefore, let
X := [0, 1]m, m ∈ N, where each x = (x1, . . . , xm)T ∈ X represents a feature vector of
sensor measurements for a sensor. For example, a road’s density, occupancy, mean speed,
vehicle count or waiting time can be used. All variables need to be scaled, which can be
achieved by a simple min-max scaling. It is important to note that the size of aggregated
values will additionally depend on the size of the collection interval.

The output space must be a set of suitable, structured outputs. As POEM should be
applied to the problem of congestion control, a single label indicating whether or not a
road is congested could already provide adequate results. Thus, let Y := {(0), (1)}, where
label (0) indicates a road is not congested. A single label gives no indication about how
severe individual jams are. Therefore, vehicles are expected to bypass all congestion in an
equal manner. This could allow smaller jams to dissipate quickly, before longer ones evolve.
Those scenarios should be particularly visible in combination with dynamic routing. As
a consequence, a road network should also be utilized more evenly. This could result in
averagely longer travel distances. Nevertheless, many users should ideally have a time-wise
advantage.
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The policy h0(Y | x) is a probability distribution over the output space. In other
words it assigns a probability to each input/output combination based on how likely it is
to be correct. The goal of POEM is then to improve upon this policy. However, no such
policy exists for the constructed input and output spaces. This is a common problem when
applying POEM. Therefore, a default policy is used. Hence, let h0(y | x) := 0.5. For any
input it assigns a probability of 0.5 to both possible outputs; consequently both initially
are equally likely to be correct.

Lastly, in order to improve an existing policy POEM requires a cardinal loss feedback
mapping δ : X×Y → R. For congestion, multiple metrics which measure its severeness are
available. Section 3.2 presents two primitive metrics which utilize mean speed or density
values. Their main advantage is that those parameters are already provided by sensors.
In other words no supplementary data collection is required. As discussed in [38], proper
scaling of the feedback is necessary. This is achieved by introducing simple threshold
values, which reduce the value space: δ : X × Y → {−1, 0}.

The primitive density congestion metric, δdensity, would assume a road as congested
when its density was greater than one seventh of its jam density [13]. The primitive mean
speed congestion metric, δspeed would assume a road as congested when its mean speed
was less than ten kilometers per hour of its allowed speed.

4.4.2 Application

The goal is to not only detect congestion, but also to avoid it as soon as it arises. Hence,
a policy is directly combined with the previously introduced idea of dynamic routing. In
the following section only one of many possible approaches will be presented.

Let G = ((V,E, c), π) be a graph which represents a road network as described in
section 3.3. Here, c and π are the default weight and heuristic functions. Additionally,
assume all vehicles have knowledge about a congestion labeling policy h ∈ Hlin ∪ {h0}.
When using dynamic routing, vehicles will receive updates about roads in regular intervals
T ∈ N. The update can then be written as uT : E 7→ X.1 The value space of uT is equal
to the input space of POEM. Hence, when a vehicle receives an update uT , it is able to
predict how likely a road is to be congested during interval T + 1 using h. This is why
smaller update intervals are expected to outperform larger ones.

The described model receives sensor information about whole roads only. It does not
receive information about individual lanes which might be problematic as congestion does
not always arise on every lane equally. The scenario is most likely at junctions, where
each lane will allow a vehicle to go in a different direction. This problem is addressed by
aggregating sensor data for each connected edge pair. That way congestion on diverging
lanes can be distinguished more accurately.

1It is assumed updates are received equally for all edges.
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In order to bypass arising congestion, a vehicle must recalculate its route with respect
to the newly received update uT . This is achieved by increasing the weight of an edge
when it is likely to be congested:

c′ : E2 → R+, (e1, e2) 7→
c(e2)

h((0) | 0.5uT (e1) + 0.5uT (e2))
(4.3)

The denominator shows the previously mentioned aggregation of sensor data. For nota-
tional simplicity, c′ is defined for all of E2. In practice only a subset of E2 in which e1

incident or equal to e2 is used.
The function c′ calculates the new weight of an edge e2 depending on which incident

edge it was reached by. For instance, a vehicle on an edge e1 = (u, v) would calculate the
weight for edge e2 = (v, w) using c′(e1, e2). A vehicle which started its route on edge e2
would use c′(e2, e2), as no edge prior to e2 exists.

Essentially, c′ divides the old weight of an edge by its probability of not being congested
in interval T + 1. That means the weight of an edge will remain almost unchanged when
no congestion is expected. The increase will conversely depend on how likely congestion is
to arise. The soundness is given, as a labeling policy h ∈ Hlin ∪ {h0} will never produce a
probability of zero, which can be seen in section 4.3. However, rounding errors may occur
in practice. Additionally, as edge weights are solely increased, an existing admissibility
contract in π will not be violated, whereas no guarantee with respect to consistency can
be made. Consequently, an A∗ implementation will continue to always produce optimal
results. Nevertheless, increasing edge weights may negatively affect its performance.

Finally, it assumed sensor data updates are available for every road. In reality per-
manently installed sensors are much more scarcely distributed throughout the network.
This problem can be partly alleviated by directly implementing sensors in vehicles. For
example, one method could use navigation applications on smartphones. However, some
roads will still remain uncovered. In that case uT can map to {0}m. This will cause h
to assign a probability of 0.5 to both labels. A more sophisticated solution could make
predictions about uncovered roads using sensors in close proximity [26]. The experiments
evaluated only the first method, as it is very easy to implement and performed well.

4.4.3 Logging

For POEM no interactive control over actions is required as it was specifically designed
to learn using logged data. So, with respect to the previously defined setting it requires a
dataset of size n:

D := {(xi,yi, δi, pi) | i ∈ N6n}, pi = h(yi | xi) (4.4)

This dataset will be created during the logging phase. All edges are assigned weights
using c′ and routes are calculated using an implementation of A∗, which produces optimal
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results for any admissible heuristic. Additionally, when POEM is initially applied using
the default policy h0, all weights are scaled equally by a factor of 2. The scaling does
not affect A∗, meaning no route changes will occur, which in turn simplifies learning on
previously collected data.

The data itself can either be collected by each vehicle or a centralized authority monitor-
ing each vehicle. For both approaches a data entry cannot be created before any feedback
is available. Thus, intermediate results must be cached.

Firstly, the aggregated feature vector xi is logged. The respective label yi with its
corresponding probability pi are then determined using:

yi =


(0), h((0) | xi) > 0.5

(1), h((1) | xi) > 0.5

random((0), (1)), otherwise

(4.5)

where, random((0), (1)) means a label is chosen randomly, uniformly distributed. Lastly,
the feedback is logged using either δdensity or δspeed as described in section 3.2. The
respective results will inherently depend on the previously chosen label.
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Chapter 5

Evaluation

This chapter thoroughly evaluates dynamic routing with POEM using simulated worst-
case, realistic and best-case scenarios. The experiments evaluate overall network and indi-
vidual routing performance.

5.1 Evaluation Environment

The evaluation was performed using Simulation of Urban Mobility (SUMO) [24], a micro-
scopic, continuous road network simulator developed by the German Institute of Trans-
portation Systems. SUMO implements a network interface (TraCI), which allows other
applications to actively control a simulation. However, its rerouting capabilities are limited
to predefined routing algorithms. This limitation was bypassed by developing SUMOCA,
a Java support application which uses TraCI to emulate a central authority in SUMO.

In order to emulate a central authority SUMOCA converts a plain SUMO graph to a
directed multi-graph implementation using jGraph, an open-source Java graph library. This
allows SUMOCA to route vehicles using custom routing algorithms. A simulation is started
by creating a connection to a running SUMO server. The edge lengths and speed limits
to create equations 3.2 and 3.5 are initialized using TraCI. While a simulation is running,
SUMOCA will receive aggregated sensor measurements by SUMO in regular intervals. This
information is used to log a dataset as described in section 4.4.3. Additionally, SUMOCA

reroutes a user specified subset of vehicles with each update according to a previously set
policy. The updates sent by SUMO need not be complete, meaning each update may only
cover an arbitrary subset of edges or vehicles.

Although SUMO supports Open Street Map networks, a simulation using a raw network
import usually performs poorly. The performance issues are primarily caused by missing or
wrong road information, overly complex junction models and improper signal management
programs. Therefore, most experiments utilize a manually revised map of Luxembourg
City, provided by Luxembourg SUMO Traffic Scenario (LuST) [14]. The LuST network

21
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graph implements 2373 nodes connected by 5969 edges, spanning a length of 1571 kilo-
meters on an area of 155 square kilometers. Furthermore, LuST also provides a day of
modeled private and public transit data.

The experiments start at 7:45 and run over a period of roughly 35 minutes; or exactly
2048 seconds. The reason why this particular window was chosen is that roads generally
are more susceptible to congestion during rush hour. Additionally, a size of 2048 seconds
allows rerouting intervals to be easily scaled using a factor of two. In order to create more
realistic jams on arterial roads, SUMO was set to scale the original demand by 1.3. Unless
stated otherwise each experiment will use measurements of density, occupancy, vehicle
count, mean speed and waiting time.

Firstly, dynamic routing is evaluated given complete information availability in sec-
tion 5.3. A sensor is located on each road and will measure all previously mentioned
variables. The subsequent experiments in sections 5.4 and 5.5 reduce sensor locations and
measurements. This evaluates dynamic routing with POEM in a more realistic setting,
since complete information is generally not available. Then, dynamic routing with POEM
is evaluated using mobile sensors in section 5.6. The experiment evaluates whether or not
implementing dynamic routing using a participatory smartphone navigation system is suit-
able. Finally, it is evaluated whether or not an improvement can be seen when reapplying
POEM to an already optimized policy in section 5.7.

5.2 Evaluation Metrics

This section gives a short introduction into the underlying motivation of some chosen
evaluation metrics.

The primary goal is to evaluate the performance of dynamic routing schemes with
regard to congestion minimization and overall network utilization. The arithmetic mean
edge waiting time gives insight into global network congestion. The distribution of changes
in travel time values compared to a lower baseline evaluates whether or not congestion on
individual roads actually decreases or just relocates. The overall performance is measured
by the absolute throughput, meaning how many vehicles were able to reach their destination
in the given time frame. This metric was chosen, because SUMO is able to insert more
vehicles into the network when traffic is distributed more evenly. This effect is most
noticeable when congestion builds up around areas where vehicles are inserted into the
network. The metric is sound as vehicles spawn mostly evenly distributed throughout the
network. In LuST, only a relatively small amount of vehicles spawn on a designated set of
roads. Those points are located around motorways.

All mentioned metrics purely evaluate network performance without providing any
information about routing performance. For instance, an algorithm which decreases con-
gestion by routing many vehicles over excessively long detours is inexpedient. To evaluate
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overall routing performance, vehicle-trip related measurements need to be applied. These
results are presented by the distributions of travel and loss times. Time loss is defined as
the time a vehicle drives below the speed limit. Additionally, direct comparisons between
individual vehicles regarding their performance with and without application of the rout-
ing algorithm are of special interest. Those metrics give insight into potential sacrifices
some road user have to make, such as driving longer detours. The applied metrics evaluate
detours regarding route lengths and travel times when compared to a lower baseline.

However, evaluating detours is problematic. Using absolute values might skew results,
as long routes will allow long, absolute detours. Conversely, using relative values might
skew results as well, as short routes will allow long, relative detours. The following metric
is used to minimize this problem.

Definition (Relative-Weighted Detour) Let yA, yB ∈ R∗+ be arbitrary measurements
of one vehicle when algorithms A and B were applied respectively. Then,

detourrw(yA, yB) := sgn(yA − yB) ∗ (yA − yB)2 ∗ (yA + yB)
−1 (5.1)

will calculate the relative difference, while simultaneously weighting it using the absolute
difference. Assuming lower values of yA, yB are better, negative values will indicate an
advantage of A over B, whereas positive values will indicate the opposite.

The evaluation results are presented using various charts. The x-axis labels a set of
evaluated routing schemes. Firstly, a uniform cost search (UCS), in which each vehicle
is routed once at departure using the default cost function, is shown as a lower baseline.
The results of dynamic routing with POEM using various interval sizes are presented
next. Lastly, a Nash equilibrium (NASH) is shown as an upper baseline. The y-axis
labels the used evaluation metric. Unless stated otherwise, vehicle means numbers of
vehicles, whereas other labels will conform with SI units. In order to adequately present
distributions, box plots [30] were used. The boxes represent the lower, middle and upper
quartiles, whereas whiskers will represent the second and 98th percentiles. The outliers
were omitted in the graphs. For detours and differences, positive values will indicate an
advantage of UCS, whereas negative values will indicate the opposite.

5.3 Experiment — Complete Information

This experiment will route 100%, 75%, 50% and 25% of vehicles using 100% of available
sensor data. In other words, every road is equipped with a sensor comparable to an induc-
tion loop. This represents the best case scenario with regard to information availability.
The learning of POEM is performed using all available live sensor data, while vehicles are
routed using the unaltered demand data. Feedback is created using the primitive density
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congestion detection method. This experiment does not specifically evaluate the perfor-
mance gain of the individual vehicles using dynamic routing. Those results are presented
when mobile sensors are evaluated.

Firstly, when solely looking at a penetration rate of 100%, figure 5.1 shows that dynamic
routing initially creates more congestion when using larger interval sizes. As described
in section 4.2, one likely explanation is that many vehicles simultaneously chose similar
diversions and consequently create long jams on byroads. This explanation is especially
reasonable when looking at lower penetration rates, where only some vehicles will bypass
congestion. It is confirmed by the edge density distribution shown in figure 5.3 and can
also be observed when looking at the mean vehicle speed shown in figure 5.5.

The differences in travel times are shown in figure 5.2. An interval size of 1024 seconds
increases per edge travel times by well over a minute for some edges. This figure also
shows that for smaller interval sizes congestion does not relocate, but rather dissipates.
The changes in the lower, middle and upper quartiles remain close to zero. This occurs
since most residential roads will neither directly nor indirectly be affected by congestion.

Figure 5.6 shows that vehicles generally spend less time driving below the speed limit
when dynamic routing is applied. This could be caused by the lower average waiting times
per edge, which are shown in figure 5.4. The distribution of individual travel times shown
in figure 5.7 might suggest that road users have no individual advantage of using dynamic
routing. However, figure 5.8 indicates the opposite. It shows that the decrease of individual
travel times compared to UCS is considerably greater than any increase. The quartiles
around zero also imply that most users will not be affected by dynamic routing. Figure 5.9
outlines a notable difference in trip lengths between a Nash equilibrium and dynamic
routing with POEM. This most likely occurs because vehicles distribute evenly right from
the start in a Nash equilibrium, while dynamic routing can only counter congestion as soon
as it arises.

Lastly, figure 5.10 shows dynamic routing does increase the network throughput by up
to 40% compared to UCS. Nevertheless, its performance resides well below that of a Nash
equilibrium at 52%.
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Figure 5.1: The edge travel time distributions for various routing schemes and penetration rates
given complete information.
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Figure 5.2: The edge travel time difference distributions for various routing schemes and penetra-
tion rates given complete information. Negative values indicate an advantage of dynamic routing.
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Figure 5.3: The edge density distributions for various routing schemes and penetration rates
given complete information.
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Figure 5.4: The arithmetic mean edge waiting time for various routing schemes and penetration
rates given complete information.
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Figure 5.5: The harmonic mean edge speed for various routing schemes and penetration rates
given complete information.
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Figure 5.6: The trip time loss distributions for various routing schemes and penetration rates
given complete information.
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Figure 5.7: The trip travel time distributions for various routing schemes and penetration rates
given complete information.
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Figure 5.8: The relative-weighted trip detour duration distributions for various routing schemes
and penetration rates given complete information. Negative values indicate an advantage of dy-
namic routing.
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Figure 5.9: The relative-weighted trip detour length distributions for various routing schemes and
penetration rates given complete information. Negative values indicate an advantage of dynamic
routing.
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Figure 5.10: The network throughput for various routing schemes and penetration rates given
complete information.
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5.4 Experiment — Reduced Sensor Locations

The previous experiment placed a sensor on every road. In reality, sensors are much
more scarcely distributed throughout the network. This experiment evaluates scenarios in
which sensors are placed on 25% or 10% of all edges. The selected edges are identically
distributed. Additionally, all figures show a sensor placement of 100% as an upper baseline.
This experiment evaluates a penetration rate of 50%. The learning is performed on data
collected solely using the reduced sensor set. The collection is performed using the unal-
tered demand data. Feedback is created using the primitive density congestion detection
method. Each sensor continues to measure every vehicle.

Generally, all figures show that dynamic routing performs worse on a reduced set of
sensors. This is mostly due to the limited information availability during the application
phase, since congestion on roads without a sensor cannot be detected. Figure 5.11 shows
that dynamic routing still positively affects edge travel times. This can also be seen when
looking at the mean waiting time in figure 5.4. Those effects could be minimized by placing
sensors specifically around congestion prone areas, which are usually already known to
the responsible authorities. This would also increase the network throughput shown in
figure 5.14. Finally, figure 5.13 shows that the advantages for some vehicles considerably
outweigh the disadvantages for others.
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Figure 5.11: The edge travel time distributions for various routing schemes at 50% penetration
rate when sensor locations were reduced.



5.4. EXPERIMENT — REDUCED SENSOR LOCATIONS 31

 200

 300

 400

 500

 600

 700

 800

 900

UCS 1024 512 256 128 64 32 16 NASH

s

Routing Scheme

Arithmetic Mean Edge Waiting Times

100%
25%
10%

Figure 5.12: The arithmetic mean edge waiting time for various routing schemes at 50% pene-
tration rate when sensor locations were reduced.
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Figure 5.13: The relative-weighted trip detour duration distributions for various routing schemes
at 50% penetration rate when sensor locations were reduced. Negative values indicate an advantage
of dynamic routing.
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Figure 5.14: The network throughput for various routing schemes at 50% penetration rate when
sensor locations were reduced.

5.5 Experiment — Reduced Sensor Information

The previous experiments used all available sensor measurements. This includes den-
sity, occupancy, vehicle count, mean speed and waiting time. This experiment evaluates
dynamic routing where POEM learns using solely density and vehicle speed. These mea-
surements were chosen since variations of both are regularly used in congestion detection
methods [8, 15, 36]. A penetration rate of 50% is evaluated while sensors are again placed
on every road and continue to measure every vehicle. The collection is performed using
the unaltered demand data. Feedback is created using the primitive density congestion de-
tection method. The figures additionally show results created with complete information
for comparison.

All figures show that POEM is better at classifying congestion when given complete
information. This is most noticeable when looking at the mean edge waiting time and
vehicle throughput in figures 5.16 and 5.18. The individual routing performance is also
negatively affected, which can be seen when looking at the relative-weighted detour dura-
tions in figure 5.17.

The reason why POEM performs worse might be that vehicle mean speeds alone do
not carry enough information. A more sophisticated approach could combine mean vehicle
speeds with respective speed limits, road conditions and signal positions. For instance,
mean speeds in city centers will generally be lower than those on motorways due to frequent
stops.



5.5. EXPERIMENT — REDUCED SENSOR INFORMATION 33

 0

 20

 40

 60

 80

 100

 120

 140

 160

UCS 1024 512 256 128 64 32 16 NASH

s

Routing Scheme

Edge Travel Time Distributions

5 Features
2 Features

Figure 5.15: The edge travel time distributions for various routing schemes at 50% penetration
rate when sensor information was reduced.
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Figure 5.16: The arithmetic mean edge waiting time for various routing schemes at 50% pene-
tration rate when sensor information was reduced.



34 CHAPTER 5. EVALUATION

-400

-300

-200

-100

 0

 100

UCS 1024 512 256 128 64 32 16 NASH

s 
(r

e
la

ti
v
e
-w

e
ig

h
te

d
)

Routing Scheme

Trip Detour Duration Distributions

5 Features
2 Features

Figure 5.17: The relative-weighted trip detour duration distributions for various routing schemes
at 50% penetration rate when sensor information was reduced. Negative values indicate an advan-
tage of dynamic routing.
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Figure 5.18: The network throughput for various routing schemes at 50% penetration rate when
sensor information was reduced.
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5.6 Experiment — Mobile Sensors

The sensors used in previous experiments measure every vehicle on their respective position.
This information could be gathered using one of many permanently installed sensors, such
as induction loops. Alternatively, smartphone navigation applications can be used as
sensors. This experiment evaluates penetration rates of such applications of 40% and 20%,
where participating vehicles are identically distributed. The measured data is inherently
incomplete, as it is only collected for a subset of roads and vehicles. This especially presents
a challenge to congestion detection, as information regarding vehicle density is not accurate
anymore. For example, when only one vehicle using such an application is stuck in a jam
on a motorway, very low density values are measured. This is why feedback is created
using the primitive mean speed congestion detection method.

For vendors of such applications routing performance regarding all users is not par-
ticularly interesting. Their interest mostly lies in how great of an advantage users will
have compared to non-users. Additionally, with such applications a jam can only be de-
tected when sufficiently many users are already caught up in it. It would be important to
evaluate how evenly the advantages distribute throughout the user base. However, such
an evaluation would require long-term usage information, which is why it could not be
performed.

Firstly, the relative-weighted detour duration presented in figures 5.19 and 5.20 show
that users generally outperform non-users by a factor of two. This cannot be observed
when looking at the Nash equilibrium, which indicates the results were indeed achieved by
dynamic routing and not by a particularly favorable origin-destination distribution in the
user set. The figures also show that dynamic routing performs best when using moderately
sized intervals. This can also be observed when looking at the relative-weighted detour
waiting times in figures 5.21 and 5.22.

The performance at low penetration rates is particularly interesting in real-world sce-
narios, since currently no single system dominates the market. It could be further improved
by additionally utilizing stationary sensor data.
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Figure 5.19: The relative-weighted trip detour distributions for various routing schemes given an
in-vehicle sensor penetration rate of 20%. The sensor information was only available to vehicles
equipped with a sensor. Negative values indicate an advantage of dynamic routing.
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Figure 5.20: The relative-weighted trip detour distributions for various routing schemes given an
in-vehicle sensor penetration rate of 40%. The sensor information was only available to vehicles
equipped with a sensor. Negative values indicate an advantage of dynamic routing.
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Figure 5.21: The relative-weighted trip waiting time distributions for various routing schemes
given an in-vehicle sensor penetration rate of 20%. The sensor information was only available to
vehicles equipped with a sensor. Negative values indicate an advantage of dynamic routing.
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Figure 5.22: The relative-weighted trip waiting time distributions for various routing schemes
given an in-vehicle sensor penetration rate of 40%. The sensor information was only available to
vehicles equipped with a sensor. Negative values indicate an advantage of dynamic routing.
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5.7 Experiment — Reapplication

The experiment with complete information in section 5.3 showed that dynamic routing
performs poorly on large interval sizes when all vehicles are rerouted. This experiment
evaluates whether or not a policy can be further improved by reapplying POEM. Firstly,
POEM is applied on the default demand and policy. Then, POEM is applied on the data
created by using the previously learned policy. A penetration rate of 100% is evaluated.
Feedback is again created using the primitive density congestion detection method.

The results in figure 5.23 show that the creation of more jams in larger interval sizes
can be avoided by reapplying POEM. However, it does not considerably outperform UCS,
which might be caused by the large interval size in relation to the evaluation period. For an
interval size of 1024 seconds vehicles are only rerouted once, which means many vehicles are
not rerouted at all. This can also be seen when looking at the individual detour durations
shown in figure 5.24. The figures also show that performance gets worse for smaller interval
sizes.

Those effects can be explained by the exploration vs exploitation dilemma. The policy
created by the initial application of POEM creates more congestion in large interval sizes.
The logged data thus explores congested roads very well, which in turn allows POEM to
further optimize the policy. In contrast, congestion is minimized in small interval sizes.
The logged data does not explore congested roads, but rather exploits uncongested ones,
meaning it does not provide POEM with good information about characteristics of con-
gestion.
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Figure 5.23: The edge travel time distributions for various routing schemes at 100% penetration
rate when reapplying POEM and given complete information.
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Chapter 6

Conclusion

The experiments showed that reinforcement learning, specifically Policy Optimizer for Ex-
ponential Models (POEM) [38] can be used to successfully detect congestion in road net-
works. The predictions by POEM were used by dynamic routing in order to distribute
vehicles more evenly, which effectively reduced overall network congestion. The experi-
ments also showed that dynamic routing with POEM can be deployed using a smartphone
navigation system. This greatly simplifies deployment as it does not require any new
sensors to be deployed. However, existing sensors can still be included when available
to increase prediction accuracy. The deployment in smartphone applications is also of
commercial interest, since it provides its users with an advantage.

Future research will evaluate whether or not dynamic routing with POEM can be
applied on a larger spatio-temporal scale. However, Luxembourg is currently the largest
open-source road network of adequate quality for realistic simulations in Simulation for
Urban Mobility (SUMO) [24]. This is why either a larger road network must be revised or a
real-world application using open-source maps such as Open Street Map must be developed.
The real-world application allows long-term user statistics to be created. Those can be used
to study which users are provided with the greatest advantage. For simulations Cologne is
currently under revision [39].

Another area of research is the application of POEM for congestion detection, since only
one of multiple possible approaches was outlined. For instance, min-max scaling of feature
vectors may be substituted with standard-score or unit-length scaling. Furthermore, sec-
tion 5.5 already discussed an improvement of the utilized features, which will most likely
have a great impact on the performance of congestion detection. Similarly, more sophis-
ticated methods of feedback creation might also lead to better results. Including road
types and conditions will lead to increased accuracy due to the varying characteristics of
city and motorway traffic. Finally, POEM must also be compared to other congestion
detection algorithms in order to show its advantage with respect to performance.
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Although dynamic routing performed well in simulated scenarios, case studies must
evaluate whether or not it is applicable in real-world situations. Special consideration must
be given to unexpected, intricate route changes, which might be a common occurrence in
dynamic routing. The performance in unusual situations such as accidents or road closures
must also be evaluated. However, even when dynamic routing proofs to be unsuitable,
POEM can still be used in combinations with other routing schemes. Future research will
specifically aim at comparing POEM with r-Extreme Signalling [28].

This thesis also showed that reinforcement learning is generally applicable in a road
network environment. While POEM was only applied to congestion detection, it might also
proof to be advantageous in other problems. One prospective area of research is the control
of traffic signals using reinforcement learning, which already showed promising results in [4]
and [34]. Another area of research will be the implementation of reinforcement learning
on a per-vehicle scale, meaning each vehicle represents a learning agent which solely learns
using data created by itself. This greatly simplifies deployment, since it does not require
any coordination between drivers. However, a single vehicle only generates a small amount
of data, which poses a challenge to reinforcement learning algorithms.
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